Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism

José López-Miranda¹, Christine Williams² and Denis Lairon³*

¹Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, University of Córdoba, Córdoba, Spain
²Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, University of Reading, 226 Whiteknights, Reading, Berkshire, RG6 6AP, UK
³INSERM, 476 Nutrition Humaine et lipides, Marseille, F-13385 France; INRA, 1260, Marseille, F-13385 France; Université Méditerranée Aix-Marseille 2, Faculté de Médecine, IPHM-IFR 125, Marseille, F-13385 France

(Received 8 November 2006 – Revised 21 February 2007 – Accepted 12 March 2007)

Most of diurnal time is spent in a postprandial state due to successive meal intakes during the day. As long as the meals contain enough fat, a transient increase in triacylglycerolaemia and a change in lipoprotein pattern occurs. The extent and kinetics of such postprandial changes are highly variable and are modulated by numerous factors. This review focuses on factors affecting postprandial lipoprotein metabolism and genes, their variability and their relationship with intermediate phenotypes and risk of CHD. Postprandial lipoprotein metabolism is modulated by background dietary pattern as well as meal composition (fat amount and type, carbohydrate, protein, fibre, alcohol) and several lifestyle conditions (physical activity, tobacco use), physiological factors (age, gender, menopausal status) and pathological conditions (obesity, insulin resistance, diabetes mellitus). The roles of many genes have been explored in order to establish the possible implications of their variability in lipid metabolism and CHD risk. The postprandial lipid response has been shown to be modified by polymorphisms within the genes for apo A-I, A-IV, A-V, E, B, C-I and C-III, lipoprotein lipase, hepatic lipase, fatty acid binding and transport proteins, microsomal triglyceride transfer protein and scavenger receptor class B type I. Overall, the variability in postprandial response is important and complex, and the interactions between nutrients or dietary or meal compositions and gene variants need further investigation. The extent of present knowledge and needs for future studies are discussed in light of ongoing developments in nutrigenetics.

Postprandial lipaemia: Coronary heart disease: Gene polymorphism: Diet: Lifestyle conditions: Physiological and pathological factors

Definition and importance of postprandial lipaemia

Much of our knowledge about the relationship between lipid, lipoprotein metabolism and the development of atherosclerosis and CVD is based on measurements in the fasting state essentially reflecting endogenous metabolism (Fig. 1). Although such measurements remain the foundation of clinical assessment and an important basis for decisions regarding hypolipidaemic interventions, it should be acknowledged that we spend a considerable amount of time in a non-fasting, postprandial state. Based on typical Western eating patterns, most people consume three or more meals a day, each containing 20–70 g fat. Except at breakfast, each of these meals is most likely consumed before plasma triacylglycerol (TAG) levels have returned to baseline from the lipaemic conditions resulting from the previous intake. Thus, people spend the majority of their day in a postprandial (fed) state, with a continual fluctuation in the degree of lipaemia throughout the day.

The postprandial state is a dynamic, non-steady-state condition, with rapid remodelling of lipoproteins compared with the relatively stable fasting condition (Fig. 1). Determination of the postprandial response is complex, and it is therefore more challenging to assess the cardiovascular risk associated with postprandial lipaemia than that during fasting conditions. In spite of this, it is becoming increasingly evident that future efforts to study and treat lipids related to atherogenesis should include postprandial parameters. The aim of this paper is to consider the regulatory pathways of postprandial lipoproteins and the major factors, including nutrition, lifestyle, physiopathology and genetics, that may contribute to interindividual variability in postprandial lipaemia, and thereby susceptibility to atherosclerosis.

Experimental evidence linking postprandial lipaemia with atherosclerosis

The potential atherogenicity of postprandial TAG and TAG-rich lipoprotein (TRL) levels did not gain widespread attention until the idea was put forward in a widely quoted paper by Zilversmit in 1979, who proposed that...
the hydrolysis of chylomicron by lipoprotein lipase (LPL) resulted in the subsequent internalisation of cholesterol ester-enriched chylomicron remnants by arterial smooth muscle cells. A confirmation of this hypothesis has been complicated by the multiple factors affecting the postprandial response, the lack of standardised methodology and the considerable heterogeneity between postprandial TRL species. Evidence supporting an association between postprandial lipaemia and atherosclerosis has been provided by clinical trials and mechanistic studies of both the direct and indirect effects of TRL using animal models and cell culture.

Clinical trials

Several clinical studies have shown that a delayed elimination of postprandial TRL is associated with atherosclerosis (Tables 1 and 2). There are also reports of an association between postprandial lipoaemic response and subsequent progression of atherosclerosis in patients with pre-existing CHD.

In men, the presence of CHD is associated with higher postprandial TAG concentrations in plasma compared with healthy controls, even after correction for higher levels of fasting TAG in the CHD group. The data are less clear for women. One smaller study reported elevated postprandial TAG and apo B-48 concentrations in women with CHD. However, a larger study showed no significant relationship between prolonged postprandial lipaemia and CHD in middle-aged women. In a number of studies, carotid intima–media thickness is used as a surrogate marker for atherosclerosis. Several studies have confirmed a positive association between carotid intima–media thickness and postprandial lipaemia. However, these data do not address the issue of whether prolonged postprandial lipaemia predicts risk of developing CHD or whether the presence of CHD results in a subsequent impairment of postprandial TRL.

In order to address this question, one cross-sectional study examined postprandial TAG levels after the consumption of a high-fat liquid drink in the healthy sons of men with angiographic evidence of severe CHD compared with the sons of control subjects without CHD. In spite of comparable fasting lipids between groups, the sons of men with CHD had significantly higher plasma TAG levels after 8, 10 and 12 h postprandially, indicative of a delayed clearance of TAG. In another study in the offspring of patients with CHD, young men with (case subjects) or without (control subjects) a paternal history of CHD underwent a postprandial study. Although no difference in postprandial TAG was found in the groups as whole, subgroup analysis revealed an increased postprandial response among individuals with a moderate elevation of fasting TAG level. There is evidence that higher levels of TRL or their remnants predict the progression of disease in subjects with established CHD. In The Montreal Heart
Thirty-five men and women with moderate-to-extensive CHD, the concentration of hepatic TRL remnants predicted the progression of atherosclerosis. In a summary of clinical studies of postprandial lipaemia and atherosclerosis, Karpe suggested that an elevated plasma TAG measured at late postprandial time points after fat intake might reveal a state of fat intolerance linked to an elevated risk of CHD that was under genetic control and could not be detected by a simple measurement of fasting plasma TAG. However, additional studies are needed to determine the effect of specific TRL fractions and the underlying mechanisms for a link between postprandial lipaemia and atherosclerosis.

Table 1. Clinical trials summarizing the effect of postprandial lipoprotein metabolism on coronary artery disease (CAD)

<table>
<thead>
<tr>
<th>Study population/design</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sixty-one male subjects with severe CAD and 40 control subjects without CAD as verified by angiography (Case-control)</td>
<td>Single postprandial triglyceride levels 6 and 8 h after the meal were highly discriminatory ($P < 0.001$) and by logistic-regression analysis displayed an accuracy of 68% in predicting the presence or absence of CAD. Patients with CAD showed a marked delay in the clearance of retinyl esters as well as in the normalisation of plasma triacylglycerol concentrations. Post-heparin plasma hepatic lipase activity was significantly lower in the CAD group. A greater absolute and incremental apo B-48 response in the IDL fraction ($d = 1.006 \pm 0.019$) was observed in cases with CAD (incremental area under the curve 0.40 (so 0.12) than controls (0.01 (so 0.06) $P = 0.01$). The results provide evidence that the metabolism of intestinal triacylglyceride-rich lipoproteins is significantly different in nonmorplipidaemic women with angiographically proven CAD compared with individually matched controls without coronary disease.</td>
</tr>
<tr>
<td>Two group of 20 normolipidaemic men, a group of CAD patients and a matched control group with documented minimal coronary atherosclerosis (Case-control)</td>
<td>Additional studies are needed to determine the effect of postprandial lipoprotein metabolism on coronary artery disease (CAD).</td>
</tr>
<tr>
<td>Twelve normocholesterolaemic, normotriacylglyceraemic women with angiographically proven CAD, and 12 individually matched controls, without angiographical abnormalities (Case-control)</td>
<td>In the sample as a whole, the postprandial triglyceride responses did not significantly differ between the two groups. However, in the upper tertile of fasting triacylglycerides, cases displayed a higher area under the curve (5.71 ± 4.49 mmol L$^{-1}$ h L$^{-1}$, $P < 0.001$), a higher peak (1.76 ± 1.43 mmol L$^{-1}$, $P < 0.001$) and a more delayed time to peak (3.15 vs. 2.91 h, $P < 0.05$) than controls.</td>
</tr>
<tr>
<td>Ninety-two men and 113 women were recruited from populations undergoing diagnostic exercise electrocardiographic or thallium stress tests. Twenty-six men and 24 women had positive tests. Case-Control</td>
<td>They chose exercise-induced myocardial ischemia (EIMI) as the criterion for defining case and control subjects because they wanted participants who did not have a prior diagnosis of CAD. Among men but not women postprandial TG and RP responses were associated with EIMI independent of age, race, and smoking status. In the male group, the odds ratio (OR) for an increase in postprandial TG response of approximately 1 SD was 1.69 ($P = 0.007$); the OR for an increase in RP response of 1 SD was 2.47 ($P = 0.01$).</td>
</tr>
<tr>
<td>Male subjects with a paternal history of CHD (cases, $n = 407$) and age-matched male controls ($n = 415$) were recruited from 14 European universities. Case-control</td>
<td>In the sample as a whole, the postprandial triglyceride responses did not significantly differ between the two groups. However, in the upper tertile of fasting triacylglycerides, cases displayed a higher area under the curve (5.71 ± 4.49 mmol L$^{-1}$ h L$^{-1}$, $P < 0.001$), a higher peak (1.76 ± 1.43 mmol L$^{-1}$, $P < 0.001$) and a more delayed time to peak (3.15 vs. 2.91 h, $P < 0.05$) than controls.</td>
</tr>
<tr>
<td>Eighty sons of men with severe coronary artery disease and 55 sons of controls (Case-control)</td>
<td>Healthy young adult sons, whose fathers had established CAD, showed prolonged postprandial hypertriacylglycerolaemia (difference 0.35 mmol/l, 95% CI 0.07, 0.62 mmol/l) at 8 h.</td>
</tr>
</tbody>
</table>

Table 2. Clinical trials summarising the effect of postprandial lipoprotein metabolism on carotid artery atherosclerosis

<table>
<thead>
<tr>
<th>Study population</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninety-six healthy 50-year-old men with an apo E-3/E-3 genotype underwent an oral fat tolerance test and B-mode carotid ultrasound examination</td>
<td>In the postprandial state, plasma triacylglycerols at 1–4 h, total triacylglycerol area under the curve (AUC), incremental triacylglycerol AUC and the large VLDL (Sf 60–400 apo B-100) concentration at 3 h were significantly related to carotid artery IMT. Multivariate analyses showed that plasma triacylglycerols at 2 h, LDL-cholesterol and basal proinsulin levels were consistently and independently related to IMT.</td>
</tr>
<tr>
<td>IMT and postprandial triacylglycerol-rich lipoprotein was quantified during a standardised oral fat tolerance test in 30 healthy normo- and hypertriacylglycerolaemic middle-aged men</td>
<td>Postprandial plasma triacylglycerols, in particular those measured late (6 h) after intake of the test meal, correlated positively with the IMT ($r = 0.44$, $P < 0.05$). In a multivariate analysis, $39%$ of the total variability for the common carotid IMT was explained by age, LDL-cholesterol and the postprandial triacylglycerol level. The only variable that showed a univariate correlation with B-mode score was peak triacylglycerol response. Forward-selection stepwise regression resulted in the inclusion of only peak triacylglycerol response and smoking history as important predictors of carotid wall thickness in a linear model.</td>
</tr>
<tr>
<td>Forty-seven middle-aged, moderately hypercholesterolaemic individuals were recruited</td>
<td>Multivariate analysis revealed that the apo C-I content of triacylglycerol-rich lipoprotein at 6 h, plasma triacylglycerol concentrations at 2 h and fasting plasma cholesterol concentration independently predicted IMT.</td>
</tr>
<tr>
<td>Seventy-two healthy men with an apo E-3/E-3 genotype who had undergone an oral fat load test and B-mode ultrasound examination of IMT</td>
<td></td>
</tr>
</tbody>
</table>
Mechanistic evidence

The pathogenesis of the relationship between postprandial TRL and CHD remains unclear, but experimental evidence has provided several plausible mechanisms. Atherogenic effects may be mediated directly by TRL particles or components of the particles. A variety of in vitro and clinical studies suggest that postprandial chylomicrons and VLDL are associated with adverse effects on the arterial endothelium (Fig. 2). In cell culture studies, TRL, particularly postprandial remnants, is directly cytotoxic to endothelial cells. Clinical evidence also demonstrates that postprandial TRL adversely affects the endothelium by mediating changes in vascular tone. After the consumption of a high-fat meal, a reduction in flow-induced dilation of the brachial artery correlated with postprandial plasma TAG concentration in healthy subjects. In cell culture studies, TRL, particularly postprandial remnants, is directly cytotoxic to endothelial cells16. Clinical evidence also demonstrates that postprandial TRL adversely affects the endothelium by mediating changes in vascular tone. After the consumption of a high-fat meal, a reduction in flow-induced dilation of the brachial artery correlated with postprandial plasma TAG concentration in healthy subjects17. Incubation with remnant lipoproteins, but not VLDL or LDL, induced an elevation in the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and tissue factor in a human umbilical vein endothelial cell model, in part through a redox-sensitive mechanism18. In addition, indirect mechanisms of TRL atherogenicity may be related to metabolic changes associated with the presence of postprandial TRL. Of particular interest is TRL-mediated modification in LDL composition and size with the generation of small, dense LDL 19.

The composition and cholesterol concentration of HDL is inversely related to the magnitude of postprandial lipaemia and the plasma concentration of TAG. Postprandial lipaemia has been shown to be associated with changes in haemostatic variables known to promote the risk of thrombotic events20. Following the intake of a fat-rich meal, factor VIIc is transiently increased due to an increase in plasma concentration of factor VIIa20. A postprandial decline in plasminogen activator inhibitor type-1 activity and an increase in tissue plasminogen activator activity have been observed in various studies21,22. Finally, postprandial lipaemia is associated with a mild increase in platelet reactivity that increases the expression of cell-surface markers in healthy men23,24.

Factors affecting the postprandial response

Meal size and composition

Postprandial lipaemia is influenced by the amount and type of dietary fat present in the test meal, as well as other dietary components, including fibre, glucose, starch and alcohol25 – 27. The amount and type of dietary fat modulate postprandial lipaemia. The intake of long-chain omega (n)-3 PUFA (predominantly fish oil), results in lower TAG levels and attenuates postprandial lipaemia28.

Fat. The amount of fat required to result in significant elevations in plasma TAG concentration is in the order of 30–50 g. Some studies have been performed with increasing doses of dietary fat29 – 32. In these studies, a very low (5 g) or low (15 g) dose of dietary fat does not significantly increase triacylglycerolaemia postprandially; moderate doses (30–50 g) dose-dependently increase postprandial triacylglycerolaemia (from 0·9 to 1·3 mmol/l above baseline, respectively); and finally, very high doses (80 g and above) exaggerate postprandial triacylglycerolaemia but without dose-dependence. On the other hand, consecutive meals containing fat appear to enhance the lipaemia. Most meals contain 20–40 g fat, so that when two or three such meals are eaten consecutively, along with snacks eaten between meals, this pattern of consumption might be expected to maintain circulating TAG well above fasting concentrations for much of the day. Studies that have monitored TAG responses overnight following a fat-containing evening meal have shown values to be elevated for 7–8 h after the meal, only falling towards fasting values between 04:00 and 06:00 hours34.

Studies have also addressed fatty acid composition. A relatively large number of acute meal studies have attempted to compare the effects on postprandial lipaemia of meals of

![Fig. 2. The effects of postprandial chylomicrons and VLDL on arterial endothelium. VLDL remnants and chylomicron remnants behave in much the same way as LDL. They enter the subendothelial space, where they become modified, and the modified remnants stimulate Chemoattractant protein-1 (MCP-1), promote the differentiation of monocytes into macrophages and are taken up by the macrophages to form foam cells. Like LDL, the remnant lipoproteins are proinflammatory and proatherogenic.](https://www.cambridge.org/core/terms. https://doi.org/10.1017/S000711450774268X)
different fat type (reviewed by Williams, 1998). A number of potentially confounding factors, such as amount of fat, type and amount of carbohydrate and physicochemical composition of the meal, have differed between many of the studies, which makes comparison difficult, and clear conclusions cannot always be drawn. In this respect, it should be remembered that short or medium dietary fatty acids have a limited effect on postprandial plasma TAG response because they enter the portal route instead of chylomicron secretion into the general circulation. Dairy fats contain significant amounts of short- and medium-chain fatty acids so that studies that have used dairy fats as the source of saturated fatty acids (SFA) generally report, as expected, a lower postprandial TAG response than with other SFA or other types of fat. Taking account of these considerations, most studies have shown that meals enriched with SFA, MUFA or n-6 PUFA do not generally elicit markedly different postprandial lipid responses. However, some studies report exacerbated40 or reduced41 responses after an intake of saturated butter fat.

Comparisons of the effect of n-6 PUFA-rich oils with olive oil (rich in oleic acid) or MUFA (rapeseed oil) have shown a lower40 or comparable magnitude of postprandial lipaemia41,42. Eating n-3 PUFA (fish oil) can lower the postprandial TAG response if a sufficient amount is present within the test meal43, but the levels used were far greater than those which would be consumed by most populations. Furthermore, several studies have shown that differences in single-meal fatty acid composition exert little or no effect on postprandial changes in plasma lipids40,44–46. The influence of the positional distribution of fatty acids within the dietary TAG moiety has been investigated, some showing some influence37 but others no effect43 on postprandial lipaemia.

Several studies have found striking findings with regard to the effect of stearic acid-rich fats compared with other SFA on postprandial lipaemia. Two independent studies have found that a stearic acid-rich TAG prepared from a randomised blend of hydrogenated and unhydrogenated high-oleic sunflower oil resulted in decreased postprandial lipaemia compared with palm oil, safflower oil, and a mixture of fish and safflower oil, and it stimulated the formation of both small (S1) 60–400) and large (S2 > 400) apo B-48-containing lipoproteins50. This finding is consistent with data from Caco-2 cell culture studies52, which demonstrated that oleic acid is a potent stimulator of TAG secretion, and consistent with other test-meal studies reporting that meals high in oleic acid-rich oils (e.g. high-oleic sunflower oil) result in a more pronounced and sharper postprandial rise in plasma TAG than n-3 seen with SFA-rich meals48, although the overall TAG response measured as area under the curve does not differ from other fat type meals.

Because it is unclear exactly how postprandial lipaemia impacts on atherosclerosis and CHD risk, the relevance of reported differences in the pattern and timing of the TAG response, as well as in particle number and particle size, elicited by meal fat type, is not yet fully understood. However, it is generally agreed that an elevated TAG response that continues into the late postprandial phase (5–8 h) is unfavourable3; such a response is most commonly observed when non-dairy SFA meals are fed49,50.

The habitual diet of an individual may also influence the postprandial response but far fewer data have been published on this aspect34,35,53–55. Background tested diets rich in MUFA or n-6 PUFA tend to lower the postprandial lipid response compared with SFA34,53,54,55. Compared with an SFA-rich diet, an increase in chronic MUFA intake led to a marked reduction (by 21–54 %) in apo B-48 production following the test meal, but postprandial lipaemia did not differ, which indicated that MUFA diets results in the production of chylomicrons of a larger size56, suggested to be an advantage in the postprandial processing of dietary TAG. However, Rivellese et al. could find no difference in postprandial lipaemia on administration of a diet high in MUFA compared with diets high in SFA34. On the other hand, postprandial lipaemia has been shown to be greater on high-oleic acid and trans-18:1 diets compared with a high-carbohydrate diet57. Comparisons of the effect of n-6 PUFA-rich oils with olive oil (rich in n-9 MUFA) or MUFA showed lower or comparable magnitude of postprandial lipaemia37,41,42.

It is well documented that diets rich in long-chain n-3 PUFA can lower the postprandial TAG response as long as a high intake (2.7–4 g/d) are given34,56, but some opposite effects have also been found59. In several studies, LPL activity is increased by supplementation with 3–4 g/d long-chain n-3 PUFA37,60,61. In contrast, the consumption of a diet rich in α-linolenic acid (18:3n-3) containing an intake of between 4.5 and 9.5 g/d taken as margarine for 6 months had no effect on postprandial lipaemia52. There is abundant evidence indicating that the reduction in postprandial lipaemia following n-3 PUFA supplementation is due to a decrease in chylomicron33,64 and VLDL-TAG synthesis/secretion. On the other hand, there is also limited evidence supporting the hypothesis that the reduction in postprandial lipaemia...
following n-3 PUFA supplementation is due to an increased rate of TAG clearance associated with increased endogenous (measured in non-heparinised plasma) LPL activity65,67. A logical conclusion from the above studies would be that both a decrease in chylomicron and VLDL-TAG secretion/synthesis, along with an increased clearance rate, was responsible for the postprandial reductions in lipaemia following n-3 PUFA supplementation.

Overall, studies that have evaluated impact of habitual fat type on postprandial response to acute fat ingestion have shown that, in terms of postprandial TAG response, effects are in the order SFA > MUFA = n-6 PUFA > n-3 PUFA.

Carbohydrate. Clinical studies support the concept that diets rich in highly digestible carbohydrate can lead to elevation in fasting plasma TAG as a result of hepatic VLDL and chylomicron remnants accumulation due to altered lipoprotein secretion and/or clearance, as reviewed68,69. Also, several studies have shown that the amount or nature of carbohydrate in a meal alter postprandial lipid metabolism. Data obtained after the addition of glucose (50 g, 100 g) to fatty test meals have not shown consistent findings in healthy subjects25, whereas the addition of sucrose or fructose has consistently been shown to increase postprandial triacylglycerolaemia70. In healthy subjects, physiological ranges of postprandial hyperglycaemia and hyperinsulinaemia as generated by starchy foods (white bread, pasta, beans) do not modify the kinetics of peak occurrence72. Adding various non-digestible carbohydrates to a test meal can elicit a biphasic response of postprandial lipaemia72. This indicates clearly that the amount as well as the nature of carbohydrate can influence postprandial lipid responses.

Fibre. The addition of some dietary fibre sources into mixed test meals73,74 at the level of 4–10 g meal can moderately reduce postprandial triacylglycerolaemia (by 17–24 %) or chylomicron lipids as generated by a mixed meal. Sources of soluble viscous fibre (e.g. oat bran) or with hypotriacylglycerolaemic properties (e.g. wheat germ) were shown to delay the kinetics of peak occurrence72. Adding various digestible carbohydrates to a test meal can elicit a biphasic response of postprandial lipaemia72. This indicates clearly that the amount as well as the nature of carbohydrate can influence postprandial lipid responses.

Protein. Very little information is available so far regarding the influence of the amount or nature of dietary proteins on postprandial lipid responses. There is, however, evidence indicating that a diet of 20 g soy protein isolate for 3 weeks reduces baseline plasma remnant-like particle-cholesterol levels by 9.8 %75. Recent studies have shown that postprandial lipaemia can be acutely mitigated when proteins are added to the fatty meal76. By contrast, a low-protein diet exacerbates the postprandial chylomicron concentration in moderately dyslipidaemic subjects in comparison to a lean red meat protein-enriched diet77. Casein added to a fatty meal markedly lowers NEFA in the postprandial and postabsorption phases, and also moderately reduces (by 20 %) postprandial lipaemia64.

Lifestyle conditions

Physical activity. An acute bout of aerobic exercise has been shown to significantly reduce postprandial lipaemia by 24–35 %78,82 and to significantly increase LPL activity$^{83–85}$. The mitigation of the lipaemic response to a meal high in fat and carbohydrate is related to the intensity and/or energy expenditure of the preceding exercise86. Physical activity within the 24 h preceding a high-fat meal greatly improves the rate at which lipids are removed from the circulation. In a meta-analysis of data from interventions involving exercise, it was estimated that there was a reduction of 0.5 SD in the postprandial TAG response in groups that had taken exercise before ingesting a meal86. Furthermore, the postprandial response to an oral fat load is lower, and the clearance rates of TRL are higher, in endurance-trained individuals compared with untrained control subjects, although this may not be applicable to moderate exercise87. In a recent article, the combination of exercise and n-3 PUFA supplementation reduced postprandial lipaemia response, measured as the incremental area under the postprandial curve of TAG, to a greater degree in recreationally active males when compared with the two treatments individually88.

Smoking. Axelson et al.89 showed a 50 % greater TAG postprandial increase in habitual smokers without changes in fasting TAG. Mero et al.90 showed that smoking raised retinyl esters and apo B-48 (by 170 %), but not apo B-100. Data obtained in a large sample of men and women support the interpretation of Axelson et al. that smoking affects postprandial TAG metabolism primarily by raising lipoproteins of intestinal origin because cigarette smokers had substantially greater postprandial retinyl palmitate and apo B-48 (by 114–259 %) responses than did non-smokers, when adjusted for fasting triacylglycerols91.

Alcohol. The effect of alcohol on postprandial lipids has drawn continued attention over the past 10 years. Clearly, ethanol consumed with a meal elevates total plasma and VLDL-TAG. In a recent study92, the addition of 47.5 g alcohol to a high-fat meal (54 % of energy) was associated with an approximately 60 % increase in the peak plasma TAG concentration compared with a meal consumed without alcohol. The authors attributed this increase to a stimulation of large VLDL secretion. Ethanol has also been shown to increase fatty acid synthesis93 and also to reduce TAG clearance from the plasma94.

Physiological factors

Age. In general, tolerance to oral fat intake decreases with age7. Information on postprandial lipaemia in children is sparse, but, interestingly, there has been shown to be a significant difference in postprandial response between children and their mothers in spite of similar baseline TAG levels79. There also appears to be an age-related change in postprandial
lipoaemia and LPL activity96, which may in part be attributable to weight gain.

Gender and menopausal status. A number of studies have demonstrated significant differences between fasting and postprandial TAG levels in men and women, with higher levels in men1. It is noteworthy that, for a given meal, the postprandial lipid response is lower in women than men, due to a higher clearance capacity caused by an increase in LPL activity.

Additional evidence for the presence of exaggerated postprandial lipoaemia in postmenopausal women has been reported after adjusting by fasting TAG97. There are several possible mechanisms that might promote the uptake of fat in women. Oestradiol probably promotes a rapid clearance of chyomicron remnants through its effects on the LDL receptor, but it may also promote more effective fatty acid trapping by subcutaneous adipose stores. It is noteworthy that, for a given meal, the postprandial lipid response is lower in women than men, due to a higher clearance capacity caused by an increase in LPL activity. On the other hand, hormone replacement therapy due to a higher clearance capacity caused by an increase in remnant lipoprotein-cholesterol levels98. These results suggest that oestrogen might induce a shift in the distribution pattern of TRL, with a decrease of the more atherogenic fractions.

Pathological conditions

Obesity. Obesity, especially central adiposity, is frequently associated with several metabolic abnormalities, including hypertriaclyglycerolaemia and hyperinsulinaemia, which would predict an exaggerated postprandial lipid response. However, even in the absence of these associated conditions, obese individuals may have up to three times higher postprandial TAG levels than non-obese control patients99–102, and an abnormal postprandial lipid pattern is a trait of abdominal obesity even without fasting hypertriaclyglycerolaemia102. In a postprandial study of non-obese and obese subjects, Goldberg et al.103 reported a significant correlation between LPL activity and the postprandial TAG response only among the non-obese subjects. Obesity is associated with an exaggerated postprandial lipoaemia, but a 10kg weight decrease led to a reduction in chylomicron size but not in the number of particles104.

Hypertriaclyglycerolaemia. Subjects with fasting hypertriaclyglycerolaemia are known to display exaggerated and prolonged postprandial lipid responses, with a fourfold increase in the half-life of circulating TRL, particularly those of intestinal origin, possibly due to a reduction in LPL activity. Elevated fasting TAG, by enhancing circulating VLDL particle concentration and thus promoting abnormal TRL accumulation postprandially, is the most important and common condition affecting postprandial lipoaemia.

Insulin resistance. The insulin-resistant state is associated with a cluster of abnormalities in glucose and lipid homeostasis, including elevated levels of plasma fasting TAG, low plasma concentrations of HDL-cholesterol and an increased prevalence of small, dense LDL105. Metabolic defects include impaired NEFA metabolism, a saturation of the removal of TRL remnants and an increased hepatic secretion of VLDL particles106. In several studies, the degree of insulin sensitivity was a determinant of the postprandial lipoaemic response among healthy adults independently of body mass index, waist-to-hip ratio, blood glucose level and the insulin effect on fasting plasma TAG107,108. In women and men, fasting insulin levels have been correlated with the degree of postprandial lipoaemia100,102. The mechanisms are not entirely understood but are probably due to an aberrant insulin-mediated suppression of hepatic VLDL production and fatty acid release from adipose tissue15.

Type 2 diabetes mellitus. Type 2 diabetes mellitus is associated with a marked increase in risk of CVD. A characteristic clinical feature of individuals with diabetes is the prevalence of a dyslipidaemia with elevated plasma levels of TAG, small, dense LDL particles and a low plasma HDL-cholesterol concentrations109. Both fasting and postprandial plasma remnant lipoprotein-cholesterol levels were elevated109–111. Interestingly, the impact of type 2 diabetes mellitus on lipoprotein phenotype and on risk of CHD is enhanced in women compared with men. Thus, women with type 2 diabetes mellitus have a higher proportion of small, dense LDL present that is dependent on the plasma TAG tertile112,113, and they have relatively higher plasma remnant lipoprotein-cholesterol levels than men114. Both parameters significantly contribute to the atherogenic lipoprotein phenotype seen in patients with type 2 diabetes mellitus. In addition, the premenopausal advantage in clearance of dietary lipid is not seen in premenopausal diabetic women115, and the oestrogen-associated advantage in the clearance of dietary lipid observed in non-diabetic postmenopausal women is not seen in postmenopausal diabetic women116.

Genetic background

The effect of several polymorphisms on postprandial lipoprotein metabolism have been studied. However, in the majority of studies described in this section, single-nucleotide polymorphisms have been studied, and few studies have performed a more comprehensive analysis involving haplotypes and multiple genes. A summary with the more recent studies is shown in Table 3.

Apo polymorphisms. Apo A-I is the main HDL protein and plays a crucial role in lipid metabolism. It is an in vivo activator of the enzyme lecithin-cholesterol acytransferase117 and an essential element of reverse cholesterol transport118. These facts may be relevant to postprandial metabolism. Calabresi et al.119 showed that carriers of the rare apo A-I Milano mutation have a threefold higher postprandial lipoaemia but that after correction for the different baseline TAG levels, it was similar to that of control subjects. In another study, carriers of the A allele in the promoter region of apo A-I (–76 base pairs G/A genotype), which occurs at a frequency of 0.15–0.20 in white populations, have a greater postprandial increase in large TRL (35 %) and a smaller decrease in LDL-cholesterol (10 %) and apo B (8 %) after the consumption of a fatty meal than do those with the G/G genotype120. The different postprandial responses observed could be due to changes in lipid absorption and/or clearance of TRL particles of intestinal origin, as indicated by the greater increase in apo B-48 (twofold) and large postprandial TRL-TAG concentrations, independently of baseline TAG plasma levels.
Table 3. Recent genetic association studies on postprandial lipoprotein response

<table>
<thead>
<tr>
<th>Gene/single-nucleotide polymorphism</th>
<th>Study</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apo A-V / T-1131 (Jang et al.126)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apo E / E-2, E-3, E-4 (Cardona et al.151)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FABP-2 / A54T (Dworatzek et al.164)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPL / HindIII, S447X (Lopez-Miranda et al.171)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic lipase / / -514C/T (Gomez et al.174)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsomal triglyceride transfer protein / / -164 T/C (Phillips et al.181)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scavenger receptor class B type I / exon 1 (Perez-Martinez et al.179)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Apo A-I-IV influences dietary fat absorption and chylomicron synthesis121, modulates the activation of LPL by apo C-II122 and activates lecithin-cholesterol acyltransferase123. The most common variant detected are the Gln360His and Thr475Ser polymorphisms124,125. Subjects with the His360 allele, which occurs at a frequency of 0.08-0.10 in white populations, had a higher postprandial increase in small TRL-cholesterol, small TRL-TAG (P<0.01) and large TRL-TAG than 360Gln360 subjects126, probably due to a delayed hepatic clearance of chylomicron remnants. The Thr475Ser polymorphism, which occurs at a frequency of 0.18-0.22 in white populations, also modulates the postprandial lipaemic response, so that carriers of the Ser347 allele presented a lower postprandial response (26%) in the TAG levels of chylomicron remnant particles associated with a higher postprandial response in the plasma levels of apo A-IV of chylomicrons (70%) than did those homozygous for the Thr475 allele127.

Apo A-V plays an important role in lipid metabolism by modulating hepatic VLDL synthesis and/or secretion, as well as TRL catalysis at the level of LPL128. Associations between T-1131C and Ser19 Trp polymorphisms and TAG concentrations have been found in different population samples129,130. In addition, the C allele of the T-1131C polymorphism, which occurs at a frequency of 0.20-0.25 in white populations, was found to be associated with higher concentrations of plasma TAG131 and higher postprandial TAG (30%)132,133. This indicates that the effect of this polymorphism on postprandial lipoprotein response may be mediated, at least in part, by its effect on fasting TAG levels.

Apo B is required for the assembly and secretion of chylomicrons in the small intestine and VLDL in the liver, and also acts as the ligand for the recognition of LDL by LDL receptor. Since apo B is the main protein of LDL and a major component of VLDL, it is to be expected that genetic variations at this locus could influence plasma cholesterol and/or TAG levels in both the fasting and postprandial states. The XbaI polymorphism, a silent mutation (ACC ACT) in exon 26134, was related to the interindividual variability observed during postprandial lipaemia. Thus, the frequent X allele is associated with a significantly increased postprandial response of retinyl palmitate (50%) in all TRL fractions, independently of baseline TAG levels135. This mutation does not lead to an amino acid change at the affected codon and cannot have a direct functional effect. Moreover, the D allele at the three-codon (leucine-ala-nine-leucine) I/D polymorphism within the apo B signal peptide136 was associated with a reduced postprandial lipid response in comparison with that of individuals homozygous for the I allele, thus suggesting that this signal peptide mutation may affect apo B secretion during the postprandial state. More recently, the association between postprandial NEFA concentrations and TRL has been reported to be influenced by this common deletion polymorphism137, which is also involved in the postprandial response138.

Apo C-I is a constituent of TRL and has been shown to displace apo E from TAG-rich emulsions and interfere with their hepatic clearance. Apo C-I also interferes with the binding of VLDL to the LDL-related protein receptor139 and to LDL receptors140. The presence of the apo C-I 317-321Ins allele, which occurs at a frequency of 0.30 in white populations, has been shown in vitro to increase the expression of apo C-I by 50%141. Thus, a direct inhibitory mechanism would most likely explain the high levels (40%) of remnant lipoprotein-TAG and remnant lipoprotein-C observed in apo C-I 317-321Ins/Ins subjects142. This effect appeared to be recessive, with no obvious effect in heterozygous carriers.

Plasma apo C-III inhibits LPL and the binding of apo E-containing lipoproteins to its receptors. Five polymorphisms (−641C/A, −630G/A, −625T/deletion, −482C/T, −455T/C) have been identified in the promoter region of this gene, all of which are in linkage disequilibrium with the SstI site in the 3’ untranslated region, distinguishing the S1 and S2 alleles. Recently, the raising effect of the −482C/T variant on plasma remnant particles has been shown to be confined to homozygous carriers of the −482T allele rather than SstI polymorphic site142. It should be noted that a second variant, −455T/C, which was not evaluated in that study, is also present in the insulin response element, and would also be likely to show an association with remnant lipoprotein-TAG as it is in strong linkage disequilibrium with the −482C/T variant. In another study, homozygosity for the G allele at the apo C-III T2854G polymorphism were associated with an increase in the...
postprandial TAG response. The GG homozygotes had 21% higher TAG area under the curve than the T/T homozygotes, and a 22% higher TAG value than T/G heterozygotes.

Apo E is a structural component of several lipoproteins and serves as a ligand for the LDL receptor and the LDL receptor-related protein. Therefore, apo E plays an important role in postprandial lipid metabolism by promoting the efficient uptake of TRL from the circulation. However, such functions are not uniformly effective because apo E is present in the population in three main isoforms (E2, E3, E4), which determine apo E concentrations and differ in their affinity to bind to the specific receptors. In fact, apo E isoforms are important determinants of postprandial lipemia. It has been demonstrated that apo E-2 homozygous subjects have a delayed postprandial clearance due to the lowest affinity for TRL remnant receptor(s). Compared with apo E-3 homozygous patients, apo E-4 carriers tend to have an enhanced clearance of remnants. However, several studies have found enhanced and/or prolonged postprandial lipid and apo responses in apo E-4 carriers. Patients with the metabolic syndrome who do not have the E-3/3 genotype have a greater risk (odds ratio 6.2, CI 1.41–16.08) of hyperuricaemia and postprandial hypertriacylglycerolaemia after a fat overload.

On the other hand, a polymorphism in the proximal promoter region of the apo E gene was recently described at position −219G/T, which is associated with an increased risk of myocardial infarction and CHD. The −219T allele was associated with decreased transcriptional activity, decreased plasma apo E concentration both in the fasting and the postprandial state, and a prolonged and enhanced postprandial lipaemic response (50% increase for T/T homozygotes and 15% for T/G heterozygotes).

Transport proteins. The intestinal fatty acid-binding protein (FABP2) is located in the intestine and involved in long-chain fatty acid transport and metabolism. A common alanine for threonine substitution at the FABP2 codon 54 (the A54T polymorphism), which occurs at a frequency of 0.28 in the white population, has been associated with hypertriacylglycerolaemia and postprandial hypertriacylglycerolaemia after a fat overload.

Enzymes and receptor polymorphisms. The LPL gene is the obvious candidate for studies of postprandial lipaemia, in as much as it codes for the single protein hydrolysing TAG from chylomicrons and large VLDL. It also enhances the binding of apo E-containing lipoproteins to the LDL receptor-related protein, thus affecting the catabolism of chylomycin remnants. Talmud et al. have studied the interaction between the functional variants involving the LPL-93T/G promoter polymorphism and the LPL D9N substitution, which were identified with a combined population frequency of 3–6%. Carriers of the haplotype constituting the rare LPL-93G variant (presumably higher transcriptional activity) and the common LPL-9N variant (presumably secretion-defective LPL protein) exhibited higher plasma TAG levels after a meal than did carriers of other haplotypes.

The LPL A291S residue variant affects the specific activity of the enzyme and has a carrier frequency of 4–6%. Two studies show that carriers of this variant have a significantly higher (41% higher under the curve) postprandial triacylglycerolaemia. In a recent study, the association between LPL HindIII (H1/H2) and Ser447-stop (S447X) polymorphisms and postprandial lipaemia was analysed. Thus, carriers of the H1X447 genotypes presented a lower postprandial lipemic response (42% lower area under the curve) than subjects with the H2S447 genotype (homozygote for the H2 allele of the LPL HindIII polymorphism and S447 allele), independently of baseline TAG levels.

Hepatic lipase has been implicated in the removal of remnant lipoproteins. The promoter of the hepatic lipase gene contains several single-nucleotide polymorphisms. The rare variant of the −480C/T (also called −514C/T) polymorphism, present in 0.15–0.21 of the white population, has been associated with lower hepatic lipase activity. Jansen et al. observed that this polymorphism did not seem to affect total postprandial triacylglycerolaemia but did affect the retention of a specific lipoprotein subspecies in the postprandial state, the LpCIII:B particles, which are likely to reflect remnant lipoproteins. The TS4 allele is associated with a 41% increased postprandial lipaemia in obese and an 80% increase in diabetic subjects. However, not all studies have supported the associations with postprandial lipaemia.

It has been proposed that this association might depend on the type of fat ingested. Thus, in a recent study in which subjects were given three oral fat-tolerance tests (butter, safflower oil, olive oil), the TS4 group showed increased chylomicron cholesterol levels only after the olive oil-containing test.

The fatty acid transport proteins have been implicated in the facilitated cellular uptake of NEFA, thus having the potential to regulate local and systemic NEFA concentrations and metabolism. Hypothesising that genetic variation within the fatty acid transport protein genes may affect postprandial metabolism, the G/A substitution at position 48 in intron 8 of the fatty acid transport-1 gene was studied. Although fasting plasma TAG concentrations were no different, male A/A individuals had significantly higher postprandial TAG concentrations and ratio of VLDL1 (Sf 60–400 apo B-100) to VLDL2 (Sf 20–60 apo B-100) compared with male individuals with the G/A and G/G variations.

Scavenger receptor class B type I is one of the intestinal proteins involved in the absorption of dietary cholesterol and triacylglycerols, suggesting that it may also play a role in postprandial responses. Thus, the presence of the 2 allele at
controlled dietary intervention protocols in order to establish combinations and phenotypic characteristics and subjected to foregoing groups of individuals selected for specific genotype components and risk factors. This will require large situations involving interactions between multiple genes, dietary components, and risk factors. We have to evolve toward more realistic situations involving interactions between multiple genes, dietary components, and risk factors. This will require large-scale studies and intervention studies involving groups of individuals selected for specific genotype combinations and phenotypic characteristics and subjected to controlled dietary intervention protocols in order to establish the specific gene–diet interactions. Such kind of studies are being conducted through European consortia such as the LIPGENE project (www.lipgene.tcd.ie).

Nutrigenetics examines the effect of genetic variation on the interaction between diet and disease as several risk factors. This includes identifying and characterising gene variants and factors associated with or responsible for differential responses to nutrients or the postprandial response. One of the goals of nutrigenetics is to generate recommendations regarding the risks and benefits of specific diets or dietary components to the individual. It has been also termed ‘personalised nutrition’ or ‘individualised nutrition’.

Intervention and observational studies that attempt to examine gene–diet interactions need to include repeated sampling and measurement to provide an accurate measure of the phenotypes. To elucidate gene–environment interactions, and specifically gene–diet interactions, we need population sizes several orders of magnitude larger than those currently used for common multifactorial diseases. This will require the creation of international consortiums built along the models of the EPIC study or the Human Genome Project. Complex phenotype and genotype interactions require an analysis of their combined effects. The information will need to be incorporated into predictive models that can be used clinically to improve disease assessment and prevention. This will probably happen within the umbrella of bioinformatics or computational biology.

Conclusion

As reviewed, postprandial lipid and lipoprotein metabolism is modulated by background dietary pattern as well as meal composition and also by several lifestyle conditions (physical activity, smoking, alcohol consumption), physiological factors (age, gender, menopausal status) and pathological conditions (hypertriglyceridaemia, diabetes mellitus, insulin resistance, central obesity). Although these above-mentioned factors do influence postprandial lipid response and metabolism, the weight of their respective effect is variable, as illustrated in Table 4. The most important ones appear to be the amount of meal fat and other components (carbohydrate, protein, alcohol, fibre), physical exercise, tobacco use, gender, pre-existing hypertriglyceridaemia, obesity and insulin resistance/type 2 diabetes.

The postprandial lipid response has been shown to be modified by polymorphisms within the genes for apo A-I, E, B, C-I, C-III, A-IV and A-V, LPL, hepatic lipase, fatty acid-binding protein-2, the fatty acid transport proteins, microsomal triglyceride transfer protein and scavenger receptor class B type I. Nevertheless, most previous and current studies have been conducted using the simplest scenarios, that is, one single dietary component, one single nucleotide polymorphism and one single risk factor. We have to evolve toward more realistic situations involving interactions between multiple genes, dietary components, and risk factors. This will require large genetic epidemiological studies and intervention studies involving groups of individuals selected for specific genotype combinations and phenotypic characteristics and subjected to controlled dietary intervention protocols in order to establish

Table 4. Factors affecting postprandial lipid metabolism

<table>
<thead>
<tr>
<th>Extent of change in postprandial lipaemia</th>
<th>Dietary factors</th>
<th>Lifestyle factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of fat (meal)</td>
<td>+ + +</td>
<td>Physical exercise</td>
</tr>
<tr>
<td>Type of fat (meal) (depending on type of fat)</td>
<td>+ / -</td>
<td>Tobacco use</td>
</tr>
<tr>
<td>Type of fat (habitual diet) (depending on type of fat)</td>
<td>+ / -</td>
<td>Physiological factors</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>++</td>
<td>Gender</td>
</tr>
<tr>
<td>Protein (meal) (depending on type of protein)</td>
<td>No / -</td>
<td>Age</td>
</tr>
<tr>
<td>Alcohol</td>
<td>+ +</td>
<td>Menopausal status</td>
</tr>
<tr>
<td>Fibre (depending on type of fibre)</td>
<td>No / -</td>
<td>Fasting triacylglycerolaemia</td>
</tr>
<tr>
<td>Lifestyle factors</td>
<td></td>
<td>Central obesity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insulin resistance/type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 diabetes</td>
</tr>
</tbody>
</table>

+ + +, ++, +, very important, important or moderate increase; --, --, --, important or moderate reduction; No, no noticeable change.

Acknowledgements

This work was commissioned by the Nutritional Value of Food Task Force of the European branch of the International Life Sciences Institute (ILSI Europe). Industry members of this task force are Nestlé, Danone, Südzucker and Danisco. For further information about ILSI Europe, email info@ilsieurope.be or call +32 27710014. The opinions expressed in this article are those of the authors and do not necessarily represent the views of ILSI Europe.

References

6. Meyer E, Westerveld HT, de Ruyter-Meijstek FC, van Greevenbroek MM, Rienks R, van Rijn HJ, Erkelens DW & de...

70. Grant KL, Marais MP & Dhansay MA (1994) Sucrose in a lipid-rich meal amplifies the postprandial excursion of serum and

Factors affecting postprandial lipid metabolism

