Effects of arginine-containing total parenteral nutrition on N balance and phagocytic activity in rats undergoing a partial gastrectomy

Chiu-Li Yeh1, Chen-Hsien Lee1, Soul-Chin Chen2, Yu-Chen Hou1 and Sung-Ling Yeh1,*

1Institute of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
2Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan

(Received 9 July 2004 – Revised 7 October 2004 – Accepted 12 October 2004)

The present study investigated the effect of arginine (Arg)-containing parenteral nutrition on phagocytic activity to elucidate the possible roles of Arg in the secretion of anabolic hormones and N balance in rats undergoing gastrectomy. Rats were divided into two experimental groups and received total parenteral nutrition (TPN). The TPN solutions were isonitrogenous and identical in nutrient compositions except for differences in amino acid content. One group received conventional TPN, the other group replaced 2 % of the total energy as Arg. After receiving TPN for 3 d, one-third of the rats in each experimental group were killed as the baseline group. The remaining rats underwent a partial gastrectomy and were killed 1 or 3 d after surgery. The results showed that there were no differences in N balance, plasma growth hormone and insulin-like growth factor-1 levels between the two groups before or after surgery. The phagocytic activity of peritoneal macrophages was higher in the Arg group than in the control group 1 d after surgery. There were no differences in the phagocytic activities of blood polymorphonuclear neutrophils between the two groups at various time points. TNF-\alpha levels in peritoneal lavage fluid were lower in the Arg group than in the control group on post-operative day 3. These results suggest that parenterally infused Arg enhances phagocytic activity and reduces the production of inflammatory mediators at the site of injury. However, Arg supplementation did not influence the secretion of anabolic hormones nor N balance in rats with a partial gastrectomy.

Arginine: Gastrectomy: Phagocytosis: Nitrogen balance

A gastrectomy constitutes major abdominal surgery, which usually produces a moderate degree of metabolic stress to patients. It is known that visceral organ exposure and manipulation result in an intestinal hypodynamic state and dysynchrony of intestinal enzyme secretion. These conditions may delay the resumption of oral alimentation (Finley \textit{et al.} 1986; Tashiro \textit{et al.} 1996). For most gastrectomized patients with gastric diseases, preoperative protein-energy malnutrition is often present and artificial nutritional support is essential for these patients. Although studies have shown that early enteral feeding was well tolerated and may be a suitable alternative to total parenteral nutrition (TPN; Braga \textit{et al.} 1998\textit{a},\textit{b}), most surgeons use the parenteral route to administer nutrients before and after a gastrectomy.

Arginine (Arg) is a semi-essential amino acid. Previous reports have shown that Arg stimulates anabolic hormone release and improves N balance (Daly \textit{et al.} 1988; Kirk & Barbul, 1990). Studies have also revealed that Arg enhances T lymphocyte responses of surgical patients, accelerates wound healing and improves survival (Daly \textit{et al.} 1988; Barbul \textit{et al.} 1990; Gianotti \textit{et al.} 1993; Cui \textit{et al.} 2000). Previous work in our laboratory demonstrated that Arg supplementation attenuates oxidative stress and activity and reduces the production of inflammatory mediators at the site of injury. However, Arg supplementation did not influence the secretion of anabolic hormones nor N balance in rats with a partial gastrectomy.

Abbreviations: Arg, arginine; GH, growth hormone; HBSS, Hank’s buffered saline; IGF, insulin-like growth factor; PLF, peritoneal lavage fluid; PMN, polymorphonuclear neutrophil; TPN, total parenteral nutrition.

* Corresponding author: Dr Sung-Ling Yeh, fax +886 2 27373112, email sangling@tmu.edu.tw
Materials and methods

Animals

Male 7-week-old Wistar rats weighing 170–210 g at the beginning of the experiment were used. All rats were housed in temperature- and humidity-controlled rooms and were allowed free access to standard rat chow for 7 d prior to the experiment. The care of the animals followed standard experimental animal care procedures. This study was approved by the Taipei Medical University Animal Care Committee.

Study protocol and operative procedures

Rats were randomly assigned to two experimental groups, with each group containing thirty rats. The average weights between the groups were adjusted so as to be as similar as possible. After overnight fasting, rats were anaesthetized with intraperitoneal pentobarbital sodium (50 mg/kg), and the right internal jugular vein was cannulated with a Silastic catheter (Dow Corning, Midland, MI, USA) under sterile conditions. The catheter was tunneled subcutaneously to the back of neck and exited through a coiled spring that was attached to a swivel, allowing free mobility of animals inside individual metabolic cages. All animals were allowed to drink water during the experimental period. The TPN provided 1128 kJ (270 kcal)/kg body weight per day, 2 ml/h were administered and then the rats received TPN for 3 d, one-third of the rats (daily just before use. After receiving TPN for 3 d, one group received conventional TPN (control), and in the other group, 23 % of the total amino acid N was provided by Arg. Arg provided 2 % of the total energy of the TPN solution. The energy kJ (kcal): N (g) ratio was 606 (145):1. The TPN provided 1128 kJ (270 kcal)/kg body weight per day, 2 ml/h were administered and then the rats received TPN for 3 d, one-third of the rats (daily just before use. After receiving TPN for 3 d, one group received conventional TPN (control), and in the other group, 23 % of the total amino acid N was provided by Arg. Arg provided 2 % of the total energy of the TPN solution. The energy kJ (kcal): N (g) ratio was 606 (145):1.

Measurements and analytical procedures

Rats in the respective groups were killed before or 1 or 3 d after surgery. Animals were anaesthetized with intraperitoneal pentobarbital sodium (50 mg/kg body weight). A middle abdominal incision was made and 10 ml PBS were intraperitoneally injected to elute the peritoneal cells. After harvesting the peritoneal lavage fluid (PLF), rats were exsanguinated by drawing arterial blood from the aorta. Blood samples were collected in tubes containing heparin and were immediately centrifuged. Plasma GH (Cayman Chemical, Ann Arbor, MI, USA) and IGF-1 (Diagnostic Systems, Webster, TX, USA) were determined using commercially available ELISA kits. IL-1β, IL-6 and TNF-α levels in plasma and PLF were measured using commercial ELISA microtitre plates, with antibodies specific for rat IL-1β, IL-6 and TNF-α having been coated on to wells of the microtitre strips provided (Amer sham Pharmacia Biotech, Amersham, UK). NO is highly unstable in solution and cannot be readily assayed. However, NO is converted to stable nitrite and nitrate ions in aqueous solution. After conversion of nitrate to nitrite using nitrate reductase, nitrite concentrations were measured using the Griess reagent. The concentrations of NO2 and NO3 in plasma and PLF were determined with a commercial kit (Assay Designs, Ann Arbor, MI, USA). Procedures followed the manufacturer’s instructions.

A flow cytometric phagocytosis test was used to evaluate the phagocytic activity of blood polymorphonuclear neutrophils (PMN; Böhmer et al. 1992; Schiffrin et al. 1995). Heparinized whole blood (100 μl) was aliquoted on the bottom of 12 × 75 mm Falcon polystyrene tubes (Becton Dickinson, Fullerton, CA, USA) and placed in an ice-water bath. Precooled opsonized fluorescein isothiocyanate-labelled Escherichia coli (20 μl; Molecular Probes, Eugene, OR, USA) was added to each tube. Control tubes remained on ice, and assay samples were incubated for precisely 10 min at 37°C in a shaking water-bath. After incubation, samples were immediately placed in ice water and 100 μl precooled trypan blue (Sigma, St. Louis, MO, USA) solution (0.25 mg/ml in citrate salt buffer; pH 4.4) were added to quench the fluorescence of the bacteria and then stained with a mixture of antibody-coated green fluorescent E. coli and stained red fluorescent E. coli. Another 200 μl of 0.2 % trypan blue was added to allow detection of intact E. coli. The tubes were then incubated at room temperature for 20 min before dilution with 10 ml of PBS and refrigeration at 4°C. Incubation buffer was added to each tube (20 μl) and incubated for 30 min before flow cytometric analysis. The cells were washed twice in
Hank’s buffered saline (HBSS), and erythrocytes were lysed by the addition of a fluorescence-activated cell sorter lysing solution (Becton Dickinson). After an additional wash in HBSS, 100 μl propidium iodide solution (1 μg/ml in HBSS) were added to stain the nuclear DNA 10 min before the flow cytometric analysis. Flow cytometry was performed on a fluorescence-activated cell sorter Calibur™ flow cytometer (Becton Dickinson) equipped with a 488 nm argon laser. A live gate was set on the red (propidium iodide) fluorescence histogram during acquisition to include only those cells with a DNA content at least equal to human diploid cells. The number of cells with phagocytic activity did not exceed 6% at 0°C.

Because isolated peritoneal macrophages tend to aggregate and adhere to the culture plates and adherent macrophages have stronger phagocytic activity than those suspended in solution, we used a Vybrant™ phagocytosis assay kit (Molecular Probes) instead of the flow cytometric method to evaluate the phagocytic activity of peritoneal macrophages. After washing the peritoneal macrophages three times with HBSS, the cell concentration was determined, and the cell number was adjusted to 10⁶ cells/ml with RPMI-1640 supplemented with 5% fetal bovine serum and an adequate amount of antibiotics. After distributing 100 μl diluted solutions into each well of 96-well microplates, it was transferred to a 37°C CO₂ incubator for 1 h to allow the cells to adhere to the microplate surface. The RPMI solution was removed from all microplate wells by vacuum aspiration, and then 100 μl prepared fluorescein isothiocyanate-labelled E. coli were added to each well for 2 h. Labelled bacteria were removed by vacuum aspiration, and 100 μl trypan blue suspension were added to all wells within 1 min. The excess trypan blue was immediately aspirated, and the experimental and control wells (without peritoneal macrophages) were read in the fluorescence plate reader using approximately 480 nm for excitation and approximately 520 nm for emission.

During the three infusion days after surgery, 24 h urine specimens were collected for determination of the N balance. Non-protein N in the urine was measured by a colorimetric method (Randox, Antrim, Northern Ireland).

Statistical analysis

Data are expressed as the mean value with the standard deviation. Differences among groups were analysed by ANOVA using Duncan’s test. A value of P<0.05 was considered statistically significant.

Results

There were no differences in initial body weights between the two experimental groups. All rats gained weight after the TPN infusion, and the weight was maintained post-operatively (data not shown).

A negative N balance was observed after surgery. There was no difference in the N balance between the two groups on various post-operative days (Fig. 1). Compared with levels before surgery, plasma GH concentrations were significantly lower after surgery in the experimental groups on both post-operative days 1 and 3; however, there were no differences in GH or IGF-1 levels between the two groups before or after surgery (Fig. 2(A, B)). Concentrations of NO₂⁻/NO₃⁻ in plasma and PLF were significantly higher after surgery than pre-operative day. No differences were observed between the two groups at different time points (Fig. 3(A, B)). The phagocytic activity of peritoneal macrophages was higher in the Arg group than the control group on post-operative day 1 (Fig. 4(A)). The phagocytic activity of blood PMN was significantly higher after surgery than at the baseline, regardless of whether or not Arg was given. There were no differences in the phagocytic activity of blood PMN between the two groups before or after surgery (Fig. 4(B)). Plasma IL-1β, IL-6 and TNF-α levels were undetectable. TNF-α levels in PLF were significantly lower in the Arg group than the control group on post-operative day 3 (Table 2).

Discussion

In the present study, 2% total energy was supplied by Arg. This amount of Arg was previously found to enhance the immune response in rodents (Saito et al. 1987; Gianotti et al. 1993). We administered TPN before and after a gastrectomy, this model mimics the usual treatment for patients who are scheduled to undergo a gastrectomy. Human studies may encompass wide variations owing to the ages of patients, severity of the diseases, areas of the stomach involved and complications of other diseases; these variables may make interpretation of the data difficult. We used an animal model with a partial gastrectomy to investigate the effect of Arg on the catabolic and immune responses after abdominal surgery.

After an abdominal operation and trauma, a negative N balance with progressive loss of body protein is observed, possibly resulting from hormonal changes and cytokine secretion (Fong et al. 1990; Baigrie et al. 1992). A report by Oka et al. (1993) showed that TPN with Arg improved the host N balance in tumour-bearing rats.
Further, Barbul et al. (1984) reported that a high Arg infusion decreased N loss in rats with a femoral fracture. These reports were inconsistent with our results, which showed that Arg had no effect on reducing protein catabolism. However, the present findings are similar to a previous report by our laboratory that parenterally administered Arg had no effect on preventing N loss in septic rats (Yeh et al. 2002). GH is known to exert many metabolic effects. Among them are N retention and preservation of muscle protein mass (Ponting et al. 1988; Jiang et al. 1989). IGF-1 is one of the major effectors of GH’s action. The effects of GH are mediated in part by IGF-1, which is produced in the liver and locally in GH target tissues (Isgaard et al. 1986). A study by Daly et al. (1988) showed that neither plasma GH and IGF-1 levels nor the N balance differed between Arg and control groups during post-operative days 1–5. However, plasma IGF-1 levels were significantly increased in the Arg-supplemented group on post-operative day 7, concomitant with a better N balance in surgical patients. In the present study, we observed no difference in GH and IGF-1 levels after Arg supplementation and this may partly explain the obscure difference in the N balance between groups. Since the N balance was only noted for 3 d, determining whether Arg supplementation changes the anabolic hormone secretion and thus improves the N balance over a longer period requires further investigation.

In this study, we found that the phagocytic activity of peritoneal macrophages was much higher in the Arg group after surgery compared to the control group, whereas no differences in the phagocytic activities of blood PMN between the two groups were found. These findings were similar to those of a report that found that enteral Arg supplementation enhanced peritoneal macrophage phagocytic activity in septic rats (Wang et al. 2003). PMN are potent inflammatory cells, and the total number and percentage of circulating PMN can be induced by acute infection and endotoxins (Ringer & Zimmermann, 1992). It is possible that a partial gastrectomy as performed in the present study resulted in moderate metabolic stress and the rats were free of infection that causes a systemic stress. Therefore, Arg augments phagocytic activity at the site of injury, but the effect of Arg on phagocytic cells in the systemic circulation was not obvious. Arg is a substrate for inducible NO synthase and a precursor of NO. The inflammatory cytokine may activate macrophage inducible NO synthase activity and improve bactericidal mechanisms via the Arg–NO pathway (Gianotti et al. 1993). Macrophages also secrete arginase. Induction of arginase
Effect of arginine on rats with a gastrectomy

has been proposed as the effector in macrophage-mediated cytotoxicity (Currie, 1978). In this study, NO levels in plasma and PLF did not differ between two groups pre- or post-operatively. It is possible that NO synthesis in response to metabolic stress in this study was already at a peak (Lindblom et al. 2000). This finding may indicate that phagocytic activity was not influenced by NO. We speculated that arginine expressed by the peritoneal macrophage plays a role in enhancing phagocytic activity at the site of injury. We did not analyse arginine in PLF because the resident peritoneal macrophage contained essentially no arginase activity when assayed immediately after harvest (Albina et al. 1988). Whether arginine expression by the macrophage is responsible for enhancing peritoneal macrophage phagocytic activity requires further investigation.

Surgical injury and infection stimulate the production of a variety of endogenous mediators. TNF-α, IL-1β and IL-6 are major pro-inflammatory mediators in the acute-phase response (Ertel et al. 1991). Although these cytokines have beneficial effects after injury, exaggerated or prolonged secretion of these proteins is detrimental to the host (Fong et al. 1990; Baigrie et al. 1992). Studies have proposed that alterations in TNF-α and IL-6 can be used as biochemical markers of the stress response (Foex & Shelly, 1996). IL-6 is thought to be the most consistently identified cytokine mediator of post-injury infections (Biff et al. 1996). High plasma concentrations of IL-1 and TNF-α are associated with increased severity of inflammatory diseases (Foex & Shelly, 1996). These cytokines in plasma were not detectable at the times we took measurements. However, cytokines in the PLF were measurable. Compared with the baseline, IL-1β and IL-6 levels did not change after surgery. This result may indicate that post-injury infection was not obvious in this study. We observed that TNF-α was lower in the Arg than in the control group on post-operative day 3. This might mean that TPN with Arg reduces the production of inflammatory mediators at the site of injury after surgery. Some investigators have suggested that the beneficial effect of oral Arg supplementation on the immune system is distinct from its effect on N metabolism (Daly et al. 1988). Under the present experimental conditions, the priority of Arg in alleviating the inflammatory reaction and promoting local phagocytic activity may have been superior to that for N metabolism. Further, the disease conditions in various reports differed, and so the effect of Arg on protein metabolism may vary.

In summary, the present study showed that parenterally infused Arg enhances phagocytic activity of peritoneal macrophage and reduces the production of inflammatory mediator TNF-α at the site of injury. However, other parameters including anabolic hormone secretion and N balance were not affected by the treatment.

Acknowledgements

This study was supported by research grant 91-2815-C-038-007-B from the National Science Council, ROC.

References

