Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters

Ariette M. van Bennekum¹, David V. Nguyen¹, Georg Schulthes², Helmut Hauser³ and Michael C. Phillips¹*

¹Department of GI/Nutrition, The Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, 3615 Civic Center Blvd, Philadelphia, PA 19104-4318, USA
²Department of Internal Medicine, Medical Policlinic, University Hospital, CH-8091 Zurich, Switzerland
³Institute of Biochemistry, Swiss Federal Institute of Technology, Zürich, Switzerland

(Received 29 October 2004 – Revised 23 March 2005 – Accepted 5 April 2005)

Fibres with a range of abilities to perturb cholesterol homeostasis were used to investigate how the serum cholesterol-lowering effects of insoluble dietary fibres are related to parameters of intestinal cholesterol absorption and hepatic cholesterol homeostasis in mice. Cholestyramine, chitosan and cellulose were used as examples of fibres with high, intermediate and low bile acid-binding capacities, respectively. The serum cholesterol levels in a control group of mice fed a high fat/high cholesterol (HFHC) diet for 3 weeks increased about 2-fold to 4·3 mM and inclusion of any of these fibres at 7·5 % of the diet prevented this increase from occurring. In addition, the amount of cholesterol accumulated in hepatic stores due to the HFHC diet was reduced by treatment with these fibres. The three kinds of fibres showed similar hypocholesterolaemic activity; however, cholesterol depletion of liver tissue was greatest with cholestyramine. The mechanisms underlying the cholesterol-lowering effect of cholestyramine were (1) decreased cholesterol (food) intake, (2) decreased cholesterol absorption or faecal sterol output. The present study provides strong evidence that above all satiation and satiety effects underlie the cholesterol-lowering properties of insoluble dietary fibres with moderate or low bile acid-binding capabilities.

Dietary fibres: Cholesterol-lowering: Intestinal cholesterol absorption: Bile acid

Studies with animals and human subjects indicate that there is a considerable inter-individual variation in the rate of dietary cholesterol absorption in the small intestine (Grundy, 1983; Sehayek et al. 1998). Furthermore, intestinal cholesterol absorption efficiency is positively correlated with plasma cholesterol levels (Kesaniemi & Miettinen, 1987) and plasma cholesterol level is positively correlated with the incidence of CHD (Castelli, 1984). It follows that a reduction of cholesterol absorption in the small intestine should be beneficial in the prevention of CHD. In light of this, there has been great interest in the influence of food constituents, such as dietary fibres, on cholesterol absorption in the intestine.

Dietary fibres are non-digestible, water-soluble or water-insoluble carbohydrates that are present in the diet and are claimed to have beneficial effects in the lowering of serum cholesterol and the prevention of CHD (Story et al. 1997; Fernandez, 2001). The exact in vivo mechanisms for the lowering of serum and hepatic cholesterol levels by naturally occurring fibres are not well understood. On the other hand, the principal mechanism of action of the pharmacological agent, cholestyramine, is well known. This cationic polymer acts through the sequestration of bile acids in the intestine, resulting in an interruption of the enterohepatic circulation of bile acids and an up-regulation of bile acid synthesis (Casdorph, 1967). Moreover, the sequestration of bile acids is likely to perturb the process of intestinal cholesterol absorption, and a decrease in cholesterol absorption efficiency by cholestyramine feeding has been established in various animal models, as well as in man (Gylling et al. 1989).

The aim of our studies was to use a mouse model to investigate the hypocholesterolaemic effects of insoluble dietary fibres. We examined three fibres that possess a range of abilities to perturb bile acid and sterol metabolism. The bile acid resin cholestyramine (a styrene–divinylbenzene copolymer containing quaternary ammonium groups) was included as a positive control, as it is a potent anion exchanger with a high bile acid-binding capacity. Chitosan was used because it has weak anion exchange properties; from in vitro studies, it was concluded that chitosan has about 50 % of the bile acid-binding capacity of cholestyramine (Lee et al. 1999). Chitosan is the deacetylated form of chitin, which is N-acetylamino-β-D-glucosamine (Casdorph, 1983). Cellulose (an unbranched polymer of β-1,4-linked glucose residues) is a common dietary fibre that is uncharged and has little or no bile acid-binding capacity (Vahouny et al. 1980a,b).

Our investigations focused on how the serum cholesterol-lowering effects of insoluble dietary fibres are related to parameters of intestinal cholesterol absorption, an aspect that has not received much attention yet, and hepatic cholesterol homeostasis.

Abbreviation: HFHC, high fat/high cholesterol.

* Corresponding author: Dr Michael C. Phillips, fax +1 215 590 0583, email philipsmi@email.chop.edu
Experimental methods

Animals and diets

Female C57BL/6 mice, aged 8–12 weeks, were obtained from the Jackson Laboratories (Bar Harbor, ME, USA). The mice were housed three per cage in the Laboratory Animal Facility in a temperature- and humidity-controlled room with a 12 h light–dark cycle. They were fed a standard rodent chow (SP84 diet, North Penn Feeds, Hatfield, PA, USA) until the start of the dietary treatment. Subsequently, the mice were divided into four groups of six: the first group (control) was fed a high fat/high cholesterol (HFHC) diet containing no added fibre for 3 weeks while the other three groups were fed the same HFHC diet containing either 7.5 % (w/w) cholestyramine, 7.5 % chitosan (i.e. chitin which is minimally 85 % deacetylated) or 7.5 % cellulose. This dietary inclusion level of 7.5 % (w/w) was chosen to ensure that chitosan would be effective in lowering serum cholesterol level without having any side-effects (Han et al. 1999). The HFHC diet (obtained from North Penn Feeds) consisted of Purina Mouse Chow, 5015; meal: 750 g/kg; casein, high protein: 75 g/kg; dextrose, monobioydrate: 25 g/kg; sucrose: 16–25 g/kg; dextrin: 16–25 g/kg; cocoa butter: 75 g/kg; cholesterol: 12.5 g/kg; sodium cholate: 5 g/kg; cellulose (fibre): 12.5 g/kg; mineral mix, AIN-76: 8.75 g/kg; vitamin mix, AIN 76A(sub): 2.5 g/kg; choline chloride: 1.25 g/kg. The fibres were ground into the diet with a mortar and pestle and, after the addition of distilled water, new pellets were made and dried. Cholestyramine (cat. no. C-4650), chitosan (cat. no. C-3646) and cellulose (cat. no. C-6413) were obtained from Sigma Chemical Co. (St Louis, MO, USA). Body weight (each mouse individually), food intake (averages of three mice) and the general appearance of the mice were recorded three times a week.

Intestinal cholesterol absorption

At the end of the 3-week feeding period, animals were transferred to metabolic cages in the afternoon before the cholesterol uptake experiment. The following morning, the mice were fasted for 6 h, and 2 h before the start of the dark cycle they were gavaged 100 μl corn oil containing 1 μCi [14C]cholesterol ([4-14C]cholesterol, 45–60 mCi/μmol; NEN Life Science Products, Boston, MA, USA) and 0.4 μCi (8 pmol) [3H]β-sitostanol (5,6-3H)β-sitostanol 50 μCi/μmol; American Radiolabeled Chemicals, St Louis, MO, USA). For this, aliquots of [14C]cholesterol and [3H-α]-sitostanol were dissolved in ethanol and mixed with corn oil, and the ethanol was subsequently removed by slowly bubbling N2 through the solution for 3–4 h. Prior to use, the purity of the radiolabelled lipids was assessed by TLC and was at least 95 % for [3H]β-sitostanol and at least 98 % for [14C]cholesterol. After receiving the gavage, each mouse was returned to its metabolic cage where it immediately started to eat chow. Faeces were collected for 24 h periods, up to 72 h. Animals were anaesthetized using an intraperitoneal injection of a mixture of 150 mg ketamine plus 10 mg xylazine (Research Biomedical Instruments, Natick, MA, USA) per kg body weight. When killed, blood, gall bladder bile and liver were harvested for further analyses. Sera were obtained after clotting of the blood and centrifugation. All animal studies were approved by the Institutional Animal Care and Use Committee of the Children’s Hospital of Philadelphia.

Analytical methods

Total collected faeces were weighed and homogenized in water (10 %, w/v). Sterols were extracted from an aliquot of an appropriate dilution of the homogenate with an equal volume of chloroform–methanol (2:1, v/v), and [14C]cholesterol and [3H]β-sitostanol were determined by liquid scintillation counting. Appropriate standards were used to correct for spillover between the 3H- and 14C-counting channels. The cholesterol absorption efficiency was determined by the faecal dual-isotope ratio method (Grundy et al. 1968). Faecal cholesterol levels, and serum and biliary cholesterol levels were measured enzymatically using Sigma Diagnostics commercial kit no. 352, and biliary bile acid levels were determined using Sigma Diagnostics commercial kit no. 450–A, following the instructions of the manufacturer (Sigma Chemical Co.). For biliary bile acid analysis, a mixture of cholic acid and taurocholic acid (1:1 molar ratio) was used as a standard. Biliary phospholipids were determined using a phosphorus assay (Bartlett, 1959). Hepatic free cholesterol and total cholesterol were determined by GLC (Ishikawa et al. 1974) using cholesteryl methyl as an internal standard. Cholesteryl ester content was calculated as the difference between total and free cholesterol content. Bile acids were extracted from faeces essentially as described by Schiller et al. (1990). Briefly, 0.4 ml of an eight times dilution of a 10 % faecal homogenate were added to a test tube containing 0.2 ml 10 M-NaOH and 2 ml 100 % ethanol. An internal standard of 0.2 μCi (0.2 nmol) of [3H]taurocholic acid (2 Ci/μmol; NEN Life Science Products) was then added and the samples were refluxed on a heating block at 95–100 °C for 1 h. Appropriate standards of a 1:1 molar mixture of cholic acid and taurocholic acid were treated similarly. After refluxing, samples were centrifuged for 15 min at 1500 g. Neutral sterols were extracted from two 0.5 ml aliquots of each sample supernatant using 0.75 ml petroleum ether three times. The remaining water–ethanol phase was evaporated and the residue redissolved in 0.5 ml water, after which the pH was adjusted to 7 using 1 M-HCl. Samples were dried and the residue was dissolved in methanol–Tris-HCl buffer (pH 7.4, 0.1 M-Tris-HCl, 0.07 mM ethylene diamine tetraacetic acid, pH 9.5) (3:7.5:6.25, v/v). Aliquots were taken for liquid scintillation counting and bile acid analysis using the enzymatic assay of Turley & Dietzsch (1978).

Statistical analysis

Statistical evaluation was performed on a personal computer using Excel, Statistica version 6 (correlations; Statsoft Inc., Tulsa, OK, USA) and SPSS version 11.5 (SPSS, Chicago, IL, USA). Results are expressed as mean values and standard deviations. Variables were compared between the group of control animals and each group of fibre-treated animals by ANOVA followed by the two-sided Dunnett test.

Results

Effects of dietary fibres on cholesterol concentrations in the serum and liver

Table 1 shows the effects of the dietary fibres on serum cholesterol levels in female C57BL/6 mice after changing their diet from standard rodent chow to a HFHC diet containing 7.5 % (w/w) cholestyramine, 7.5 % chitosan or 7.5 % cellulose. This dietary inclusion level of 7.5 % (w/w) was chosen to ensure that chitosan would be effective in lowering serum cholesterol levels without having any side-effects (Han et al. 1999). The HFHC diet (obtained from North Penn Feeds) consisted of Purina Mouse Chow, 5015; meal: 750 g/kg; casein, high protein: 75 g/kg; dextrose, monobioydrate: 25 g/kg; sucrose: 16–25 g/kg; dextrin: 16–25 g/kg; cocoa butter: 75 g/kg; cholesterol: 12.5 g/kg; sodium cholate: 5 g/kg; cellulose (fibre): 12.5 g/kg; mineral mix, AIN-76: 8.75 g/kg; vitamin mix, AIN 76A(sub): 2.5 g/kg; choline chloride: 1.25 g/kg. The fibres were ground into the diet with a mortar and pestle and, after the addition of distilled water, new pellets were made and dried. Cholestyramine (cat. no. C-4650), chitosan (cat. no. C-3646) and cellulose (cat. no. C-6413) were obtained from Sigma Chemical Co. (St Louis, MO, USA). Body weight (each mouse individually), food intake (averages of three mice) and the general appearance of the mice were recorded three times a week.
Hepatic total cholesterol concentration (mg/g liver) decreases in hepatic cholesterol stores have been reported in chow with no added fat and cholesterol (data not shown). Similar figure were observed when mice were fed a standard laboratory chow with no added fat and cholesterol (Table 1). Similar levels of liver cholesterol to the latter control animals fed a HFHC diet but remained low, i.e. 2.9 mg cholesterol/g liver (data not shown). Similar decreases in hepatic cholesterol stores have been reported in animal feeding studies using cholestyramine in the diet (Jennings et al. 1988; Turley et al. 1994, 1996). The inclusion of chitosan and cellulose in the diet also significantly reduced hepatic cholesterol concentrations, yielding values of 30 and 41 mg/g liver, respectively (Table 1). The chitosan effect is consistent with data in the literature (Jennings et al. 1988; Trautwein et al. 1997; Gallaher et al. 2000). Hepatic total cholesterol stores, calculated by multiplying the hepatic total cholesterol concentration (mg cholesterol/g liver) by the liver weight, decreased by 94, 57 and 40 mg cholesterol per mouse for the cholestyramine, chitosan and cellulose groups, respectively, relative to the total liver cholesterol of the control group. The effects of dietary fibres on liver total cholesterol levels were also reflected in their effects on hepatic cholesterol ester stores (Table 1): the cholesteryl ester pools were significantly lower in animals fed cholestyramine-, chitosan- and cellulose-containing diets, as compared with the control group. The hepatic levels of cholesterol in the four animal groups correlated with the appearance of the livers: livers of the control group were light-coloured, those of mice fed the cholestyramine-containing diet were normal, dark red and those of the chitosan and cellulose groups were medium red-coloured.

Effects of dietary fibres on cholesterol and bile acid metabolism

In order to discriminate between decreases in cholesterol absorption and increases in cholesterol and bile acid excretion as possible mechanisms for the observed alterations in hepatic and serum cholesterol levels (Table 1), we investigated the effects of the dietary fibres on these parameters and on bile composition. Cholestyramine caused a significant increase in faecal cholesterol output from about 0.5 mg/d per g body weight in control mice to about 1 mg/d per g body weight (Table 2). The other fibres had no significant effect on daily faecal cholesterol output. Faecal bile acid excretion levels averaged 3.3, 3.3 and 3.4 µmol bile acid/d per body weight, respectively, in the control, chitosan and cellulose groups, and were significantly increased to 5.3 µmol bile acid/d per g body weight in the cholestyramine group (Table 2). Cholestyramine also significantly affected the concentrations of cholesterol and bile acids in the bile of the mice. Thus, the biliary cholesterol level was in the range 16–19 mM for the control, chitosan and cellulose groups but only 3 mM in the cholestyramine-fed animals (Table 2). Inclusion of cholestyramine in the diet also reduced the biliary bile acid level significantly to 107 mM relative to the control (354 mM; Table 2). The biliary bile acid concentrations in the chitosan and cellulose groups were not significantly different from that of the control group. Biliary phospholipid concentrations averaged about 42 mM for all groups (data not shown).

Since cholesterol balance in the enterohepatic circulation is sensitive to the level of cholesterol acquired from food, we compared the effects of the dietary fibres on cholesterol absorption efficiency. The intestinal cholesterol absorption efficiency was 34 % in the control group and 22 % in the cholestyramine-fed group (Table 2). The cholesterol absorption efficiencies in the presence of chitosan and cellulose were identical within experimental error to that of the control. The absence of an effect of these fibres on cholesterol absorption efficiency was not due to a delayed appearance of the radiolabels in the stool because more than 95 % of the 3H-labelled sitostanol was recovered in the faeces after 24 h (data not shown).

Effects of dietary fibres on body weight and food intake

Since the change from standard rodent chow to HFHC diet was expected to increase body weight, this parameter was monitored for the four groups of mice. At baseline, the mean body weights were similar: 19.3 g/animal (control), 19.7 g/animal (cholestyramine), 19.3 g/animal (chitosan) and 19.8 g/animal (cellulose). The mice on the control HFHC diet showed the greatest gain in weight over the 3-week diet period; the mean increase in body weight was +9.0 %. The increase in body weight in this control group of mice was associated with the largest increase in serum and liver cholesterol concentrations (Table 1). In marked contrast, there was no increase in body weight of the cholestyramine-treated group (+0.2 %) and there was no change in either serum cholesterol or hepatic cholesterol stores. Moderate

Table 1. Plasma and liver cholesterol concentrations*†
(Mean values, standard deviations and P values)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control (n 6)</th>
<th>Cholestyramine (n 6)</th>
<th>Chitosan (n 6)</th>
<th>Cellulose (n 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum cholesterol concentration (mM)</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td></td>
<td>4.3 ± 1.4</td>
<td>2.0 ± 0.7</td>
<td>2.2 ± 1.6</td>
<td>1.6 ± 0.8</td>
</tr>
<tr>
<td>Hepatic total cholesterol concentration (mg/g liver)</td>
<td>72 ± 19</td>
<td>2.9 ± 0.3</td>
<td>3.0 ± 0.16</td>
<td>4.1 ± 17</td>
</tr>
<tr>
<td>Percentage of hepatic total cholesterol as cholesteryl ester</td>
<td>94 ± 1</td>
<td>34 ± 8</td>
<td>82 ± 5</td>
<td>87 ± 9</td>
</tr>
</tbody>
</table>

* The variables were compared between the group of control mice and each group of fibre-treated animals; P values were calculated using ANOVA followed by the Dunnett test.
† For details of diets and procedures, see p. 332.
weight gains were observed in the chitosan-treated group (+3.1 %) and in the cellulose-treated group (+2.1 %). In these cases, the HFHC diet did not increase serum cholesterol although it did increase hepatic cholesterol stores to levels intermediate to those of the control and cholestyramine-treated groups (Table 1). All mice appeared healthy and were active throughout the feeding experiment.

As expected, the mean weight gain over the 3-week period of the diet for each group of mice was a function of the corresponding food intake. The dependence of weight increase (W, g/animal) on steady-state food intake (F, g/animal) was described by the equation $W = 1.38F - 3.92$ ($r^2 = 0.8$). There was an initial period of adjustment to the new diets and during this time the daily food intake fluctuated. However, for all groups of mice the food intakes became quite constant for days 10–21 of the diet regimen. Fig. 1 compares these steady-state daily food intakes for the four groups of mice. It is apparent that inclusion of the fibres in the diet reduced the food intake by about 15–20 % relative to the control group (about 16 mg cholesterol/mouse per d as calculated from the food intake data in Fig. 1 and the cholesterol intestinal absorption efficiencies in Table 2). Since cholestyramine treatment not only decreased food intake (Fig. 1) but also decreased cholesterol absorption efficiency (Table 2), the overall effect of this fibre on cholesterol uptake in the intestine was greater.

Discussion

The results of the present study show that inclusion of 7.5 % (w/w) cholestyramine, chitosan and cellulose in the diet had significant effects on the accumulation of dietary cholesterol in the mice. The change from basal to HFHC diet increased the daily intestinal absorption of dietary cholesterol for a control mouse from zero to about 16 mg/d. Feeding of cholestyramine completely prevented accumulation of this cholesterol in hepatic stores while feeding of chitosan and cellulose partially prevented this accumulation (Table 1). Several mechanistic theories for the hypocholesterolaemic effects of naturally occurring fibres have been put forward (Furda, 1990). One such mechanism involves binding of bile acid molecules in the intestinal lumen to the fibre, as occurs with cholestyramine. Such a mechanism would be expected to apply to a cationic polymer such as chitosan but not to a neutral fibre such as cellulose. Indeed, there is some question as to whether the insoluble cellulose fibre has any cholesterol-lowering effect (Chen & Anderson, 1979). A completely different mechanism of action of dietary fibres may relate to their ability to suppress energy intake. Dietary fibres can induce both satiation (i.e. limit the size of a meal) and satiety (i.e. inhibit the desire for another meal) (Burton-Freeman, 2000). Both effects can reduce the intake of any cholesterol present in the diet. Analysis of these cholesterol balance parameters for the four groups of mice has enabled us to compare the contributions to cholesterol reduction of the satiation and satiety-inducing properties and the bile acid-binding properties of the fibres.

Mechanisms of cholesterol-lowering effects of cholestyramine

Cholestyramine is a well-known resin that has been widely used for the treatment of atherosclerosis and the prevention of CHD (Brown, 1990). The cholesterol-lowering effect of this compound (Table 1) has been clearly demonstrated in human and animal studies (Gylling et al. 1989; Turley et al. 1994). As a result of the extensive sequestration of bile acids in the intestines by cholestyramine, the amount of recycled bile acids, usually in excess of 95 % (Cohen, 1999), was dramatically reduced and the demand

Table 2. Intestinal and biliary cholesterol and bile acid parameters*†

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control (n 6)</th>
<th>Cholestyramine (n 5)</th>
<th>Chitosan (n 6)</th>
<th>Cellulose (n 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faecal excretion of cholesterol (mg/d per g body wt)</td>
<td>0.55 ± 0.18</td>
<td>1.06 ± 0.31</td>
<td>0.002</td>
<td>0.59 ± 0.07</td>
</tr>
<tr>
<td>Faecal excretion of bile acids (μmol/d per g body wt)</td>
<td>3.3 ± 1.4</td>
<td>5.3 ± 0.5</td>
<td>0.003</td>
<td>3.3 ± 0.8</td>
</tr>
<tr>
<td>Biliary cholesterol concentration (mM)</td>
<td>19 ± 6.3</td>
<td>3 ± 1.5</td>
<td><0.001</td>
<td>16 ± 7.6</td>
</tr>
<tr>
<td>Biliary bile acid concentration (μmol/d per g body wt)</td>
<td>354 ± 106</td>
<td>107 ± 68</td>
<td>0.002</td>
<td>324 ± 59</td>
</tr>
<tr>
<td>Cholesterol absorption efficiency (%)</td>
<td>34 ± 8</td>
<td>22 ± 12</td>
<td>0.05</td>
<td>36 ± 6</td>
</tr>
</tbody>
</table>

* The variables were compared between the group of control mice and each group of fibre-treated animals; P-values were calculated using ANOVA followed by the Dunnett test.
† For details of diets and procedures, see p. 332.

 Published online by Cambridge University Press
for hepatic cholesterol metabolism towards bile acid formation and secretion in cholestyramine-fed mice was consistent with
the finding of lower biliary cholesterol and bile acid levels (Table 2). Feeding cholestyramine reduced the cholesterol absorption
efficiency significantly from 34 % in control mice to 22 % (Table 2). This decrease was caused by the binding of bile acids to cholestyramine in the intestinal lumen which results in decreased cholesterol solubilization and reduced cholesterol uptake at the brush border membrane of enterocytes (cf. Homan & Krause, 1997). The binding of bile acids to cholestyramine led to increased excretion of bile acids and cholesterol in the faeces (Table 2) as has been found in human (Stanley et al. 1973) and other animal studies (Turley et al. 1996).

As a consequence of the changes, described earlier, in bile acid availability in the lumen of the intestines, the amount of dietary cholesterol absorbed was about 9 mg/mouse per d (calculated from the food intake data in Fig. 1 and the cholesterol intestinal absorption efficiencies in Table 2) in the cholestyramine group compared to about 16 mg/mouse per d in the control group. In the latter case, the 16 mg/mouse per d of absorbed cholesterol was associated with an increase of about 90 mg/mouse in liver cholesterol over the 3-week period (Table 1). This corresponds to a rate of accumulation of liver cholesterol of about 4 mg/d, with the excess being lost in the faeces as cholesterol or bile acid. In the cholestyramine group, the 9 mg/mouse per d of absorbed cholesterol did not lead to any accumulation of choles-
terol in the liver (Table 1) over the feeding period. The 90 mg lower accumulation of liver cholesterol for the cholestyramine
group compared to the control group was due, in part, to enhanced rates of loss of cholesterol and bile acid in the faeces (Table 2). It should be noted that the combined serum and biliary cholesterol pools amounted to about 1 mg/mouse and were relatively small compared to the hepatic cholesterol pool. The cholesterol present in adipose tissue was not assessed but this storage pool was prob-
able not affected greatly during the feeding period because it turns over slowly (Farkas et al. 1973).

It is important to note that there were two contributions to the reduction in daily cholesterol absorption from 16 to 9 mg/
mouse per d when cholestyramine was included in the diet. The decrease in daily cholesterol intake (calculated from the food intake data in Fig. 1) would have reduced the amount of absorbed cholesterol by about 2-4 mg/mouse per d if the absorption efficiency had remained at 34 % (the value for control mice, see Table 2). The remainder of the 7 (16 - 9) mg/d per mouse reduction in absorbed cholesterol in cholestyramine-treated mice, i.e. about 4-6 mg/mouse per d, was a consequence of the decrease in cholesterol absorption efficiency to 22 %. Thus, about one-third (2·4/7) of the reduction in daily choles-
terol absorption arising from cholestyramine treatment was due to satiation and satiety effects (cf. Burton-Freeman, 2000) and two-thirds was due to bile acid sequestration effects.

Mechanisms of cholesterol-lowering effects of chitosan and cellulose

In contrast to the cholestyramine-fed mice, there was no change in cholesterol absorption efficiency or faecal sterol excretion with the groups of mice fed either chitosan or cellulose (Table 2). Hence, the hypcholesterolaemic effects (Table 1) of both chitosan and cellulose cannot be rationalized in terms of either a reduction in cholesterol absorption efficiency or a significant increase in faecal sterol output. It follows that, in contrast to the situation with cholestyramine, the hypcholesterol-
olaemic effects of chitosan and cellulose cannot be related to a major bile acid-binding capacity of these two fibres. The mech-
anism of action of these two dietary fibres seems to be related to a suppression of food intake by means of inducing satiation and satiety (Burton-Freeman, 2000). Thus, the average food intake of all three groups of mice receiving a dietary fibre decreased significantly with respect to the control groups of mice (Fig. 1). The daily amount of dietary cholesterol absorbed in the chitosan and cellulose groups of mice was about 13 mg/
mouse in each case; this value was about 3 mg lower than the 16 mg/mouse per d seen with the control group. The daily absorption of 13 mg cholesterol per mouse was associated with accumulations of approximately 40 and 60 mg liver choles-
terol over 3 weeks for the chitosan and cellulose groups, respectively (Table 1). It follows that the rates of accumulation of liver cholesterol were about 2 and 3 mg/mouse per d compared to the value of about 4 mg/mouse per d for the control group. The lower rates of cholesterol accumulation in the fibre-treated groups apparently were not due to differences in rates of faecal output of cholesterol and bile acid (Table 2). Overall, our results suggest that satiation and satiety effects (Burton-Freeman, 2000) contributed significantly to the choles-
terol-lowering properties of dietary chitosan and cellulose seen in these mice. This finding is consistent with an earlier study (Trautwein et al. 1997) where it was shown that incorporation of chitosan into the diet of hamsters led to a reduction in food intake and a cholesterol-lowering effect.

Clinical implications

Mechanisms underlying the cholesterol-lowering effect of cho-
lestyramine are (1) decreased cholesterol (food) intake, (2) decreased cholesterol absorption efficiency, and (3) increased faecal bile acid and cholesterol excretion. The latter effects can be attributed to the high bile acid-binding capacity of cho-
lestyramine. In contrast, incorporation of chitosan or cellulose in the diet reduced cholesterol (food) intake, but did not significa-
tially affect either intestinal cholesterol absorption or faecal sterol excretion in our study. We conclude that satiation and satiety effects contribute to the cholesterol-lowering properties of dietary fibres with moderate or low bile acid-binding capa-
bilities. Knowledge about the mechanisms by which the different fibres prevent cholesterol accumulation will be helpful for investigating clinical effects of fibre therapy. A possible ben-
eficial effect of fibres on cardiovascular risk might be related to the different mechanisms by which the fibres influence lipid metabolism. Thus, in future studies, the effect on cardio-
vascular morbidity and mortality as well as the occurrence of side-effects should be evaluated separately for each kind of fibre.

We have observed impressive effects of the fibres investigated in the present study, e.g. the satiation and satiety effects of chito-
san and cellulose were sufficient to stabilize serum cholesterol levels against the increase induced by the HFHC diet, and reduce the degree to which liver cholesterol stores are increased by the HFHC diet. However, the dose of fibres used (7.5 % of diet, w/w) was higher than doses usually used in human trials, e.g. 2 % of chitosan incorporated into bread (Ausar et al. 2003) or 3–6 g of chitosan applied daily as capsules (Maezaki et al.
1993; Mhurchu et al. 2004). It should be noted that the cholesterol concentration used in the present study (1-25% of diet, w/w) was much higher than the cholesterol content of diets usually consumed by man. Hence, a fibre content below 7.5% might be sufficient to prevent cholesterol accumulation in man, as previously shown for cholestyramine (Brown, 1990) and chitosan (Maезaki et al. 1993; Pittert et al. 1999; Yitlato et al. 2002; Bokura & Kobayashi, 2003). Investigation of cellulose in clinical studies is most intriguing, because a hypocholesterolaemic effect of cellulose has not been established as clearly (Chen & Anderson, 1979), although intake of high concentrations of cellulose as a food supplement in man was reported to lower serum cholesterol by about 25% (Shurpalekar et al. 1971).

Acknowledgements

This study was supported by NIH Grant HL22633 and a postdoctoral fellowship to Ariette van Bennekum from the American Heart Association (Mid-Atlantic Consortium).

References

Casdorph HR (1967) Treatment of hypercholesterolemia with cholestyramine, a bile acid sequestering resin. Vasc Dis 4, 305–308.

