Iron absorption from ferrous fumarate in adult women is influenced by ascorbic acid but not by Na$_2$EDTA

Meredith C. Fidler, Lena Davidsson*, Christophe Zeder, Thomas Walczyk and Richard F. Hurrell

Laboratory for Human Nutrition, Institute of Food Science and Nutrition, Swiss Federal Institute of Technology (ETH) Zurich, PO Box 474/Seestrasse 72, 8803 Rueschlikon, Switzerland

(Received 14 May 2003 – Revised 18 July 2003 – Accepted 3 August 2003)

Ascorbic acid and Na$_2$EDTA enhance Fe absorption from the water-soluble Fe compound FeSO$_4$ but their effect on poorly water-soluble Fe compounds such as ferrous fumarate is less well established. In the present study, the effects of ascorbic acid and Na$_2$EDTA on Fe absorption from ferrous fumarate were evaluated in adult women (ten women/study) from the erythrocyte incorporation of Fe stable isotopes (57Fe or 58Fe) 14 d after administration. Two separate studies were made with test meals of Fe-fortified infant cereal (5 mg Fe/meal). Data were evaluated by paired t tests and the results are presented as geometric means. In study 1a, the comparison between Fe absorption from ferrous fumarate- and FeSO$_4$-fortified cereal showed that adult women absorb Fe as well from ferrous fumarate as from FeSO$_4$ (3·0 and 3·1 % respectively, $P=0·85$). After addition of Na$_2$EDTA (Na$_2$EDTA:fortification Fe molar ratio of 1:1), Fe absorption from FeSO$_4$ was significantly higher than from ferrous fumarate (5·3 v. 3·3 % respectively, $P<0·01$; study 1b). In study 2, Fe absorption was compared from ferrous fumarate-fortified meals with and without ascorbic acid added at a 4:1 molar ratio (relative to fortification Fe) and the results showed that ascorbic acid increased Fe absorption from ferrous fumarate significantly (6·3 v. 10·4 %, $P=0·02$). The results of the present studies show that Fe absorption from ferrous fumarate is enhanced by ascorbic acid but not by Na$_2$EDTA, thus emphasising that not all findings from Fe absorption studies made with FeSO$_4$ can be extrapolated to Fe compounds with different solubility properties.

Iron fortification: Ferrous fumarate: Ascorbic acid: Na$_2$EDTA

Ferrous fumarate is a poorly water-soluble Fe compound, which is soluble in dilute acid (such as gastric acid) and is as well absorbed as ferrous sulfate in healthy Western adults (Hurrell et al. 1989, 1991, 2000). In infants, Fe absorption from this compound is significantly higher than from ferric pyrophosphate (Davidsson et al. 2000). Besides being readily bioavailable, ferrous fumarate is a useful fortification compound since it provokes fewer organoleptic changes in fortified foods during storage than freely water-soluble Fe compounds such as ferrous sulfate (Hurrell, 1999). Presently, ferrous fumarate is used to fortify industrially manufactured infant cereals in Europe, maize flour in Venezuela and has been suggested as the fortificant for chocolate-drink powders (Hurrell, 1999; Garcia-Casal & Layrisse, 2002).

Bioavailability of fortification Fe depends on several factors, including the solubility of the Fe compound in the gastric content during digestion and the composition of the meal, i.e. on the presence of enhancers and inhibitors of Fe absorption. Ascorbic acid is a potent enhancer of Fe absorption and can overcome the inhibitory effect of phytic acid in cereal-based meals on native Fe as well as on freely water-soluble Fe compounds such as ferrous sulfate (Sayers et al. 1973, 1974; Björn-Rasmussen & Hallberg, 1974; Gillooly et al. 1984; Cook et al. 1997). Ascorbic acid has also been reported to enhance Fe absorption from the water-insoluble Fe fortificants ferric orthophosphate and electrolytic Fe (Forbes et al. 1989). Its influence on the absorption of ferrous fumarate is, however, less well established. Hurrell et al. (1991) reported no enhancing effect of ascorbic acid on Fe absorption from a ferrous fumarate-fortified chocolate-drink powder and only a modest enhancing effect when added to a ferrous fumarate-fortified liquid formula meal.

In a similar way, Na$_2$EDTA has also been shown to enhance Fe absorption from ferrous sulfate in inhibitory meals containing phytic acid (MacPhail et al. 1994; Hurrell et al. 2000; Davidsson et al. 2001). Its advantage over ascorbic acid is that it is stable during heat processing and storage; however, there are several recent reports that Na$_2$EDTA does not enhance Fe absorption from poorly water-soluble and water-insoluble Fe compounds. For example, when added to a ferric pyrophosphate-fortified infant cereal, Na$_2$EDTA did not increase Fe absorption (Hurrell et al. 2000). Further, Fe absorption was not improved by the addition of Na$_2$EDTA to cornflakes.

Abbreviation: Hb, haemoglobin.

Corresponding author: Dr Lena Davidsson, fax +41 1 704 57 10, email lena.davidsson@ilw.agrl.ethz.ch
fortified with hydrogen-reduced Fe (Fairweather-Tait et al. 2001), or when added to a typical Guatemalan meal fortified with ferrous fumarate (Davidsson et al. 2002).

The aim of the present studies was to compare the influence of Na2EDTA on Fe absorption from ferrous fumarate and ferrous sulfate and to further evaluate the influence of ascorbic acid on Fe absorption from ferrous fumarate. Fe absorption was measured in healthy women from a wheat-based infant cereal by using a stable-isotope technique based on the incorporation of Fe stable isotopes into erythrocytes 14 d after administration.

Subjects and methods

Subjects

Twenty apparently healthy adult women (20–30 years; maximum body weight 60 kg) were recruited from the student and staff population at the Swiss Federal Institute of Technology Zurich and the University of Zurich. The women were randomly allocated to two separate studies (ten women/study). Exclusion criteria included pregnancy or lactation and known gastrointestinal or metabolic disorders. No medication (except oral contraceptives) or vitamin and mineral supplements were allowed during the study. All women consuming vitamin and mineral supplements regularly (n 6) discontinued supplementation 2 weeks before the start of the study.

The study protocol was reviewed and approved by the ethical committee at the Swiss Federal Institute of Technology Zurich, Switzerland. Subjects were informed orally and in writing about the aims and procedures of the study. Written informed consent was obtained from all study subjects.

Study design

Two studies were performed (Table 1). In study 1, each subject received four test meals and Fe absorption from ferrous fumarate- and ferrous sulfate-fortified meals without (study 1a) and with (study 1b) added Na2EDTA was compared. In study 2, each subject received two test meals only and Fe absorption from ferrous fumarate-fortified meals with and without ascorbic acid was compared. Fe absorption was based on the erythrocyte incorporation of Fe stable isotope labels 14 d after the intake of labelled test meals. The Fe compounds were labelled with 57Fe or 58Fe and added to the different test meals as described later (pp. 1082–1083). All test meals were fed between 07.00 and 09.00 hours, after an overnight fast, under standardised conditions. A crossover study design was used with each woman acting as her own control. On the day before the intake of the first test meal (day 0), a venous blood sample was drawn after an overnight fast for the determination of Fe-status parameters (haemoglobin (Hb), and plasma ferritin) and body weight and height were measured. In study 1a, labelled test meals (meals A and B) were fed on the following 2 d (days 1 and 2). A second venous blood sample was drawn 14 d after intake of the second test meal (day 16). The second pair of labelled test meals (meals C and D) was fed on days 17 and 18 (study 1b) and a final blood sample was obtained 14 d after the administration of the last test meal (day 32). In study 2, the first labelled test meal (meal E) was fed on day 1 and a second venous blood sample was drawn 14 d later (day 15). On day 16, the second labelled test meal (meal F) was fed and a final blood sample was obtained on day 30. No intake of food or fluids was allowed for 3 h after the test-meal intake.

Test meals

All test meals consisted of 50 g roller-dried wheat-based infant cereal (Nestlé PTC, Orbe, Switzerland) fed with reconstituted milk (8 g milk powder, Sano Lait; Coop Schweiz, Basel, Switzerland, and 75 ml deionised water). The infant cereal was made from 79·7 % wheat flour, partially hydrolysed, 10 % sucrose, 4 % honey, 3 % palm oil, 5 % water and 0·3 % calcium carbonate. Except for Ca, no minerals or vitamins were added. Each test meal contained 5 mg added Fe, 4 mg Fe as 58FeSO4 plus 1 mg Fe as FeSO4 of natural isotopic composition or 5 mg Fe as 57Fe ferrous fumarate. Deionised water (200 g) was served as a drink. To test meals C and D in study 1, Na2EDTA (Akzo Nobel, Herkenbosch, The Netherlands) was added at a Na2EDTA:fortification Fe molar ratio of 1:1 (26·7 mg Na2EDTA). To test meal F in study 2,
Iron absorption from ferrous fumarate

Iron status measurements

Venous blood samples (7 ml) were drawn in EDTA-treated tubes at each sampling. The samples were analysed for Fe-status indices (Hb, plasma ferritin) and for the tubes at each sampling. The samples were analysed for venous blood samples (7 ml) were drawn in EDTA-treated iron status measurements et al. (Walczyk, 1997). Fe concentrations of each labelled Fe fortificant were calculated based on the shift in Fe isotopic composition and on the amount of Fe circulating in the body. The calculations were based on the principles of isotope dilution and took into account that the Fe isotopic labels were not monoisoitopic (Walczyk et al. 1997). Circulating Fe was calculated based on blood volume and Hb concentration (Kastenmayer et al. 1994). Blood-volume calculations were based on height and weight according to Brown et al. (1962). For calculations of fractional Fe absorption, 80% incorporation of the absorbed Fe into erythrocytes was assumed (Hosain et al. 1967).

Food analysis

Cereal and milk powder were analysed for Fe and Ca by electrothermal–flame atomic absorption spectroscopy (SpectraAA 400; Varian, Mulgrave, Australia) after mineralisation by microwave digestion (MLS-Ethos plus; Mikrowellen-Labor-Systeme, Leutkirch, Switzerland) in a nitric acid–H2O2 mixture, using standard addition techniques to minimise matrix effects. Phytic acid in the infant cereal was determined by a modification of the Makower (1970) method in which Ce replaced Fe in the precipitation step.

Statistics

Fractional Fe absorption values are presented as geometric means and standard deviations (±1 SD, ±1 SD) (geometric means are back-transformed log-scale means). Student’s paired t test was used to compare the absorption data within each study (studies 1a, 1b and study 2 respectively). Absorption values were logarithmically transformed before statistical analysis (Excel 2002; Microsoft Corporation, Redmond, WA, USA). The correlation between Fe absorption and plasma ferritin concentration was evaluated by Spearman’s rank correlation.

Results

None of the women were anaemic (Hb concentration <120 g/l). However, six women had no Fe stores, indicated by low plasma ferritin values (<12 μg/l).

The test meals contained 0·6 mg native Fe (1·1 mg Fe/100 g infant cereal, 0·15 mg Fe/100 g milk powder), 167 mg Ca (148 mg Ca/100 g infant cereal, 1159 mg Ca/100 g milk powder) and 84 mg phytic acid (168 mg phytic acid/100 g infant cereal). The ascorbic acid content was not measured as it was assumed to be negligible.

Ascorbic acid and Na2EDTA solutions

Aqueous solutions of food-grade ascorbic acid and food-grade Na2EDTA were prepared freshly each morning and added to the test meals at the time of serving.

Quantification of iron isotopes in labelled iron fortificants

Isotope-dilution MS was used to determine the concentration of 57Fe and 58Fe stable isotopes in the ferrous fumarate and ferrous sulfate solutions. For analysis, [57Fe]ferrous fumarate was dissolved in concentrated nitric acid. An accurately measured amount of Fe of natural isotopic composition was added to samples taken from the prepared solutions of labelled Fe fortificants. The Fe standard was prepared gravimetrically from an isotopic reference material (IRMM-014; EU Institute of Reference Materials, Geel, Belgium). Isotopic analyses were performed using negative thermal ionisation-MS (Walczyk, 1997). Fe concentrations of each labelled Fe fortificant were calculated based on the shift in Fe isotopic abundances, the determined isotopic abundances of the pure isotopic labels and the natural Fe isotopic abundances (Walczyk et al. 1997).

Calculation of iron absorption

The amounts of 57Fe and 58Fe isotopic labels in blood 14 d after the test-meal administrations were calculated based on the shift in Fe isotope ratios and on the amount of Fe circulating in the body. The calculations were based on the principles of isotope dilution and took into account that the Fe isotopic labels were not monoisoitopic (Walczyk et al. 1997). Circulating Fe was calculated based on blood volume and Hb concentration (Kastenmayer et al. 1994). Blood-volume calculations were based on height and weight according to Brown et al. (1962). For calculations of fractional Fe absorption, 80% incorporation of the absorbed Fe into erythrocytes was assumed (Hosain et al. 1967).

Stable isotope labels

[58Fe]ferrous sulfate was prepared from isotopically enriched elemental Fe (Chemgas, Boulogne, France) by dissolution in sulfuric acid and dilution to the appropriate concentration. Two separate batches of [58Fe]ferrous fumarate were prepared in collaboration with Dr Paul Lohmann Ltd, Emmerthal, Germany. It has been used in previous human studies (Davidsson et al. 2000, 2002).

Quantification of iron stable isotopes in blood

Each isotopically enriched blood sample was analysed in duplicate for its Fe isotopic composition as previously described by Walczyk et al. (1997). The blood samples were mineralised by microwave digestion using a mixture of nitric acid and H2O2. Fe was separated from the matrix by anion-exchange chromatography and a solvent–solvent extraction step into diethyl ether. Isotopic analyses were performed by negative thermal ionisation-MS (Walczyk, et al. 1997).

Ascorbic acid (Merck, Darmstadt, Germany) was added at an ascorbic acid:fortification Fe molar ratio of 4:1 (63 mg ascorbic acid).

Iron absorption from ferrous fumarate 1083
Isotopic enrichments were 95.99±0.03% 57Fe (57Fe-labelled ferrous fumarate) and 92.99±0.02 and 91.6±0.1% 56Fe (56Fe-labelled ferrous sulfate) in studies 1a and 1b respectively.

The results of the Fe absorption studies are shown in Table 1. In study 1a, no significant difference between Fe absorption from the ferrous sulfate- and ferrous fumarate-fortified infant cereal was found (geometric mean 3.1 v. 3.0% respectively, \(P=0.85\)). When Na2EDTA was added to the test meals, Fe absorption was significantly higher from the ferrous sulfate- than from the ferrous fumarate-fortified test meals (geometric mean 5.3 v. 3.3% respectively, \(P<0.01\); study 1b). In study 2, the addition of ascorbic acid (ascorbic acid:Fe molar ratio of 4:1) to the ferrous fumarate-fortified cereal increased Fe absorption significantly (geometric mean 6.3 v. 10.4%, \(P<0.02\)). A statistically significant correlation (\(P<0.05\)) between Fe absorption and plasma ferritin concentration was only found for test meal F.

Discussion

Studies investigating the influence of enhancers and inhibitors on Fe absorption from fortified foods have most often evaluated the commonly used water-soluble Fe compound ferrous sulfate. Only a few studies have been performed with poorly water-soluble Fe compounds, primarily due to the technical difficulties involved in producing experimentally labelled compounds. While the preparation of labelled ferrous sulfate is relatively easy, special care has to be taken when preparing poorly water-soluble Fe compounds, such as ferrous fumarate, so as to ensure that the labelled compound is similar to the commercial Fe fortificant. Besides the technical difficulties associated with using a down-scaled production method, the high cost involved in the preparation of such compounds is a limiting factor, especially when stable Fe isotopes are used. In the present study, the labelled ferrous fumarate was produced in collaboration with a manufacturer of commercial ferrous fumarate and had a similar solubility in dilute acid (Davidsson et al. 2000).

Ascorbic acid and Na2EDTA have repeatedly been shown to enhance Fe absorption from ferrous sulfate (Sayers et al. 1973, 1974; Björn-Rasmussen & Hallberg, 1974; Gillooly et al. 1984; el Guindi et al. 1988; MacPhail et al. 1994; Cook et al. 1997; Hurrell et al. 2000; Davidsson et al. 2001). However, due to the results obtained by Hurrell et al. (1991) and Davidsson et al. (2002) it is unclear whether ascorbic acid and Na2EDTA also enhance Fe absorption from ferrous fumarate and the present study was performed for clarification.

The influence of Na2EDTA on Fe absorption from ferrous fumarate and ferrous sulfate was compared in study 1. The present results show that healthy Western women absorb Fe as well from ferrous fumarate as from ferrous sulfate. Further, the results showed that Fe absorption was significantly higher from ferrous sulfate than from ferrous fumarate in the presence of Na2EDTA. This indicates that Na2EDTA does not enhance Fe absorption from ferrous fumarate-fortified infant cereal and thus confirms previous evidence that Na2EDTA has no effect on Fe absorption from poorly water-soluble and water-insoluble Fe compounds (Hurrell et al. 2000; Fair-weather-Tait et al. 2001; Davidsson et al. 2002).

The lack of effect on Fe absorption after the addition of Na2EDTA to ferrous fumarate-fortified foods is probably related to the solubility of this Fe compound. Fe from ferrous sulfate can be expected to enter the common non-haeme Fe pool rapidly, while ferrous fumarate has to dissolve in the gastric juice before Fe is released and enters the Fe pool. During this time, Na2EDTA can form complexes with other minerals and trace elements, resulting in a reduced binding capacity of Na2EDTA with the more slowly solubilised Fe compounds. EDTA–Fe complexes, which are assumed to be responsible for the enhancing effect of Na2EDTA, would thus not be formed.

The results from study 2 show that ascorbic acid added at a 4:1 molar ratio (relative to Fe) enhances Fe absorption from ferrous fumarate significantly. Thus, Fe does not seem to be competing with other minerals and trace elements or with other food components present in the gastric juice for the reducing and chelating properties of ascorbic acid, which are thought to be responsible for its enhancing effect on Fe absorption (Conrad & Schade, 1968).

Until now, the enhancing effect of ascorbic acid on Fe absorption from ferrous fumarate had not been demonstrated directly. Results from earlier studies had indicated that ascorbic acid enhanced Fe absorption from ferrous fumarate to the same extent as from ferrous sulfate, as there was no significant difference between Fe absorption from infant cereals fortified with these compounds in the presence (Hurrell et al. 1989) and in the absence (Hurrell et al. 2000) of ascorbic acid. However, another study had reported ascorbic acid to have no significant effect on Fe absorption from a chocolate-drink powder and a liquid formula meal fortified with ferrous fumarate (Hurrell et al. 1991). These findings can probably partly be explained by the relatively low ascorbic acid:Fe molar ratio (1:7:1) and by the high level of Fe-absorption inhibitors in the chocolate drink (casein and Ca from milk, phytate from malt and polyphenols from cocoa). This assumption is supported by the observation in the same study that native Fe absorption from the unfortified chocolate drink was not increased even though the ascorbic acid:Fe molar ratio was approximately 14:1. Further, although Fe absorption from a ferrous fumarate-fortified liquid formula meal did not increase significantly on the addition of ascorbic acid at a 4:1 ascorbic acid:Fe molar ratio, a 1.6-fold increase (\(P=0.14\)) was observed in this earlier study. Based on the results from the present study, showing that ascorbic acid enhances Fe absorption significantly from ferrous fumarate, it would seem that the lack of statistical evidence in the earlier study was presumably due to the small sample size (eight subjects) and the large variations within the group.

The results of the present studies confirmed that healthy adults absorb Fe as well from ferrous fumarate as from ferrous sulfate and thus indicate that, in adults, ferrous fumarate dissolves completely in the gastric juice. Further, the results showed that ascorbic acid enhances Fe absorption from ferrous fumarate, while Na2EDTA has
no significant influence on Fe absorption from ferrous fumarate. Thus, the present results emphasise that not all findings from Fe absorption studies made with ferrous sulphate can be extrapolated to Fe compounds which have different solubility properties.

References

