Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats

Masashi Morifuji¹*, Chiaki Sanbongi¹ and Katsumi Sugiura²

¹Meiji Seika Kaisha Ltd, Food & Health R&D Laboratories, 5-3-1 Chiyoda, Sakado-shi, Saitama, 350-0289, Japan
²Meiji Seika Kaisha Ltd, SAVAS Sports & Nutrition Laboratory, 2-4-16 Kyoubashi, Chuo-ku, 104-8002, Japan

(Received 24 January 2006 – Revised 30 March 2006 – Accepted 2 May 2006)

Exercise training and regular physical activity increase oxidation of fat. Enhanced oxidation of fat is important for preventing lifestyle diseases such as hypertension and obesity. The aim of the present study in rats was to determine whether intake of dietary soya protein and exercise training have an additive effect on the activity and mRNA expression of enzymes involved in skeletal muscle fatty acid oxidation. Male Sprague–Dawley rats (n = 32) were assigned randomly into four groups (eight rats per group) and then divided further into sedentary or exercise-trained groups fed either casein or soya protein diets. Rats in the exercise groups were trained for 2 weeks by swimming for 120 min/d, 6 d/week. Exercise training decreased hepatic triacylglycerol levels and retroperitoneal adipose tissue weight and increased skeletal muscle carnitine palmitoyltransferase 1 (CPT1) activity and mRNA expression of CPT1, β-hydroxyacyl-CoA dehydrogenase (HAD), acyl-CoA oxidase, PPARγ coactivator 1α (PGC1α) and PPARα. Soya protein significantly decreased hepatic triacylglycerol levels and epididymal adipose tissue weight and increased skeletal muscle CPT1 activity and CPT1, HAD, acyl-CoA oxidase, medium-chain acyl-CoA dehydrogenase, PGC1α and PPARα mRNA levels. Furthermore, skeletal muscle HAD activity was the highest in exercise-trained rats fed soya protein. We conclude that exercise training and soya protein intake have an important additive role on induction of PPAR pathways, leading to increased activity and mRNA expression of enzymes involved in fatty acid oxidation in skeletal muscle and reduced accumulation of body fat.

Soya protein: Fatty acid oxidation enzymes: Adipose tissue weight: Skeletal muscle: Exercise-trained rats

Exercise training and regular physical activity are known to increase fat oxidation in both healthy (Friedlander et al. 1998, 1999) and obese (Pritzlaff-Roy et al. 2002) individuals. It is likely that several benefits of regular exercise, such as decreased insulin resistance, lower blood pressure and reduced levels of plasma LDL, are related to enhanced oxidation of fat (Toth et al. 1995; Dengel et al. 1998). Obtaining a better understanding of the factors that influence the rate of fat oxidation at rest and during exercise is therefore important. It is also well established that low-intensity prolonged exercise training simultaneously increases the activity of skeletal muscle mitochondrial enzymes involved in the tricarboxylic acid cycle and fatty acid β-oxidation (Holloszy et al. 1970; Grinton et al. 1992; Carter et al. 2001). Previous studies demonstrated that PPARγ coactivator 1 (PGC1) is expressed in several tissues, including skeletal muscle and brown adipose tissue. It has been reported to increase mitochondria biogenesis and fatty acid oxidative metabolism (Wu et al. 1999; Vega et al. 2000; Har a et al. 2002). In rats, PGC1 mRNA and protein levels are increased after a single bout of exercise as well as after several days of training (Goto et al. 2000). In man, Pilegaard et al. (2003) observed a transient increase in PGC1 mRNA levels after a single bout of exercise.

Many studies have shown that consumption of soya protein is associated with a reduction in cardiovascular risk (Meeker & Kesten, 1940; Sugano & Koba, 1993; Anderson et al. 1995). This effect is attributed to the finding that soya protein reduced plasma cholesterol in animal models whereas casein and other animal proteins had no such effect. The effect of soya protein on blood cholesterol concentrations was first reported in rabbits in the 1940s (Meeker & Kesten, 1940). Results in male human subjects with mild hypercholesterolaemia found that soya protein caused significant lowering of total and LDL cholesterol whilst it maintained HDL cholesterol concentrations (Anderson et al. 1995). Soya protein has also been shown to reduce hepatic triacylglycerol (Morifuji & Aoyama, 2002), some lipogenic enzymes (Iritani et al. 1986) and sterol regulatory element binding protein-1 mRNA expression (Tovar et al. 2002).

The components of soya include protein, lipids, fibre and phytochemicals including isoflavones. Considerable research effort has focused on isoflavones as the main hypolipidaemic agent in soya protein (Mezei et al. 2003; Song et al. 2003; Wu et al. 2003; Vega et al. 2000; Har a et al. 2002). In rats, PGC1 mRNA and protein levels are increased after a single bout of exercise as well as after several days of training (Goto et al. 2000). In man, Pilegaard et al. (2003) observed a transient increase in PGC1 mRNA levels after a single bout of exercise.

Abbreviations: CPT1, carnitine palmitoyltransferase 1; FAT/CD36, fatty acid translocase; HAD, β-hydroxyacyl-CoA dehydrogenase; PGC1, PPARγ coactivator 1; PGC1α, PPARγ coactivator 1α.

* Corresponding author: Dr Masashi Morifuji, fax +81 49 284 7598, email marshimo@yahoo.co.jp
et al., 2004; Kim et al., 2005). Previous evidence from a study in obese Zucker rats showed that ingestion of a high-isoflavone soya protein diet improved insulin resistance, suggesting that some of the beneficial effects may have been mediated by PPAR (Mezei et al., 2003). It is therefore possible that isoflavones may also have beneficial effects on lipid metabolism. However, the role of isoflavones in the regulation of lipid metabolism remains unclear.

Although it is known that the expression of many fatty acid-metabolizing enzymes is regulated by PPAR at the transcriptional level, it is not clear from animal models whether intake of soya protein stimulates fatty acid oxidation in skeletal muscle. This led us to speculate whether the combination of exercise training and intake of soya protein may have an additive effect of enhancing fatty acid oxidation in skeletal muscle. The aim of the present study was to determine whether dietary soya protein influenced the activity and mRNA expression of enzymes involved in fatty acid oxidation in skeletal muscle of exercise-trained rats.

Materials and methods

Animals

Male Sprague–Dawley rats (CLEA Japan Inc., Tokyo, Japan) were used in the present study. All the rats were housed individually in temperature-controlled rooms (22°C), with light from 08.00 to 20.00 hours and dark from 20.00 to 08.00 hours. The study was approved by the Animal Committee of Meiji Seika Kaisha Ltd, Food & Health R&D Laboratories, with the animals receiving care under the guidelines laid down by this committee.

Diet

The design of the experimental diets followed the AIN-93 protocol (Reeves et al., 1993) with the composition of the diets shown in Table 1. Casein and soya protein were used as the source of dietary protein. The protein content, calculated as nitrogen concentration × 6.38 (casein), or × 5.8 (soya protein), was measured using the Kjeldahl method. Casein (87.7 g crude protein/100 g) and soya protein (79.3 g crude protein/100 g) were added as 200 g protein/kg to the diets. The difference in the protein content between the two diets was compensated for by the addition of maize starch. Soya protein contained 19.72 mg isoflavones/g protein, mainly as genistein (17.43 mg).

Table 1. Composition of the two experimental diets (g/kg diet)

<table>
<thead>
<tr>
<th></th>
<th>Casein</th>
<th>Soya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein*</td>
<td>228</td>
<td>–</td>
</tr>
<tr>
<td>Soya protein†</td>
<td>–</td>
<td>254</td>
</tr>
<tr>
<td>Vitamin mixture‡</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Choline bitartrate§</td>
<td>2-5</td>
<td>2-5</td>
</tr>
<tr>
<td>Mineral mixture†</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Maize oil</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Maize starch¶</td>
<td>504-5</td>
<td>478-5</td>
</tr>
<tr>
<td>Sucrose**</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cellulose††</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

* Oriental Yeast Co. Ltd, Tokyo, Japan.
† Fuji Oil Co. Ltd, Osaka, Japan.
‡ AIN-93 diet, Nosan Corporation, Kanagawa, Japan.
§ Wako Pure Chemical Industries Ltd, Osaka, Japan.
¶ Ajinomoto Co., Inc., Tokyo, Japan.
† Taiyo Kagaku Co. Ltd, Me, Japan.
** Nippon Bee Sugar Manufacturing Co. Ltd, Tokyo, Japan.
‖ Asahi Kasei Corporation, Tokyo, Japan.

Experimental protocol

Thirty-two male Sprague–Dawley rats (eight per group) with body weight of approximately 120 g were allowed free access to food and water for 2 weeks. Rats were assigned randomly into four groups and then divided further into sedentary or exercise-trained groups fed either casein or soya protein diets. Rats in the exercise-trained groups swam simultaneously without a load for 6 d/week at 120 min/d in a barrel filled with water maintained at 35°C to a depth of 30 cm so that the average surface area available to each animal was 170 cm². At the end of the 2-week training period, all the rats were rested for 24 h after the last training session. The rats were killed between 09.00 and 11.00 hours under the non-fasting condition. Postcaudal blood samples were collected from all the animals under ether anaesthesia, centrifuged at 3000 g for 15 min and the serum stored at −80°C. After blood collection, the abdominal cavity was opened and the liver, triceps muscle, retroperitoneal adipose tissue and epididymal adipose tissue were quickly excised, washed, weighed and frozen at −80°C until assay. The rat triceps muscle was used in the study as it is used extensively during swimming exercises, as evidenced by glycogen depletion and an adaptive increase in GLUT4 content and citrate synthase activity (Host et al., 1998).

Liver triacylglycerol content

The total concentration of lipids extracted and purified from the liver was measured according to the method of Folch et al. (1957). Liver triacylglycerol was determined using the same technique.

Liver and skeletal muscle enzyme activities

Aliquots of skeletal muscle were homogenized in 0.1 M-Tris-HCl buffer (pH 7.4) using a glass type homogenizer. The homogenate was centrifuged for 15 min at 900 g at 4°C and this fraction was used immediately to assay the activity of the following mitochondrial enzymes, β-Hydroxyacyl-CoA dehydrogenase (HAD; EC 1.1.1.35) was assayed using the method of Bass et al. (1968) and carnitine palmitoyltransferase 1 activity (CPT1; EC 2.3.1.21) was measured according to the method described by Markwell et al. (1973). The total protein concentration of the tissue homogenate supernatant was
measured using bicinechonic acid with bovine serum albumin as the standard (Smith et al. 1985).

Total RNA isolation and cDNA

Total RNA was isolated from skeletal muscle by the guanidinium thiocyanate method of Chomczynski and Sacchi (1987) using isogenic solution (Nippon Gene Co. Ltd, Tokyo, Japan). The RNA extracted was then dissolved in diethylpyrocarbonate-treated water and quantified spectrophotometrically at a wavelength of 260 nm. Reverse transcription was used to produce cDNA from RNA using a first standard cDNA synthesis kit (Fermentas Inc., Hanover, MD, USA). The cDNA was stored at −80°C for subsequent analysis.

Quantitative real-time RT–PCR analysis

Real-time PCR was performed using the ABI PRISM 7000 sequence detection system (Applied Biosystems, Foster City, CA, USA). Primers and probes (TaqMan® Gene Expression Products) were designed at Applied Biosystems from gene sequences obtained from Gene Bank (CPT1: NM_012930; HAD: NM_057186; medium chain acyl-CoA dehydrogenase: NM_016986; acyl-CoA oxidase: NM_145770; PPAR coactivator 1α (PGC1α): NM_031347; PPARα: NM_013196; fatty acid translocase (FAT/CD36): NM_031561; 18S rRNA: X03205). DNA amplification was carried out in 12.5 μl Taqman Universal PCR Master Mix, 1.25 μl primer and probes, 2.5 μl cDNA and 8.75 μl RNase and DNase free water in a final volume of 25 μl/well. The samples were loaded in a MicroAmp ninety-six-well reaction plate and then run using the ABI sequence detection system. After 2 min at 50°C and 10 min at 95°C, the plates were co-amplified by fifty repeated cycles, with each cycle consisting of a 30 s denaturing step at 95°C and a 1 min annealing/extending step at 59°C. Data were analysed by ABI software using the cycle threshold (CT) for the gene of interest.

Statistics

Data were analysed using two-way ANOVA with post hoc analyses being carried out by Tukey’s test. Differences between groups were considered to be significant at P<0.05.

Results

Initial body weight, food intake and body weight gain

Food intake did not differ between the groups. Body weight gain is lower in exercise-trained groups than in sedentary groups. Furthermore, the soya protein diet significantly decreased body weight gain compared to the casein diet (Table 2).

Liver triacylglycerol and adipose tissue weight

Exercise training decreased both hepatic triacylglycerol concentration and retroperitoneal adipose tissue weight, but had no effect on the weight of epididymal adipose tissue. The soya protein diet lowered liver triacylglycerol levels significantly compared to the casein diet. Epididymal adipose tissue weight in the soya protein groups was lower than in the casein groups, whereas the type of dietary protein had no effect on retroperitoneal adipose tissue weight (Fig. 1).

Serum parameters

Exercise training for 2 weeks significantly decreased serum insulin levels. Furthermore, significant decreases in serum triacylglycerol, phospholipids, NEFA and glucose levels were observed in rats fed soya protein compared to those fed casein. Serum ketone bodies were higher in the soya protein groups than in the casein groups. Serum cholesterol levels were highest in sedentary rats fed the casein diet (Table 3).

Fatty acid oxidation enzyme activities

Skeletal muscle CPT1 activity was increased by exercise training. Skeletal muscle CPT1 activity was increased significantly in rats fed soya protein compared to animals fed casein. Skeletal muscle HAD activity was the highest in exercise-trained rats fed soya protein (Fig. 2).

Skeletal muscle mRNA levels of transcriptional factor, fatty acid translocase and enzymes involved in fatty acid oxidation

Exercise training for 2 weeks significantly increased skeletal muscle CPT1, HAD, acyl-CoA oxidase, PGC1α, PPARα and FAT/CD36 mRNA expressions. Skeletal muscle CPT1, HAD, acyl-CoA oxidase, medium-chain acyl-CoA dehydrogenase, PGC1α, PPARα and FAT/CD36 mRNA levels were increased significantly in rats fed soya protein compared to animals fed casein (Table 4).

Table 2. Initial body weight, food intake and body weight gain in sedentary or exercise-trained rats fed the casein or soya protein diet

<table>
<thead>
<tr>
<th>Group</th>
<th>Initial body weight (g)</th>
<th>Food intake (g/14 d)</th>
<th>Body weight gain (g/14 d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Sedentary – casein</td>
<td>118 ± 1</td>
<td>269 ± 3</td>
<td>106 ± 2</td>
</tr>
<tr>
<td>Sedentary – soya</td>
<td>119 ± 3</td>
<td>261 ± 5</td>
<td>101 ± 4</td>
</tr>
<tr>
<td>Exercised – casein</td>
<td>123 ± 2</td>
<td>272 ± 5</td>
<td>100 ± 3</td>
</tr>
<tr>
<td>Exercised – soya</td>
<td>122 ± 3</td>
<td>265 ± 6</td>
<td>95-3 ± 3-8</td>
</tr>
<tr>
<td>Two-way ANOVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diet</td>
<td>0.855</td>
<td>0.139</td>
<td>0.020</td>
</tr>
<tr>
<td>Exercise</td>
<td>0.080</td>
<td>0.532</td>
<td>0.008</td>
</tr>
<tr>
<td>Diet × Exercise</td>
<td>0.701</td>
<td>0.913</td>
<td>0.278</td>
</tr>
</tbody>
</table>

*For details of procedures, see this page.
Discussion

The present study showed that rats fed a soya protein diet had increased skeletal muscle fatty acid oxidation enzyme activities and mRNA levels compared to rats fed a casein diet. The soya protein diet also lowered liver triacylglycerol levels and epididymal adipose tissue weight significantly compared to the casein diet. We also demonstrated that exercise training decreased hepatic triacylglycerol levels and retroperitoneal adipose tissue weight. The present results indicated that a combination of exercise training and soya protein intake had an additive effect of increasing the activity of enzymes in skeletal muscle involved in fatty acid oxidation, thereby decreasing hepatic triacylglycerol levels and body fat mass.

It is well established that exercise training and regular physical activity reduce body fat by increasing fat oxidation (Friedlander et al. 1998, 1999). Low-intensity prolonged exercise training increases the activity of skeletal muscle mitochondrial enzymes involved in fatty acid β-oxidation (Holloszy et al. 1970; Grinton et al. 1992; Carter et al. 2001). In the present study, the activity and mRNA expression of fatty acid oxidation enzymes were increased in skeletal muscles of exercise-trained rats. We also found increased mRNA expression for skeletal muscle PGC1α and PPARα mRNA in the exercise-trained groups. The present findings are consistent with reports that skeletal muscle PGC1 mRNA and protein levels are increased after a single bout of exercise as well as after several days of training in rats (Goto et al. 2000; Baar et al. 2002; Terada et al. 2002) and man (Russell et al. 2003). An increase in PGC1α in skeletal muscles may enhance mitochondrial biogenesis and fatty acid oxidation, including PPARα target genes (Wu et al. 1999; Vega et al. 2000; Miura et al. 2003). Moreover, PPARα controls the transcription of many genes involved in lipid catabolism including FAT/CD36. The effect of endurance training on skeletal muscle PPARα has, however, not been evaluated in either animal or human studies. Horowitz et al. (2000) and Russell et al. (2003) reported that endurance exercise training increased PPARα mRNA levels in human skeletal muscle. The results of the present study in animals are consistent with the results from the previous studies in human subjects. Taken together, the results indicate that an increase in muscle PGC1α mRNA and increased fatty acid oxidation enzymes are involved in fatty acid β-oxidation.

Table 3. Serum parameters in sedentary or exercise-trained rats fed the casein or soya protein diet*

<table>
<thead>
<tr>
<th>Group</th>
<th>Triacylglycerol (mmol/l)</th>
<th>Phospholipids (mmol/l)</th>
<th>Cholesterol (mmol/l)</th>
<th>NEFA (μEq/l)</th>
<th>Ketone body (μmol/l)</th>
<th>Glucose (mmmol/l)</th>
<th>Insulin (μg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary – casein</td>
<td>3.19 ± 0.41</td>
<td>2.96 ± 0.08</td>
<td>2.74b ± 0.08</td>
<td>461 ± 28</td>
<td>120 ± 11</td>
<td>11:0 ± 0.2</td>
<td>4.55 ± 0.65</td>
</tr>
<tr>
<td>Sedentary – soya</td>
<td>1.84 ± 0.08</td>
<td>2.07 ± 0.05</td>
<td>2.09a ± 0.09</td>
<td>402 ± 33</td>
<td>179 ± 20</td>
<td>9.97 ± 0.24</td>
<td>3.96 ± 0.97</td>
</tr>
<tr>
<td>Exercised – casein</td>
<td>3.63 ± 0.47</td>
<td>2.67 ± 0.11</td>
<td>2.22a ± 0.08</td>
<td>532 ± 46</td>
<td>154 ± 15</td>
<td>10.7 ± 0.4</td>
<td>3.35 ± 0.87</td>
</tr>
<tr>
<td>Exercised – soya</td>
<td>2.07 ± 0.22</td>
<td>2.19 ± 0.09</td>
<td>2.22a ± 0.09</td>
<td>387 ± 32</td>
<td>202 ± 21</td>
<td>10.5 ± 0.2</td>
<td>1.68 ± 0.41</td>
</tr>
</tbody>
</table>

Two-way ANOVA

Diet P<0.001 Exercise P=0.013 Diet × Exercise P=0.582

Diet P=0.090 Exercise P=0.030 Diet × Exercise P=0.996

Diet P=0.008 Exercise P=0.997 Diet × Exercise P=0.794

*a,b Mean values within a column with unlike superscript letters were significantly different (P<0.05).

* For details of procedures, see p. 471.
metabolism resulting from exercise training are both important factors in enhancing muscle fatty acid oxidative capacity.

Although it is generally accepted that intake of soya protein improves lipid metabolism in both animals and man, little attention has been paid to the effect of soya protein on fatty acid oxidation in skeletal muscle. We showed that soya protein, relative to casein, significantly increased the activities and mRNA levels of skeletal muscle fatty acid oxidation enzymes, PGC1α and PPARα mRNA expression.

Some researchers have focused on isoflavones, namely genistein, daidzein and glycitein, as the important bioactive components of soya protein. Soya isoflavones bind and activate both PPARα and PPARγ (Mezeti et al. 2003). Genistein supplementation (2 g/kg diet) caused a significant increase in PPARα and PPARγ mRNA expression in a mouse model of obesity (Kim et al. 2005). Therefore, the increase in fatty acid oxidation enzyme activities in the soya groups may be related to isoflavones that stimulate fatty acid oxidation via PPAR pathways. The soya protein diet used in the present study contained 5·0 g isoflavones/kg diet. In previous reports, combined intervention of soya isoflavones (1·6 g/kg diet) and moderate exercise prevented increases in body fat in ovariectomized mice (Wu et al. 2004). Similarly, a soya protein diet containing high isoflavones (1·16 g/kg diet) was reported to cause a significant decrease in triacylglycerol and cholesterol levels in the liver of obese Zucker rats compared to either a casein or low isoflavone soya protein diet (<0·009 g/kg) (Mezeti et al. 2003). Furthermore, supplementation of daidzein (0·33 g/kg) to the casein diet resulted in a significant decrease in plasma triacylglycerol and cholesterol levels in female hamsters (Song et al. 2003). As these earlier studies showed that only small amounts of isoflavones were required to improve lipid metabolism in animals, the quantity of isoflavones (5·0 g/kg diet) used in the present study may have been sufficient to affect fatty acid oxidation enzyme activity and mRNA levels in skeletal muscle.

On the other hand, there is evidence that soya protein downregulates lipogenic enzymes thereby reducing the availability of long-chain fatty acids required for triacylglycerol synthesis in the liver (Iritani et al. 1986, 1992). A study also showed that intake of soya protein decreased sterol regulatory element binding protein-1c and hepatic lipogenic enzyme activities and mRNA expression (Ascencio et al. 2004). Iritani et al. (1986) demonstrated that when dietary protein was replaced with an

Table 4. Skeletal muscle mRNA levels of transcriptional factor, fatty acid translocase (FAT/CD36) and enzymes involved in fatty acid oxidation in sedentary or exercise-trained rats fed the casein or soya protein diet*

(56 Mean values with their standard errors)

<table>
<thead>
<tr>
<th>Group</th>
<th>CPT1 Mean</th>
<th>CPT1 SE</th>
<th>HAD Mean</th>
<th>HAD SE</th>
<th>MCAD Mean</th>
<th>MCAD SE</th>
<th>ACO Mean</th>
<th>ACO SE</th>
<th>FAT/CD36 Mean</th>
<th>FAT/CD36 SE</th>
<th>PGC1α Mean</th>
<th>PGC1α SE</th>
<th>PPARα Mean</th>
<th>PPARα SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary – casein</td>
<td>100</td>
<td>10</td>
<td>100</td>
<td>7</td>
<td>100</td>
<td>14</td>
<td>100</td>
<td>9</td>
<td>100</td>
<td>10</td>
<td>100</td>
<td>12</td>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>Sedentary – soya</td>
<td>138</td>
<td>14</td>
<td>149</td>
<td>12</td>
<td>147</td>
<td>12</td>
<td>143</td>
<td>13</td>
<td>142</td>
<td>11</td>
<td>136</td>
<td>24</td>
<td>128</td>
<td>9</td>
</tr>
<tr>
<td>Exercised – casein</td>
<td>139</td>
<td>19</td>
<td>138</td>
<td>21</td>
<td>123</td>
<td>18</td>
<td>143</td>
<td>13</td>
<td>164</td>
<td>32</td>
<td>205</td>
<td>13</td>
<td>129</td>
<td>13</td>
</tr>
<tr>
<td>Exercised – soya</td>
<td>184</td>
<td>22</td>
<td>216</td>
<td>36</td>
<td>207</td>
<td>38</td>
<td>206</td>
<td>27</td>
<td>254</td>
<td>48</td>
<td>269</td>
<td>22</td>
<td>169</td>
<td>20</td>
</tr>
<tr>
<td>Two-way ANOVA</td>
<td></td>
</tr>
<tr>
<td>Diet</td>
<td>0·045</td>
<td>0·012</td>
<td>0·014</td>
<td>0·112</td>
<td>0·008</td>
<td>0·048</td>
<td>0·008</td>
<td>0·032</td>
<td>0·001</td>
<td>0·042</td>
<td>0·020</td>
<td>0·046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise</td>
<td>0·046</td>
<td>0·034</td>
<td>0·112</td>
<td>0·469</td>
<td>0·008</td>
<td>0·032</td>
<td>0·008</td>
<td>0·469</td>
<td>0·049</td>
<td>0·489</td>
<td>0·725</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diet × Exercise</td>
<td>0·886</td>
<td>0·533</td>
<td>0·469</td>
<td>0·699</td>
<td>0·008</td>
<td>0·032</td>
<td>0·008</td>
<td>0·469</td>
<td>0·049</td>
<td>0·489</td>
<td>0·725</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACO, acyl-CoA oxidase; CPT1, carnitine palmitoyltransferase 1; HAD, β-hydroxyacyl-CoA dehydrogenase; MCAD, medium-chain acyl-CoA dehydrogenase; PGC1α, PPARγ coactivator 1α.

* Data are expressed in arbitrary units. For details of procedures, see p. 471.

Fig. 2. Effect of dietary protein on skeletal muscle carnitine palmitoyltransferase 1 (a) and β-hydroxyacyl-CoA dehydrogenase (b) activities in sedentary (□) or exercise-trained (■) rats. For details of procedures, see p. 471. Values are means with their standard errors depicted by vertical bars.

