Diet, serum homocysteine levels and ischaemic heart disease in a Mediterranean population

George E. Vrentzos\(^1\), John A. Papadakis\(^1\), Niki Malliariaki\(^2\), Evagelos A. Zacharis\(^3\), Elias Mazokopakis\(^1\), Andreas Margioris\(^2\), Emmanuel S. Ganotakis\(^1\)* and Anthony Kafatos\(^4\)

Departments of \(^1\)Internal Medicine
\(^2\)Clinical Chemistry and
\(^1\)Cardiology, University Hospital of Crete, PO Box 1352, Heraklion 71110, Crete, Greece
\(^4\)Social Medicine, Preventive Medicine and Nutrition Clinic, University Hospital of Crete, Heraklion, Crete, Greece

(Rceived 10 October 2003 – Revised 24 December 2003 – Accepted 17 February 2004)

Homocysteine (Hcy) is recognised as a risk factor for IHD. Serum Hcy is negatively correlated with serum folate levels, the main sources of which are fruits, vegetables and legumes. The present case–control study was designed to examine the relationship between serum Hcy levels and IHD and to assess the role of dietary factors in the southern Mediterranean population of Crete, Greece. Serum Hcy, folate, vitamin B\(_{12}\), creatinine and glucose levels and a full lipid profile were measured in 152 patients with established IHD, median age 64 (range 33–77) years, and 152 healthy control subjects, age- and sex-matched. Dietary data were assessed using a 3 d food intake record. Compared with controls, patients with IHD had significantly higher daily intakes of vitamin B\(_{12}\) and MUFA and significantly lower intakes of carbohydrate, fibre, folate, cholesterol, n-3 fatty acids and total trans unsaturated fatty acids. Moreover, patients had significantly higher serum Hcy, vitamin B\(_{12}\) and creatinine levels, but significantly lower folate. Serum folate concentrations in both groups had a significant positive correlation with dietary fibre consumption and a significant inverse correlation with vitamin B\(_{12}\) intake. IHD patients should be encouraged to increase their daily dietary intake of fibre, folate and n-3 fatty acids, which are significant components of the traditional Cretan Mediterranean diet. Where dietary folate intake is inadequate, folate supplements are recommended to reduce elevated Hcy levels.

Homocysteine: Cretan Mediterranean diet: Folate: Ischaemic heart disease

Elevated plasma homocysteine (Hcy) levels are recognised as a conditional risk factor for atherothrombotic vascular disease in coronary, peripheral, and cerebrovascular arterial circulation (Grundy \textit{et al.} 1999; Weiss \textit{et al.} 2002). Hcy is an intermediary amino acid formed by the conversion of dietary methionine to cysteine (Nguyen & McLaughlin, 2002) and is catabolised either by remethylation to methionine or by trans-sulfuration to cystathionine (Haynes, 2002). Remethylation can occur either by methionine synthase (folate and vitamin B\(_{12}\) dependent), or by betaine-homocysteine methyltransferase; the methyl donor being 5-methyl-tetrahydrofolate (a derivative of folic acid), and betaine, respectively. Trans-sulfuration is catalysed by cystathionine β-synthase and requires the cofactor vitamin B\(_{6}\) (Cook \textit{et al.} 2002; Haynes, 2002).

The atherogenic mechanism of Hcy-induced vascular damage is still not clearly understood. It is assumed that Hcy is toxic to the vascular wall, causing endothelial dysfunction (Woo \textit{et al.} 1997). Elevated Hcy levels may stimulate the proliferation of vascular smooth muscle cells and impair endothelial function (Welch & Loscalzo, 1998). The interaction of Hcy and endothelial cells may also be followed by platelet activation and thrombus formation (Thambyrajah & Townend, 2000).

Dietary and environmental factors may modify serum Hcy concentrations. Among the factors known to influence Hcy metabolism are several nutrients, including folate, vitamin B\(_{12}\) and vitamin B\(_{6}\) (Stein & McBride, 1998). Nutritional deficiencies of these cofactors are associated with hyperhomocysteinaemia (Welch & Loscalzo, 1998; Eikelboom \textit{et al.} 1999). An inverse relation has been shown between serum Hcy levels and the dietary intake of folate and vitamin B\(_{12}\) (Selhub \textit{et al.} 1993; Rimm \textit{et al.} 1998).

The traditional Cretan Mediterranean diet has been shown to reduce the risk of cardiovascular events (Kafatos \textit{et al.} 1991; Trichopoulou \textit{et al.} 2003) and has been popularised as a healthy diet (Reinaud \textit{et al.} 1995). In particular, the consumption of fruits and vegetables appears to have a protective effect against IHD (Brouwer \textit{et al.} 1999; Joshipura \textit{et al.} 2001). Cross-sectional analyses from the Framingham Heart Study indicate that the frequent consumption of

Abbreviations: Hcy, homocysteine; HDL-C, HDL-cholesterol; LDL-C, LDL-cholesterol; TG, triacylglycerol.

*Corresponding author: Dr Emmanuel S. Ganotakis, fax +30 2810 392847, email ganotak@med.uoc.gr
certain foods (fruits, vegetables, and cereals) correlates with low folate content of these foods (Tucker et al. 1996). Dietary intervention studies, using diets high in fresh fruit and vegetables, have also reported a decrease in plasma Hcy concentration (Broekmans et al. 2000; Silaste et al. 2003). Principal components of the Cretan diet are olive oil, fruits, vegetables, legumes, fish, and wine (Kafatos et al. 1997). The benefits of this diet go beyond its antioxidant properties, since high intakes of plant foods rich in folate, vitamins B$_{12}$ and B$_{6}$ may consequently reduce serum Hcy levels (Appel et al. 2000). Recent data suggest that a 5 µmol/l reduction in Hcy should lower vascular disease risk by one-third (Boushey et al. 1995).

The aim of the present study was to investigate the association between dietary intake (particularly dietary folate intake), nutritional status, serum Hcy levels and IHD in the southern Mediterranean population of Crete, Greece.

Methods

Subjects

We enrolled 152 patients (136 men and sixteen women) with IHD who were admitted to our hospital over the last 2 years. Patients were considered to have IHD if they had at least one of the following: (1) previous myocardial infarction; (2) history of non-Q infarction or unstable angina; (3) positive stress electrocardiogram and/or echocardiogram.

We excluded patients who had a recent myocardial infarction (≤6 weeks) (Egerton et al. 1996) or renal dysfunction (serum creatinine > 15 mg/l; 133 µmol/l). Patients with clinical evidence of malignant disease and/or receiving vitamin supplements or other medications that could interfere with Hcy levels were also excluded.

Major coronary risk factors for each patient, such as age, sex, hypertension, diabetes mellitus, dyslipidaemia, cigarette smoking, and obesity, were recorded.

The control group consisted of 152 healthy subjects (126 men and twenty-six women) matched for age and sex to patients, with no symptoms of IHD, no other concomitant disease, and who did not take vitamin supplements or medication interfering with Hcy levels.

All subjects were residents of rural areas in one county (Heraklion) of the island of Crete, recruited following public invitation by primary care physicians of seven health centres throughout the county.

Dietary intake

Dietary intake was evaluated by the 3-day weighed food record. Patients and subjects were given detailed oral and written instructions regarding the completion of a 3-day weighed food record consisting of two mid-week and one weekend day. This method is considered to be one of the most practical dietary assessment methods used (Schroder et al. 2001).

Dietary intakes were assessed using a food composition database program developed in the Department of Social Medicine (Preventive Medicine and Nutrition Clinic) of the University of Crete, which includes analyses contributed by Wageningen Agricultural University, the TNO Nutrition and Food Research Institute, The Netherlands (Transfair Programme), and uses the US Department of Agriculture database version 11.1 adjusted for Greek foods.

Patients and controls provided written informed consent according to the Helsinki declaration.

Definitions

Diabetics were considered as those who had a fasting serum glucose level > 1260 mg/l (7.0 mmol/l), or who were treated with oral antidiabetic agents or insulin.

As all our patients had established IHD, those with serum levels of LDL-cholesterol (LDL-C) > 1300 mg/l (3-4 mmol/l) and/or triacylglycerols (TG) > 1500 mg/l (1-7 mmol/l) were classified as having dyslipidaemia.

Normal Hcy concentrations range from 6 to 12 µmol/l in the fasting state. Hyperhomocysteinaemia was defined as levels greater than 12 µmol/l (Welch & Loscalzo, 1998; Friedman et al. 2001).

Clinical and laboratory investigations

All samples were collected the morning after 10 h of overnight fasting with water only allowed. Serum levels of Hcy, folate and vitamin B$_{12}$ were measured using an IMX Analyzer (Abbott Labs, Abbott Park, IL, USA). Serum concentrations of total cholesterol, HDL-cholesterol (HDL-C), and TG were measured using an automated chemistry analyser (Olympus AU-600; Olympus Diagnostics Systems, Eastleigh, Hants, UK) with reagents from the same manufacturer. LDL-C was calculated according to the Friedewald formula except for samples with serum TG above 4000 mg/l (4-5 mmol/l), for which LDL-C could not be determined with the method used. Serum apo A1, apo B100, and lipoprotein (a) were measured by immune nephelometry (lipoprotein (a) test, apo A1 test and apo B100 test; Beckman Instruments Inc., Galway, Republic of Ireland). Renal function profiles and serum glucose concentration were determined by standard methods in routine use.

The department of Clinical Chemistry of Crete University Hospital participates in several quality-assurance programmes and has full pathology accreditation.

Statistical analysis and presentation of results

Values are expressed as medians and ranges. All P values are two-tailed. Between-group results were assessed by Mann–Whitney tests. Frequency analysis was by the χ^2 test, with Yate’s correction. Correlation was assessed by Spearman’s correlation (r_s).

Results

Patient characteristics

The characteristics of the 152 patients with IHD and the 152 controls enrolled in the present survey are listed in
Table 1. Patients' and controls' demographics (Medians and ranges)

<table>
<thead>
<tr>
<th></th>
<th>Controls (n 152)</th>
<th>Patients with IHD (n 152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td>Men: n</td>
<td>126</td>
<td>136</td>
</tr>
<tr>
<td>%</td>
<td>82.9</td>
<td>89.5</td>
</tr>
<tr>
<td>Smokers: n</td>
<td>43</td>
<td>70</td>
</tr>
<tr>
<td>%</td>
<td>28.3</td>
<td>46.1**</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>27.1</td>
<td>27.9</td>
</tr>
</tbody>
</table>

**P=0.0014.

Table 2. Daily uptake of dietary components in patients and controls† (Medians and ranges)

<table>
<thead>
<tr>
<th>Component</th>
<th>Controls (n 152)</th>
<th>Patients with IHD (n 152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein (g)</td>
<td>69.4</td>
<td>66.0</td>
</tr>
<tr>
<td>Total fat (g)</td>
<td>103.5</td>
<td>105.5</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>160.2</td>
<td>113.9***</td>
</tr>
<tr>
<td>Fibre (g)</td>
<td>19.1</td>
<td>11.2</td>
</tr>
<tr>
<td>Energy (kJ)</td>
<td>8176</td>
<td>7130***</td>
</tr>
<tr>
<td>Vitamin E (mg)</td>
<td>11.5</td>
<td>11.2</td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>75.3</td>
<td>72.5</td>
</tr>
<tr>
<td>Vitamin B6 (mg)</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Vitamin B12 (µg)</td>
<td>2.2</td>
<td>2.6**</td>
</tr>
<tr>
<td>Folate (µg)</td>
<td>254</td>
<td>180**</td>
</tr>
<tr>
<td>Cholesterol (mg)</td>
<td>224</td>
<td>189*</td>
</tr>
<tr>
<td>SFA (g)</td>
<td>24.3</td>
<td>24.0</td>
</tr>
<tr>
<td>MUFA (g)</td>
<td>55.5</td>
<td>60.3**</td>
</tr>
<tr>
<td>PUFA (g)</td>
<td>10.5</td>
<td>10.4</td>
</tr>
<tr>
<td>Total trans unsaturated fatty acids (g)</td>
<td>1.1</td>
<td>0.8**</td>
</tr>
<tr>
<td>n-6 fatty acids (g)</td>
<td>9.0</td>
<td>8.9</td>
</tr>
<tr>
<td>n-3 fatty acids (g)</td>
<td>0.7</td>
<td>0.6**</td>
</tr>
</tbody>
</table>

† For details of subjects and procedures, see Table 1 and p. 1014.
IHD (Stampfer et al. 1992; Wald et al. 1998; Bots et al. 1999; Whincup et al. 1999), but also have more extensive coronary atherosclerosis (Vrentzos et al. 2004).

Patients with IHD had significantly lower serum folate concentrations and an inverse correlation between serum Hcy and folate levels was shown. Hcy concentrations depend on a series of intracellular metabolic reactions in which folate acts as a substrate (Das, 2003) and even sub-clinical deficiency of this vitamin can increase serum Hcy levels (Haynes, 2002). There was no significant correlation between serum folate levels and the daily dietary intake of folate. Dietary sources of folate in our population covered a wide range of food products apart from fruit and vegetables. Thus the lack of a statistically significant correlation between dietary intake and serum folate levels could possibly be explained by variations in the bioavailability of folate in different foods (Brouwer et al. 1999a), and/or by the paucity of accurate chemical analyses of micronutrients in determining dietary intake for some Greek recipes. However, the fact that IHD patients had both significantly lower serum folate concentration, and daily dietary folate intake compared with controls, indicates a relationship between intake and serum concentration. In addition, others found a strong correlation between total folate intake and serum folate levels (Jacques et al. 1993; Sellhub et al. 1993).

The higher serum Hcy levels of our IHD patients could be partly explained by the slight increase of serum creatinine levels. The kidneys play a significant role in Hcy clearance and metabolism since they contain appreciable levels of both trans-sulfuration and remethylation enzymes (Friedman et al. 2001). Serum creatinine is a marker of glomerular filtration rate as well as of future cardiovascular events (Mann et al. 2003). Glomerular filtration rate values estimated from serum creatinine are inversely correlated with plasma Hcy levels (Ducloux et al. 2000).

The daily vitamin B_{12} intake of IHD patients was higher than that of controls. Man is unable to synthesise vitamin B_{12}, which is derived from animal products, particularly meat. Vitamin B_{12} may have a beneficial effect on fasting levels of Hcy (Appel et al. 2000), but in our patients serum vitamin B_{12} levels were not associated with Hcy levels.

The present data suggest that dietary folate intake had a major influence on fasting Hcy levels, whereas vitamin B_{12} had no effect. Interestingly, the majority of our population (84.2 % of controls and 97.4 % of patients) had a daily folate intake lower than European recommendations (> 400 µg/d) (de Bree et al. 1997; Hassapidou & Fotiadou, 2001; Kafatos & Codrington, 2001).

IHD patients had a significantly lower dietary fibre intake than controls. Increased dietary fibre intake, from fruits, vegetables, legumes, and cereals, has been associated with a lower risk for IHD (Rimm et al. 1996; Liu et al. 2002). In the present study, daily fibre consumption significantly correlated with serum folate concentration, as both these components share the same food sources. Patients and case subjects also had a significantly lower intake of n-3 fatty acids from fish, fish oil supplements, or plant sources than controls. In a previous study (Papakonstantinou et al. 2002), we showed that low HDL-C levels are the principal lipid

Table 3. Serum levels of homocysteine (Hcy), folate, vitamin B_{12}, creatinine and lipid values of ischaemic heart disease patients and controls† (Medians and ranges)

<table>
<thead>
<tr>
<th></th>
<th>Controls (n 152)</th>
<th>Patients with IHD (n 152)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>Hcy (µmol/l)</td>
<td>12.5</td>
<td>6.6–44.7</td>
</tr>
<tr>
<td>Folate (ng/ml)</td>
<td>7.9</td>
<td>2.4–15.5</td>
</tr>
<tr>
<td>Vitamin B_{12} (pg/ml)</td>
<td>326</td>
<td>91–835</td>
</tr>
<tr>
<td>Creatinine (mg/l)§</td>
<td>8</td>
<td>6–14</td>
</tr>
<tr>
<td>Total cholesterol (mg/l)ǁ</td>
<td>2300</td>
<td>1520–3240</td>
</tr>
<tr>
<td>Triacylglycerols (mg/l)ǁ</td>
<td>1240</td>
<td>400–3810</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/l)ǁ</td>
<td>500</td>
<td>300–930</td>
</tr>
<tr>
<td>LDL-cholesterol (mg/l)ǁ</td>
<td>1540</td>
<td>840–2270</td>
</tr>
<tr>
<td>Lipoprotein (a) (mg/l)</td>
<td>120</td>
<td>20–1180</td>
</tr>
<tr>
<td>Apo A1 (mg/l)</td>
<td>1360</td>
<td>890–2130</td>
</tr>
<tr>
<td>Apo B100 (mg/l)</td>
<td>1170</td>
<td>610–1780</td>
</tr>
</tbody>
</table>

*Median value was significantly different from that for the control group: *P<0.05, **P<0.01, ***P<0.001.
†For details of subjects and procedures, see Table 1 and p. 1014.
‡Serum levels of vitamin B_{12} greater than 2000 pg/ml (our cut-off limit) are represented here as >2000 pg/ml.
§To convert mg/l to mmol/l, multiply by 8.84.
ǁTo convert mg/l to mmol/l, multiply by 0.0026.
††To convert mg/l to mmol/l, multiply by 0.00113.
abnormality in patients with acute myocardial infarction in the southeast part of Greece. This pattern (low HDL-C and elevated TG) seems to be the lipid pattern of IHD patients in this area. In addition, HDL-C, apo A, and lipoprotein (a) are not directly diet dependent (Katan et al. 1995). Finally, the incidence of smoking was higher among IHD patients than controls (46.1 v. 28.3%). The harmful effects of smoking on HDL-C and TG levels are well known (Mikhailidis et al. 1998).

The prevalence of cardiovascular disease has increased during the last 30 years in Crete (Voukiklaris et al. 1996), a trend that appears to be related to dietary and lifestyle changes that have been taking place (Kafatos et al. 2000). Notable among these have been dramatic reductions in physical activity and also the gradual abandonment of the traditional Cretan diet. The Cretans now have higher saturated fat (+25%) and lower monounsaturated fat (−20%) intakes, indicating increases in the consumption of meat and cheese, and simultaneously decreases in the mean daily consumption of bread, fruits, vegetables, potatoes, and fibre (Kafatos et al. 1997). Decreases in vegetable and fruit consumption, both good sources of folate, will reduce folate status and increase Hcy concentrations (Tucker et al. 1996).

A recent trial of individuals with established IHD showed that a Mediterranean diet rich in fruits and vegetables and α-linolenic acid substantially reduced the recurrence of IHD events for up to 4 years compared with a regular low-fat diet (relative risk 0.28; CI 0.15, 0.53). However, the Mediterranean diet did not alter, at least qualitatively, the usual relationships between major risk factors and recurrence (de Lorgeril et al. 1999).

In IHD patients, serum Hcy levels are a significant predictor of late cardiac events (Stubbs et al. 2000) and increased mortality risk, possibly as a consequence of atherosclerotic changes (Knekt et al. 2001), independently of other traditional risk factors (Nygard et al. 1997). Wald et al. (2002) showed that lowering Hcy concentrations by 3 μmol/l (achievable by increasing folic acid intake) would reduce the risk of IHD by 16% (11 to 20%), deep-vein thrombosis by 25% (8 to 38%), and stroke by 24% (15 to 33%). In our patients it is essential to reduce the high Hcy levels (Vrentzos et al. 2000). This could be achieved by increasing the consumption of folate, not only from foods rich in folate (de Lorgeril et al. 1994; Singh et al. 2002), but also with low doses of folate supplements (Brouwer et al. 1999b; Jacques et al. 1999; Riddell et al. 2000; Rampersaud et al. 2003). Adequate dietary folate intake may be recommended for individuals with Hcy >10 μmol/l (de Bree et al. 1997; Malinow et al. 1999). Treatment with folic acid has been shown to reduce serum Hcy concentration and significantly improve endothelial dysfunction in patients with IHD (Tilte et al. 2000; Verhaar et al. 2002; Willems et al. 2002), but the effect on cardiovascular morbidity and mortality is as yet unknown (Voutilainen et al. 2001).

To conclude, the present data suggest that IHD patients should be encouraged to increase their daily dietary intakes of fibre, folate and n-3 fatty acids, which are significant components of the traditional Cretan Mediterranean diet. Where dietary folate intake is inadequate, folate supplements are recommended to reduce elevated Hcy.

Acknowledgements

We thank the team of Preventive Medicine and Nutrition Clinic at the University of Crete, Frosso Bervanaki, Ioanna Apostolaki, Sofia Flouri and Caroline Codrington for their valuable assistance in the present study.

References

