The nature of the growth pattern and of the metabolic response to fasting in the rat are dependent upon the dietary protein and folic acid intakes of their pregnant dams and post-weaning fat consumption

Graham C. Burdge1*, Karen A. Lillycrop2, Alan A. Jackson1, Peter D. Gluckman3 and Mark A. Hanson4
1Institute of Human Nutrition, University of Southampton, Southampton, SO16 6YD, UK
2Development and Cell Biology, University of Southampton, Southampton SO16 7PX, UK
3Liggins Institute, University of Auckland, Auckland, New Zealand
4Centre for the Developmental Origins of Health and Disease, University of Southampton, Southampton SO16 6YD, UK

(Received 3 April 2007 – Revised 11 July 2007 – Accepted 11 July 2007)

The nutritional cues which induce different phenotypes from a single genotype in developing offspring are poorly understood. How well prenatal nutrient availability before birth predicts that after birth may also determine the offspring’s response to later metabolic challenge. We investigated the effect of feeding pregnant rats diets containing protein at 180 g/kg (Control) or 90 g/kg (protein-restricted, PR) and either 1 or 5 mg folic acid/kg on growth and metabolic response to fasting in their offspring, and also the effect of diets with different fat contents (40 g/kg (Fat4) or 100 g/kg (Fat10)) after weaning. Offspring of dams fed the PR diet with 5 mg/kg folic acid were significantly lighter than other offspring. The PR offspring fed the Fat4 diet had lower plasma TAG than the Control offspring, but this relationship was reversed when offspring were fed Fat10. Increasing the folic acid content of the Control or PR maternal diets induced opposing effects on plasma TAG, NEFA, β-hydroxybutyrate and glucose concentrations in offspring fed Fat4. The effect was accentuated in offspring fed the Fat10 diet such that these metabolites were increased in the Control offspring, but reduced in the PR offspring. These data show for the first time that maternal dietary folic acid intake alters offspring phenotype depending upon dietary protein intake, and that this effect is modified by fat intake after weaning. Prevention by increased folic acid intake of an altered metabolic phenotype by maternal protein-restriction may be at the expense of somatic growth.

Low-protein diet: Fetal programming: Folic acid: Growth: Metabolism

Developmental plasticity permits the induction of a range of phenotypes from a single genotype in response to environmental cues, thus increasing the probability of Darwinian fitness1–3. There is increasing evidence that variations in the intra-uterine environment, including nutrition and stress hormones, modify the metabolic and physical development of the fetus and so induce different phenotypes in the offspring5. Even in the normal range of development, these processes may have long-term effects in terms of graded changes in risk of metabolic diseases and CVD in man, which has been termed fetal programming5,6. Subsequently, it has been suggested that environmental cues acting via developmental plasticity induce phenotypes which predict the environment experienced after birth, thus not only maximising Darwinian fitness but also preserving genotypic variation during short-term environmental challenges6–8. Induction of a phenotype which incorrectly predicts the postnatal environment may thus lead to a later disadvantage. In man such mismatch between the predicted and actual postnatal environment may increase risk of metabolic disease3,7,8. However, induction of a phenotype which confers a survival and reproductive advantage may involve developmental trade-offs such as reduced growth9 which would be disadvantageous in other circumstances. It is therefore important to understand the nature of the environmental cues and the mechanisms by which different phenotypes are induced.

A number of environmental cues acting during development, including nutrition, which induce a predictive adaptive response, have been identified in several species1,10–12. For example, in the rat, global nutrient restriction13, or alterations in the amount of specific nutrients in the maternal diet (MD) such as reduced protein14,15 or increased fat16 during pregnancy and/or lactation modify the metabolic phenotype of the offspring. For example, feeding a protein-restricted (PR) diet to pregnant rats induces in the offspring hypertension, dyslipidaemia and insulin resistance14,15,17. Recent evidence suggests that induction of dyslipidaemia and impaired glucose homeostasis in the offspring by a maternal PR diet involves altered epigenetic regulation of specific transcription factors in the liver18–20 as a

Abbreviations: CF, Control diet supplemented with additional folic acid; Fat4, diet, diet with 40 g fat/kg; Fat10, diet, diet with 100 g fat/kg; BHB, β-hydroxybutyrate; MD, maternal diet; PR diet, protein-restricted diet; PRF, PR diet supplemented with additional folic acid; PWD, post-weaning diet.

*Corresponding author: Dr G. C. Burdge, Institute of Human Nutrition, Institute of Developmental Sciences Building, Southampton General Hospital, Mail Point 887, Tremona Road, Southampton SO16 6YD, UK, fax +44 (0)2380 795255, email g.c.burdge@soton.ac.uk
result of reduced DNA methyltransferase-1 expression and promoter binding19. Impaired vascular function21–23 may also reflect, at least in part, altered epigenetic regulation of transcription factors in the heart and peripheral vasculature20. The mechanism by which reduced protein intake during pregnancy changes the epigenetic regulation of genes in offspring and leads to an altered phenotype from a single genotype is not understood, although altered 1-carbon metabolism appears to be central to this process20. For example, increasing the amount of glycine or folic acid, but not alanine or urea, in the PR diet prevented hypertension11–13, altered epigenetic regulation of transcription factors14 and reduced DNA methyltransferase-1 expression and activity15 in the liver of the offspring.

One possible interpretation of these findings is that the developmental cues which result in induction of altered epigenetic regulation of specific genes and of alternative phenotypes in the offspring involves an interaction between the amount of protein and folic acid in the diet of pregnant dams. Here we have tested this hypothesis. We have investigated the effect of feeding diets with different amounts of protein (180 or 90 g/kg w/w) with either 1 or 5 mg folic acid/kg throughout pregnancy on the phenotype of the offspring. Phenotypes were described in terms of growth, and the concentrations of lipids and glucose in blood in response to fasting since feeding a PR diet to pregnant dams induces dyslipidaemia, insulin resistance and increased glucosecongenesis in the offspring15,17. To test the hypothesis that match or mismatch in nutrient availability between the prenatal and postnatal environment also influences growth and metabolic phenotype of the offspring, they were fed from weaning diets with different fat contents (40 or 100 g/kg) which were within the physiological range for the rat5,6. This allows these hypotheses to be tested in the context of the effects of variation in prenatal and postnatal nutrient availability within the normal range on growth and metabolic capacity in man5,6.

Materials and methods

Animal procedures

The study was carried out in accordance with the Home Office Animals (Scientific Procedures) Act (1986). The diets fed during pregnancy were essentially as described previously14,18 with the exception that soyabean oil was used instead of maize oil in order to provide sufficient α-linolenic acid24. Virgin female Wistar rats were mated and fed one of four diets from conception until delivery (each group contained six females): Control (180 g protein/kg plus 1 mg folic acid/kg); Control supplemented with additional folic acid (CF, 180 g protein/kg plus 5 mg folic acid/kg); a PR diet (90 g casein/kg plus 1 mg folic acid/kg); or PR supplemented with additional folic acid (PRF; 90 g casein/kg plus 5 mg folic acid/kg). Diets were manufactured by Special Diets Services. Table 1 summarises the nutrient composition of the MD. The difference in the folic acid content between diets is equivalent to the increment in folic acid intake which women in the UK are advised to consume to prevent neural tube defects25. Dams were weighed before mating and at 7 d intervals throughout pregnancy. Food intake over 24 h was assessed on post-conceptional day 19. After spontaneous delivery on approximately post-conceptional day 21, litters were reduced to eight pups. Dams were fed AIN-76G diet (Special Diets Services) throughout lactation. The weights of litters containing eight pups were recorded on postnatal day 1 and at 7 d intervals until weaning. The pups were weaned on to a diet containing 40 g fat/kg (Fat\textsubscript{4}) or a diet containing 100 g fat/kg (Fat\textsubscript{10}) on postnatal day 28 (Table 1). The fat component of both post-weaning diets (PWD) was composed of lard–soyabean oil (9:1, w/w). Each PWD group contained twelve males and twelve females from each MD group. The offspring of the Control MD group which were fed the Fat\textsubscript{4} diet after weaning were used as reference group since this combination of diets resembled most closely that recommended for pregnancy, growth and maintenance of

Table 1. Compositions of diets fed to pregnant and lactating dams, and to the offspring after weaning

<table>
<thead>
<tr>
<th>Diet component</th>
<th>Control (Control MD)</th>
<th>CF (CF MD)</th>
<th>PR (PR MD)</th>
<th>PRF (PRF MD)</th>
<th>AIN-76G (Fat\textsubscript{4})</th>
<th>AIN-76G (Fat\textsubscript{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein (g/kg)</td>
<td>180</td>
<td>180</td>
<td>90</td>
<td>90</td>
<td>200</td>
<td>180</td>
</tr>
<tr>
<td>Folic acid (mg/kg)</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Maize starch (g/kg)</td>
<td>425</td>
<td>425</td>
<td>485</td>
<td>485</td>
<td>150</td>
<td>455</td>
</tr>
<tr>
<td>Sucrose (g/kg)</td>
<td>213</td>
<td>213</td>
<td>243</td>
<td>243</td>
<td>500</td>
<td>243</td>
</tr>
<tr>
<td>Choline (g/kg)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Methionine (g/kg)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Vitamin mix (g/kg)†</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Mineral mix (g/kg)§</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Cellulose (g/kg)</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Maize oil (g/kg)</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>50</td>
<td>Nil</td>
</tr>
<tr>
<td>Soyabean oil (g/kg)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>Nil</td>
<td>4</td>
</tr>
<tr>
<td>Lard (g/kg)</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>36</td>
</tr>
<tr>
<td>Total metabolisable energy (MJ/kg)</td>
<td>17·3</td>
<td>17·3</td>
<td>17·5</td>
<td>17·5</td>
<td>15·5</td>
<td>16·1</td>
</tr>
</tbody>
</table>

* Control, 180 g protein/kg, 1 mg folic acid/kg; CF, 180 g protein/kg, 5 mg folic acid/kg; PR, 90 g protein/kg, 1 mg folic acid/kg; PRF, 90 g protein/kg, 5 mg folic acid/kg.
† Fat\textsubscript{4}, 40 g fat/kg; Fat\textsubscript{10}, 100 g fat/kg.
‡ Thiamine hydrochloride 2·4 mg/kg; riboflavin 2·4 mg/kg; pyridoxine hydrochloride 2·8 mg/kg; nicotinic acid 12·0 mg/kg; D-calcium pantothenate 6·4 mg/kg; biotin 0·01 mg/kg; cyanocobalamin 0·003 mg/kg; retinyl palmitate 6·4 mg/kg; DL-α-tocopherol acetate 79·9 mg/kg; cholecalciferol 1·0 g/kg; menaquinone 0·02 mg/kg.
§ Calcium phosphate dibasic 11·3 g/kg; sodium chloride 1·7 g/kg; potassium citrate monohydrate 5·0 g/kg; potassium sulphate 1·2 g/kg; magnesium sulphate 0·5 g/kg; magnesium carbonate 0·1 g/kg; feric citrate 0·1 g/kg; zinc carbonate 26·2 g/kg; cupric carbonate 6·8 g/kg; potassium iodate 6·4 mg/kg; choline chloride 0·2 mg/kg; sodium selenite 0·2 mg/kg; chromium potassium sulphate 12·5 mg/kg.
rats. Offspring were weighed at 7d intervals and food intake over 24h was measured at 25d intervals. On postnatal day 105, food was withdrawn at about 08.00 hours, but water was available ad libitum, and offspring were killed by asphyxiation with CO2 6h later. Blood was collected by cardiac puncture into tubes containing EDTA. Plasma was separated from cells by centrifugation and stored at −80°C. Livers and hearts were removed immediately and weighed.

Measurements of metabolites in blood
Plasma TAG, NEFA, β-hydroxybutyrate (βHB) and glucose concentrations were measured as described using a Konelab 20 autoanalyser. Within-assay CV were TAG < 2 %, NEFA < 2 %, βHB < 1 % and glucose < 2 %. Between-assay CV were TAG < 3 %, NEFA < 5 %, βHB < 2 % and glucose < 4 %.

Statistical analysis
Statistical analysis was carried out using SPSS version 14.0 for Windows (SPSS Inc., Chicago, IL, USA). Analysis using the Shapiro–Wilks test showed that none of the measurements differed significantly from a normal distribution. The effect of MD and PWD on body weight over time was assessed by a General Linear Model with repeated measures with time as a within-subject factor, and MD, sex of the offspring and PWD as between-subject factors where appropriate. The effect of MD and PWD on body weight over time was assessed by a General Linear Model with repeated measures, where time was a within-subject factor, and MD and PWD as between-subject factors. Pair-wise comparisons were by Student’s t test. Hierarchical analysis of the effects of the fixed factors on the major outcome variables was carried out by multiple linear regression.

Results
Maternal weight and food intake
There were no significant differences in the weights of the dams before mating between MD groups to which they were assigned after conception (Fig. 1(A)). Two-way ANOVA with repeated measures showed that there was a significant effect of time (P<0.001), but not MD, on the weight of the dams during pregnancy. Food intake over 24h on post-conceptional day 19 did not differ between MD groups (Control 17.5 (SD 2.5) g, CF 17.5 (SD 1.7) g, PR 16.3 (SD 3.1) g and PRF 15.5 (SD 3.6) g). There were no significant differences in litter size between MD groups (Control 11 (SD 3); CF 12 (SD 2); PR 11 (SD 2); PRF 11 (SD 3)). There was no significant effect of time or MD on maternal weight after delivery (Fig. 1(B)).

Growth of the offspring before weaning
There were no significant differences between MD groups in neonatal litter weight (eight offspring per group, equal numbers of males and females; Fig. 1(C)). There was a significant effect of time (F(4,19) 629.4; P<0.0001) and MD (F(3,19) 4.6; P<0.020), and a significant interactive effect between age and sex (F(3,19) 5.1; P<0.001) on the weight of the offspring after birth (Fig. 1(C)). There were no significant differences in litter weight between MD groups on days 7 and 14. However, the PRF group was significantly (P<0.05) lighter compared to the other MD groups on postnatal day 21 (22 % compared to the Control group) and day 28 (30 % compared to the Control group) (Fig. 1(C)). Overall weight gain of the PRF offspring (386 (SD 30) g over 28d) was significantly less (23–32 %; P<0.005) than the offspring of the other MD groups (Control 564 (SD 55) g; CF 481 (SD 87) g; 9 % 473 (SD 84) g over 28d).

Growth and food consumption of the offspring after weaning
The male PRF offspring were significantly lighter (P=0.004) at weaning compared to males in other MD groups (e.g. the PRF Fat4 PWD group was 17 % lighter and PRF Fat10 PWD group 22 % lighter than the Control Fat4 PWD group), while there was no significant difference between female offspring according to MD group (Fig. 2). There was a significant effect of time after weaning (F(11,155) 8444.7, P<0.0001), sex (F(1,155) 35.7, P=0.027), MD (F(3,155) 7.3, P=0.017), but not PWD, and a significant interactive effect (F(3,155) 4.3, P<0.0001) of post-weaning age and MD, but not PWD, on the weight of the offspring after weaning. For males, body weight of the PRF Fat4 PWD and PRF Fat10 PWD groups was significantly lower compared to the other groups throughout the post-weaning period (P<0.05 at all timepoints), while there was no significant difference in body weight between the male offspring of the Control, CF and PR MD groups (Fig. 2). Overall, weight gain between postnatal ages 28 and 105d in the PRF Fat4 PWD group was 15 % lower and the PRF Fat10 PWD group 16 % lower than the Control Fat4 PWD group (P=0.022). For females, body weight did not differ between groups until postnatal day 42 at which the weight of the PRF groups were significantly lower (P<0.05) than the other groups (Fig. 2). Overall, weight gain after weaning was 10 % lower in the PRF Fat4 PWD females and 11 % lower in the PRF Fat10 PWD females compared to the Control Fat4 PWD females (P=0.019).

There was no significant effect of time after-weaning, MD or PWD on the amount of food consumed per 100 g body weight per day by the offspring. Males fed the Fat4 PWD diet consumed between 5.2 and 7.4 g, males fed the Fat10 PWD consumed between 5.3 and 7.1 g, females fed the Fat4 PWD diet consumed between 5.3 and 6.9 g, and females fed the Fat10 PWD diet consumed between 5.0 and 6.6 g.

Weight of the heart and liver of the offspring at postnatal day 105
The heart accounted for 0.5–0.6 % of body weight in males and 0.6–0.64 % of body weight in females. Liver accounted for 3.1–3.56 % of body weight in males and 3.3–3.56 % of body weight in females. There was no significant effect of MD, sex of the offspring or PWD on the weight of the heart or liver when expressed as a proportion of body weight.

Blood lipid and glucose concentrations in the offspring
Concentrations of metabolites in blood from male offspring are summarised in Fig. 3 and females in Fig. 4. There was a
significant effect of offspring sex ($F(1,140) = 53.8, P < 0.0001$), PWD ($F(1,140) = 12.7, P = 0.001$) and MD ($F(3,140) = 24.1, P < 0.0001$), and significant interactive effects of PWD and MD ($F(1,140) = 16.4, P < 0.0001$), offspring sex and MD ($F(1,140) = 3.2, P = 0.011$) on plasma TAG concentration. There was a significant effect of offspring sex ($F(1,140) = 4.0, P = 0.048$) and MD ($F(3,140) = 17.5, P < 0.0001$) during pregnancy, but not PWD or interactive effects, on plasma NEFA concentration. There was a significant effect of MD ($F(3,140) = 25.0, P < 0.0001$), PWD ($F(1,140) = 11.1, P = 0.001$) and sex of the offspring ($F(1,140) = 6.8, P = 0.01$), and a significant interactive effect of MD and PWD ($F(3,140) = 5.4, P = 0.002$) on plasma bHB concentration in plasma. There was a significant effect of MD ($F(3,140) = 7.5, P < 0.0001$) and PWD ($F(1,140) = 20.7, P < 0.0001$), but not the sex of the offspring, and a significant interactive effect of MD and PWD ($F(3,140) = 8.0, P < 0.0001$) on plasma glucose concentration.

Male and female offspring showed a similar pattern of differences in plasma lipid and glucose concentrations for each combination of MD and PWD (Figs. 3 and 4). The effects of maternal protein and folic acid intakes on the offspring fed the Fat4 PWD will be described first. Increasing the folic acid content of the Control MD diet (CF group) was associated with a higher (24%) plasma TAG concentration (Fig. 3). This was accompanied by higher (77%) plasma NEFA concentration, while there were no significant differences in bHB or glucose concentrations (Fig. 3). A reduction in maternal protein intake to PR was associated with lower (29%) plasma TAG concentration relative to the offspring of the Control dams, while the concentrations of plasma NEFA, bHB and glucose were higher in the offspring of the PR group (88, 47 and 33%, respectively; Fig. 3). Increasing the folic acid content of the PR diet resulted in lower plasma TAG concentration compared to the offspring of the Control dams (31%) and the CF dams (62%), but did not differ from the PR group (Fig. 3). The concentrations of plasma NEFA, bHB and glucose did not differ from the Control group, but plasma NEFA concentration was 37% lower than the CF group (Fig. 3).

Increasing fat intake after weaning induced specific differences in the concentrations of individual metabolites in blood in males and females (Figs. 3 and 4). There was no difference in plasma TAG concentration between male
offspring of the Control, CF and PRF dams which were fed the Fat4 PWD and those fed the Fat10 PWD (Fig. 3). However, the concentration of plasma TAG was 69% higher than the corresponding offspring of the Control dams, and 125% higher (P<0.0001) than the offspring of PR dams fed the Fat4 PWD. Thus, feeding a PWD with a higher fat content reversed the relationship between the offspring of the Control dams and PR dams. There was no effect of the amount of fat in the PWD on plasma NEFA concentration (Fig. 3). However, plasma βHB concentration was higher (103%) in the offspring of the CF dams when fed the Fat10 PWD compared to corresponding offspring fed the Fat4 PWD (Fig. 3). Plasma glucose concentration was also higher (25%) in the offspring of the CF dams when fed the Fat10 PWD compared to corresponding offspring fed the Fat4 PWD.

Multiple linear regression analysis showed that differences in MD accounted for 17% of the variation in TAG concentration (P=0.035), 31% of the variation in NEFA concentration (P<0.0001) and 10% of the variation in βHB concentration (P=0.022), but did not predict significantly variation in glucose concentration. Differences in sex accounted for 22% of the variation in TAG concentration (P=0.002), 20% of the variation in NEFA concentration (P<0.0001) and 6% of the variation in βHB concentration (P=0.015), but did not predict significantly variation in glucose concentration. Differences in fat intake after weaning accounted for 58% of the variation in plasma TAG concentration (P<0.0001), 20% of the variation in NEFA concentration (P<0.0001), 52% of the variation in βHB concentration (P=0.007) and 9% of the variation in glucose concentration (P=0.004).

Discussion

The results of the present study show for the first time that increasing the folic acid content of the MD induced opposing changes in the metabolic response to fasting in the offspring depending on the protein content of the MD. When offspring were fed the Fat4 diet, offspring of the CF group showed either an increase in the concentrations of specific metabolites or no change compared to Control offspring, while offspring of the PR group showed either a decrease in the concentrations of specific metabolites or no change compared to PR offspring. These effects were accentuated by increasing the fat content...
Fig. 3. Concentrations of metabolites in blood from male offspring at 105 d after weaning. Maternal diets were: Control (180 g protein/kg, 1 mg folic acid/kg); CF (180 g protein/kg, 5 mg folic acid/kg); PR (90 g protein/kg, 1 mg folic acid/kg); PRF (90 g protein/kg, 5 mg folic acid/kg). Post-weaning diets (PWD) were: Fat4 (40 g fat/kg PWD) or Fat10 (100 g fat/kg PWD). Values are means with standard deviations depicted by vertical bars (n = 12). ** Mean values with unlike superscript letters were significantly different (P ≤ 0.05) from the other groups of offspring fed the same PWD using a General Linear Model with Bonferroni’s post hoc test. For each metabolite within a PWD group, there was a significant difference (P < 0.0001) between maternal dietary groups. Mean values were significantly different between PWD for offspring of dams fed the same diet during pregnancy (Student’s unpaired t test): *P < 0.05. βHB, plasma β-hydroxybutyrate.
Fig. 4. Concentrations of metabolites in blood from female offspring at 105 d after weaning. Maternal diets were: Control (180 g protein/kg, 1 mg folic acid/kg); CF (180 g protein/kg, 5 mg folic acid/kg); PR (90 g protein/kg, 1 mg folic acid/kg); PRF (90 g protein/kg, 5 mg folic acid/kg). Post-weaning diets (PWD) were: Fat4 (40 fat g/kg PWD) or Fat10 (100 g fat/kg PWD). Values are means with standard deviations depicted by vertical bars (n = 12). a,b Mean values with unlike superscript letters were significantly different (P < 0.05) from the other groups of offspring fed the same PWD using a General Linear Model with Bonferroni’s post hoc test.

For each metabolite within a PWD group, there was a significant difference (P < 0.0001) between maternal dietary groups. Mean values were significantly different between PWD for offspring of dams fed the same diet during pregnancy (Student’s unpaired t test): *P < 0.05. βHB, plasma β-hydroxybutyrate.
of the PWD. However, normalisation of the concentrations of lipid metabolites and glucose in the offspring of the PRF dams appeared to be at the expense of growth.

There was no effect of consuming the four experimental diets on the weight gain of the dams during pregnancy, on their appetite, or reproductive capacity indicated by litter size or on maternal weight during lactation. There was no indication of the adverse effects on maternal weight gain and appetite during pregnancy, or on litter weight at birth reported when pregnant rats were fed diets containing eightfold more folic acid than the highest amount used in the present study27,28.

The four different combinations of protein and folic acid in the MD induced phenotypes in the offspring which differed in their patterns of growth and metabolic response to fasting. The offspring of the Control group of dams achieved adult weights in the expected range for males and females29, and responded to fasting by maintaining concentrations of blood lipids, ketone bodies and glucose within the expected range30 irrespective of PWD. The offspring of the PR dams fed the Fat10 diet showed increased concentrations of NEFA, βHB and glucose, but lower TAG concentration during fasting compared to the Control offspring. One possible explanation is that the MD resulted in increased NEFA release by adipose tissue, possibly due to impaired PPARγ2 activity17. Plasma NEFA are an important source of fatty acids for hepatic TAG biosynthesis31,32. However, it is possible that the lowest fasting TAG concentration may have been due to compensation of the increased flux of NEFA to the liver by up-regulation of hepatic fatty acid β-oxidation17,18. The elevated glucose concentration may reflect increased glucose synthesis by the glyceroenecogenic pathway13 and/or insulin resistance.

Increasing the folic acid content of the MD induced opposing effects on the concentrations of lipid metabolites and glucose in blood in the offspring depending upon the amount of protein in the MD. When dams consumed a diet containing the Control amount of protein, increasing the amount of folic acid selectively increased the concentration of TAG and NEFA in the offspring, while other metabolites remained unchanged. Conversely, when dams consumed the PR diet, increasing the amount of folic acid tended to decrease the concentrations of NEFA, βHB and glucose while TAG concentration remained unchanged. Overall, increasing the amount of nutrients involved in one-carbon metabolism in the MD, specifically glycine or folic acid, tends to normalise the response of lipid and carbohydrate metabolism in the offspring to fasting as shown by the present data, and to prevent hyper-tension and impaired vascular function21–23, and impaired epigenetic regulation of genes18 when dams were fed a PR diet. However, the present data suggest such beneficial effects, at least on lipid and glucose metabolism, are lost when dams are fed a protein-sufficient diet. This pattern was accentuated when the offspring were fed the Fat10 PWD such that when dams were fed the Control diet, increasing folic acid intake increased the concentrations of lipid metabolites and glucose in the blood of the offspring. Conversely, increasing the folic acid content of the PR diet tended to normalise the concentrations of these metabolites. The present data are in agreement with the observation that increasing the folic acid content of a maternal PR diet prevented hypertension in the offspring, while increasing the folic acid content of the protein-sufficient diet increased the blood pressure of the offspring33.

There was no effect of increasing fat intake after weaning on plasma TAG concentration in the offspring of the dams fed the Control diet. However, feeding the Fat10 PWD resulted in a higher concentration of plasma TAG in the offspring of dams fed the PR diet, possibly reflecting the amount of fatty acids available to the liver exceeding the capacity for β-oxidation since there was no increase in βHB concentration. It may be assumed that the offspring of the dams fed the Control diet experienced an appropriate nutritional environment before birth, while the offspring of dams fed the PR diet experienced a poor nutritional environment. If so, then the offspring of the Control group appeared to respond appropriately to a nutrient-rich environment, while the PR offspring were less well adapted. Together the present findings are consistent with the environmental mismatch hypothesis7.

Although the addition of folic acid to the PR diet appeared to normalise the concentrations of lipid metabolites and glucose in the blood of the offspring, this appeared to be at the expense of growth which was lower at weaning in males, and from postnatal day 42 in females. The latter may have been due to slower weight gain in females. Since the liver and heart of the offspring of the PRF dams were in proportion to the reduction in total body weight, the lower weight of these offspring may reflect primarily reduction in somatic growth and cannot be attributed solely to any effect on deposition of fat in adipose tissue. The lower weight gain in the PRF offspring did not appear to be due to reduced food intake. The present findings are in agreement with previous reports of the effect of increased maternal folic acid intake during pregnancy on fetal weight and length27 and the effect of supplementation of a 9 % PR diet with glycine, but not alanine or urea, on body weight at 4 weeks of age, although the brain and liver were heavier than controls25. This normalisation of at least some aspects of macronutrient metabolism, and measures of vascular function21–23 and the regulation of gene expression18 at the expense of growth, may be analogous to developmental trade-offs in other species7. One possible explanation for such effects is differences between MD in the fate of metabolites involved in one-carbon metabolism. DNA methylation is only one reaction of a number of inter-related pathways involving folate including inter-conversion of methionine and homocysteine, and purine and pyrimidine biosynthesis. Mathematical modelling of these pathways shows that changes in the availability of metabolites including methionine, glycine, serine and folate induce shifts in the balance between relative activities of DNA methylation, and purine and pyrimidine synthesis34,35. Since increasing folate or glycine intake prevents reduced DNA methyltransferase-1 expression19, the increase in the use of methyl groups for DNA methylation may be at the expense of purine and pyrimidine biosynthesis and so constrain growth by limiting capacity for DNA synthesis. If so, this implies that interactions between different pathways within one-carbon metabolism are determined during the development of the fetus and persist into adulthood.

Overall, the present findings show that the relative intakes of protein and folic acid during pregnancy in the rat induce different patterns of growth and metabolic response in the offspring, although the relative impact of MD compared to sex...
and PWD differed between metabolites. These observations are in general agreement with the opposing effects of consumption of meat and green vegetables during pregnancy on systolic blood pressure and cortisol concentrations in children. One possible implication of the present findings is that nutritional interventions to increase folic acid intake in man may need to be supported by investigation of the effects of the background diet on health outcomes.

Acknowledgements

The study was supported by a Research Fellowship awarded to G. C. B. by the British Heart Foundation. M. A. H. is also supported by the British Heart Foundation. We are grateful for the assistance of the staff of the Biomedical Research Facility, University of Southampton and to Dr J. Jackson and Mr C. J. Gelauf for assistance with the analysis of metabolites in blood.

References

30. McGarry JD, Meier JM & Foster DW (1973) The effects of starvation and refeeding on carbohydrate and lipid metabolism in vivo and in the perfused rat liver. The relationship between
fatty acid oxidation and esterification in the regulation of keto-

