Associations between neonatal birth dimensions and maternal essential and trans fatty acid contents during pregnancy and at delivery

Chantal E. H. Dirix1, Arnold D. Kester2 and Gerard Hornstra3,4*

1Department of Human Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
2Department of Methodology and Statistics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
3Faculty of Health, Medicine and Life Sciences, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
4NUTRI-SEARCH, Brikkenoven 14, 6247 BG Gronsveld, The Netherlands

(Received 24 January 2008 – Revised 8 May 2008 – Accepted 9 May 2008 – First published online 10 July 2008)

Since birth dimensions have prognostic potential for later development and health, possible associations between neonatal birth dimensions and selected maternal plasma fatty acid contents were investigated, using data from 782 mother–infant pairs of the Maastricht Essential Fatty Acid Birth cohort. Unadjusted and multivariable-adjusted regression analyses were applied to study the associations between birth weight, birth length or head circumference and the relative contents of DHA, arachidonic acid (AA), dihomo-γ-linolenic acid (DGLA) and 18 : 1trans (18 : 1t) in maternal plasma phospholipids sampled during early, middle and late pregnancies, and at delivery. Where appropriate, corrections were made for relevant covariables. Significant ‘positive’ associations were observed between maternal DHA contents (especially early in pregnancy) and birth weight (B = 52·10 g, 95 % CI 20·40, 83·80) and head circumference (B = 0·223 cm, 95 % CI 0·074, 0·372). AA contents at late pregnancy were ‘negatively’ associated with birth weight (B = −44·25 g, 95 % CI −68·33, −20·16) and birth length (B = −0·200 cm, 95 % CI −0·335, −0·065). Significant ‘negative’ associations were also observed for AA contents at delivery and birth weight (B = −27·08 g, 95 % CI −47·11, −7·056) and birth length (B = −0·207 cm, 95 % CI −0·330, −0·084). Maternal DGLA contents at delivery were also significantly ‘negatively’ associated with neonatal birth weight (B = −85·76 g, 95 % CI −130·9, −40·61) and birth length (B = −0·413 cm, 95 % CI −0·680, −0·146). No significant associations were observed for maternal 18 : 1t contents. We conclude that during early pregnancy, maternal DHA content may programme fetal growth in a positive way. Maternal AA and DGLA in late pregnancy might be involved in fetal growth limitation.

Birth outcome: Maternal long-chain PUFA: Maternal trans fatty acids

Increasing evidence suggests that birth dimensions have prognostic values for later development and health. Indeed, birth weight and birth length have been shown to be associated with later cardiovascular risk(1), whereas head circumference at birth seems a significant predictor of later intelligence(2). Although the causality of these associations has not yet been demonstrated, fetal growth should be optimised.

The essential long-chain PUFA (LCPUFA), DHA (22 : 6n-3) and arachidonic acid (AA, 20 : 4n-6), are thought to be of critical importance for brain development and fetal growth, respectively(3,4). Therefore, the availability of DHA and AA to the fetus needs to be adequate. To obtain these fatty acids, fetuses depend on their mothers, as is indicated by the positive correlation between the maternal and neonatal LCPUFA status at birth(5–7). Mothers receive the LCPUFA mainly from their diet or synthesise them from their respective precursors(8).

Dietary trans fatty acids are unsaturated fatty acids with at least one double bond in the trans configuration. They mainly result from industrial hydrogenation of edible oils and cannot be synthesised by humans(9). As is the case for LCPUFA, maternal and neonatal trans fatty acids are positively correlated(10,11), indicating that the neonatal trans status is also determined by the maternal trans intake. Dietary trans unsaturated fatty acids have been shown to inhibit the conversion of parent essential fatty acids into their LCPUFA, especially when the essential fatty acids contents are low(12,13). They may also impair placental LCPUFA transfer(14). Thus, trans fatty acids may lower the fetal LCPUFA status, and thereby they could compromise fetal development.

Recently, the term birth weight appeared to be positively associated with most maternal n-3 LCPUFA proportions early in pregnancy(15). The relationship with maternal AA contents was found to be negative. Interestingly, maternal contents of the AA precursor dihomo-γ-linolenic acid (DGLA, 20 : 3n-6) is positively related to the term birth weight. The birth-weight relationship with elaidic acid (the main dietary

Abbreviations: AA, arachidonic acid; DGLA, dihomo-γ-linolenic acid; LCPUFA, long-chain PUFA; MEFAB, Maastricht Essential Fatty Acid Birth.

* Corresponding author: Dr Gerard Hornstra, fax +31 43 356 0535, email G.Hornstra@Nutrisearch.nl
trans fatty acid, 18:1 (9-trans) was negative in unadjusted analyses, but this association lost significance after adjustment for covariables.

The aim of the present study was to extend and confirm these findings with three birth outcome measures (birth weight, birth length and head circumference at birth) and maternal plasma fatty acid proportions from four different sampling times (about 16, 22 and 32 weeks of pregnancy, and immediately upon delivery), available from a different birth cohort.

Subjects and methods

General design of the study

On the basis of distinct inclusion criteria, relevant data (dependent variables, independent variables and covariables) of eligible mothers and their infants were extracted from the database of the Maastricht Essential Fatty Acid Birth (MEFAB) cohort. This database contains the data of pregnant women and their newborns who participated in several observational studies, conducted in our institute between 1990 and 1997(6,16). In short, three antenatal clinics located in The Netherlands participated and recruited pregnant women at their first antenatal medical visit. Selection criteria for inclusion were gestational age of < 16 weeks at study entry, singleton pregnancy, Caucasian race, diastolic blood pressure < 90 mmHg and the absence of any metabolic, cardiovascular, neurological or renal disorder at the time of recruitment. Approval for these studies was obtained from the Medical Ethics Committee of the University Hospital Maastricht and the University of Maastricht, and all participating women gave their written informed consent. Unadjusted and multivariable-adjusted linear regression analyses were conducted to study the associations between relative DHA, AA, DGLA and 18:1trans (18:1t) contents in phospholipids of maternal plasma, collected at approximately 16, 22 and 32 weeks of pregnancy, and directly after delivery (independent variables), and the birth outcome measures birth weight, birth length or head circumference (dependent variables). In multivariable-adjusted analyses, these relationships were corrected for relevant covariables.

Inclusion of participants

For the present study, clinical data of 1238 mothers and their infants were available in the MEFAB database. The mother–infant pairs were excluded if infants were born preterm (gestational age < 37 weeks, n 90), mothers had diabetes (n 35) or developed pregnancy-induced hypertension (n 96), mothers had reported specific health problems in the past (e.g. diabetes mellitus, hypertension and heart, kidney, liver, gall bladder or thyroid gland disorders, n 128), one or both parents were non-Caucasians (n 40) or values for any of the afore-mentioned exclusion criteria were missing (n 73). The mother–infant pairs were also excluded if fatty acid analyses were not reported (n 148) or values were missing for birth weight, birth length and head circumference (n 3). After exclusion, the data of 782 mother–infant pairs were left for analysis.

Birth dimensions and fatty acid profiles

Local hospital staff members recorded birth weight, birth length and head circumference on standardised datasheets. Maternal venous blood samples were collected in EDTA tubes at about 16, 22 and 32 weeks of pregnancy, and immediately after delivery. The plasma was separated from the blood cells by centrifugation (2000 g, 4°C, 15 min) and stored under nitrogen at −80°C until analysis. The fatty acid composition of plasma phospholipids was determined by GLC, as described previously(17). The separation of the various 18:1t isomers was incomplete; therefore, they are reported together as 18:1t. The fatty acids are expressed as relative contents (percentage by weight of the total amount of identified fatty acids).

Covariables

Maternal age(18), height and BMI [weight (kg)/height (m²)] at study entry(19), parity(20), smoking and drinking during pregnancy(21), weight increase during pregnancy(22), socio-economic status (income)(23), gestational age (19) and infant sex(24) were included in the multivariable-adjusted analyses as potential confounding factors. These data were retrieved from the original study questionnaires and medical records. In the multivariable-adjusted regression analyses, two dummy variables for parity were used, one for parity = 1 and the other for parity ≥ 2, with parity = 0 as a reference category. Smoking and drinking during pregnancy were both categorised as 0 = no and 1 = yes and infant sex as boy = 0 and girl = 1. Exact information on socio-economic status was not available. Therefore, parental socio-economic status was measured by proxy, using ‘income’ as an socio-economic status indicator, based on the parental postal code at the time of delivery (Geomarktprofiel; Wegener DM, Nieuwegein, The Netherlands). This information was classified into five groups ranging from 1 (twice or more modal income) to 5 (minimum income); socio-economic status values in the categories unknown (0) and diverse (6) were omitted and thus reported as missing values. Gestational age at birth was calculated from the self-reported first day of the last menstrual period. If the last menstrual period was uncertain, gestational age was based on early ultrasound measurements.

Statistical analyses

Associations between various birth outcome measures and the maternal fatty acid contents of interest were analysed with unadjusted and multivariable-adjusted linear regression analyses. In these analyses, birth weight, birth length and head circumference were the dependent variables and the relative proportions of the maternal fatty acids DHA, AA, DGLA and 18:1t measured in plasma phospholipids were the independent variables. In the multivariable-adjusted models, the four fatty acids were included simultaneously to allow for their usual metabolic interactions(3,8). Furthermore, since fatty acids are reported in relative contents, any change in the proportion of one fatty acid will result in a change in the proportions of the other fatty acids included in the analysis. Maternal age, height, BMI at study entry, parity, weight increase during pregnancy, socio-economic status (income), smoking and drinking habits during pregnancy,
gestational age and infant sex were included as potential confounders. Before starting the analyses, outliers (±4 SD outside the mean) of the dependent variables were removed and the normality of their distributions was checked and confirmed by histograms.

Unadjusted regression analyses were performed with the same subjects as included in the corresponding multivariable-adjusted regression analyses. These twelve regression analyses (three dependent variables and fatty acid contents at four time points) were performed in subjects with complete datasets for all (co)variables included in each of the respective regression models. Because of occasionally missing observations, the number of cases for analysis was limited. Ultimately, to remove irrelevant covariables (and thereby increase the number of available cases, see later), stepwise-backward multivariable-adjusted regression analyses were performed for each of the twelve birth outcome-fatty acid combinations. Starting with the full multivariable-adjusted model, the covariable with the highest P value was removed. If this removal resulted in a change in the B value of 10% or more for at least one of the four fatty acids included (DHA, AA, DGLA and 18:1t), and if this change amounted to 20% or more of the standard error of this B value, then this variable was considered a confounder and retained in the regression model, even if it was not significant (P<0.050)\(^{(25)}\). If the removal of the covariable resulted in a smaller change in the B values for all the four fatty acids included and/or in their standard errors, then its removal was permanent. Subsequently, this procedure was repeated with the covariable with the next largest P value and so on, until the remaining covariables were either significant (in which case they are called ‘predictors’) or characterised as confounders. For each particular birth outcome-fatty acid combination, these various steps were performed with the same dataset. However, since the removal of the irrelevant covariables implied less missing values and, consequently, a larger number of cases available for analysis, the ultimate regression analyses were finally repeated with the maximum number of complete cases available for that birth outcome-fatty acid combination.

To check whether the relationships between dependent and independent variables are comparable for the added cases and the initial study population (a prerequisite for acceptance of this procedure), interaction analyses were performed. To this end, two new variables were introduced into the final regression model. The first variable, named A, was coded ‘0’ for cases from the initial (full) model and ‘1’ for the cases that were added after the deletion of the irrelevant covariables. The second variable was the interaction term, calculated as ‘the respective independent fatty acid variable \times variable A’. The significance of this interaction term (P<0.010, to correct for multiple testing) implies that the regression models are fundamentally different for both sets of cases. In that case, the final model with the larger number of cases could not be accepted. Since these interaction analyses revealed no significant differences between initial and additional cases, all the final backward models could be approved. To check possible influential cases in the regressions, all data points were checked by calculating their Cook’s distance and removed if this value was ≥ 1. Such influential data points were not observed, however.

For the regression analyses, P<0.010 were considered statistically significant, to correct for multiple testing. P<0.050 was considered to indicate a (non-significant) trend. The values are reported as median (25th–75th percentile), unless specified otherwise. All statistical analyses were performed using SPSS 11.5 for Windows (SPSS Inc., Chicago, IL, USA).

Results
A total of 782 mother–infant pairs were enrolled in the present study. Their relevant characteristics are listed in Table 1. The relative contents (% w/w) of the four maternal plasma phospholipid fatty acids of interest are reported in Table 2.

In Tables 3–5, the results of the unadjusted, multivariable-adjusted and final backward regression analyses are shown.

Relationship between maternal 18:1 trans contents and birth dimensions

None of the associations between relative maternal 18:1t contents and birth weight, birth length or head circumference reached statistical significance or indicated a trend (results not shown). In addition, the backward regression analyses demonstrated that for none of the twelve birth outcome-fatty acid combinations, 18:1t was either a predictor or a confounder. Since a considerable number of 18:1t values were missing from the database, which lowered the number of cases and, consequently, the power of the regression, it was decided to remove 18:1t from the dataset and to restrict further analyses to the combination of the three LCPUFA, DHA, AA and DGLA. This decision appeared justified after the last check, demonstrating that also in the final backward analyses with the three LCPUFA included, 18:1t was neither a confounder nor a predictor (data not shown).

Table 1. Subject characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal characteristics</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>782</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>740</td>
</tr>
<tr>
<td>BMI at study entry (kg/m2)</td>
<td>709</td>
</tr>
<tr>
<td>Parity ($n/1/\geq2$)</td>
<td>782</td>
</tr>
<tr>
<td>Weight increase during pregnancy (kg)</td>
<td>736</td>
</tr>
<tr>
<td>Socio-economic status (income class)*</td>
<td>559</td>
</tr>
<tr>
<td>Smoking during pregnancy ($n/\text{no/yes}$</td>
<td>778</td>
</tr>
<tr>
<td>Alcohol during pregnancy ($n/\text{no/yes}$</td>
<td>779</td>
</tr>
<tr>
<td>Infant characteristics</td>
<td></td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
<td>782</td>
</tr>
<tr>
<td>Sex ($n/\text{male/female}$</td>
<td>782</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>780</td>
</tr>
<tr>
<td>Birth length (cm)</td>
<td>661</td>
</tr>
<tr>
<td>Head circumference (cm)</td>
<td>560</td>
</tr>
</tbody>
</table>

* Ranges from minimum (5) to $2 \times$ modal (1).

Birth weight, birth length and head circumference were normally distributed and are therefore expressed as mean and standard deviation. The distributions of the other characteristics were not checked for normality and are therefore given as median (25th–75th percentile).
Unadjusted regression analyses did not demonstrate any significance in birth weight and birth length, up to 1.5% of which was contributed by AA. Stepwise-backward models (with only relevant covariables included) observed. The significant final multivariable-adjusted backward models had ‘significant’ negative relationships were found. The contribution of AA remained significant, explaining 1.0 and 1.4% of these variabilities, respectively. For birth length, unadjusted regression analyses revealed a significant positive association with maternal DHA, measured at 32 weeks of pregnancy. This association just lost significance after adjustment for relevant covariables. The relationships between birth length and DHA proportions measured at 16 and 22 weeks were of the same order of magnitude, but they only showed non-significant positive trends in unadjusted analyses as well as after adjustment for relevant covariables.

None of the birth outcome variables were significantly associated or showed trends with DHA values measured at delivery.

Relationship between maternal DHA contents and birth dimensions

Unadjusted regression analyses revealed significant positive relationships between maternal DHA contents at week 16 of pregnancy and birth weight and head circumference (Table 3). After entering all covariables, these associations remained significant. After the removal of irrelevant covariables by the stepwise-backward procedure, the final models explained 37.5 and 20.0% of the variability in birth weight and head circumference, respectively. The contributions of DHA stayed significant, explaining 1.0 and 1.4% of these variabilities, respectively.

For birth length, unadjusted regression analyses revealed a significant positive association with maternal DHA, measured at 32 weeks of pregnancy. This association just lost significance after adjustment for relevant covariables. The relationships between birth length and DHA proportions measured at 16 and 22 weeks were of the same order of magnitude, but they only showed non-significant positive trends in unadjusted analyses as well as after adjustment for relevant covariables.

None of the birth outcome variables were significantly associated or showed trends with DHA values measured at delivery.

Relationship between maternal arachidonic acid contents and birth dimensions

No significant associations were observed in unadjusted analyses between AA contents in maternal plasma phospholipids and birth outcome variables (Table 4). After adjustment for covariables, associations with neonatal head circumference hardly changed and remained insignificant. The adjustment ‘did’ enhance most associations of birth weight and birth length with maternal AA proportions at 16 and 22 weeks of pregnancy, but only non-significant negative trends became apparent between maternal AA contents at 16 and 22 weeks of pregnancy and birth weight and between AA contents at 22 weeks of pregnancy and birth length. When related to maternal AA proportions in late pregnancy (week 32) and at delivery, however, ‘significant’ negative relationships were observed. The significant final multivariable-adjusted backward models (with only relevant covariables included) explained, respectively, up to 36.8 and 28.7% of the variability in birth weight and birth length, up to 1.5% of which was due to the contribution of AA.

Relationship between maternal dihomo-γ-linolenic acid contents and birth dimensions

Unadjusted regression analyses did not demonstrate any significant relationship between maternal DGLA contents and birth outcome variables (Table 5). However, after adjustment for only the relevant covariables, a negative trend was found for the relationship between maternal DGLA proportions at 32 weeks of pregnancy and birth weight. After full adjustment, the maternal DGLA content at delivery was significantly and negatively associated with neonatal birth weight. The complete model explained about one-third (34.2%) of the variability in birth weight, 1.4% of which was contributed by DGLA.

None of the birth outcome variables were significantly associated or showed trends with DHA values measured at delivery.

Discussion

In the present study, with the data of mother–infant pairs present in the MEFAB database, we observed that the plasma phospholipid DHA contents of mothers, especially when measured early in pregnancy, were significantly and ‘positively’ related to birth weight and head circumference of their neonates, whereas maternal AA and DGLA proportions in late pregnancy were ‘negatively’ related to birth weight and birth length. No significant associations were observed for maternal contents of 18:1t, a group of industrial trans unsaturated fatty acids present in the diet.

No significant associations were reported between birth weight and birth length and maternal DHA contents measured in plasma lipid fatty acids at 35 weeks of pregnancy (7), the fatty acid ratio (EPA + DPA + DHA)/AA (29) in erythrocytes sampled at 30 weeks of pregnancy and used as a biochemical marker of the marine n-3 fatty acid intake (29).

The reasons for these inconsistent results probably include the use of different methods to estimate the n-3 LCPUFA status of the women, as well as incomplete adjustment for...
Table 3. Unadjusted and multivariable-adjusted (backward) regression analyses of the relationships between birth outcome variables and DHA contents in phospholipids of maternal plasma, collected at different times during pregnancy and at delivery

<table>
<thead>
<tr>
<th>Pregnancy duration (weeks)</th>
<th>Birth outcome</th>
<th>Unadjusted model (no covariables included)</th>
<th>Multivariable-adjusted model (all covariables included)*†</th>
<th>Final multivariable-adjusted backward model (only relevant covariables included)*‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>R^2</td>
<td>B</td>
</tr>
<tr>
<td>16</td>
<td>BW§</td>
<td>473</td>
<td>0.018</td>
<td>64.12</td>
</tr>
<tr>
<td></td>
<td>BL§</td>
<td>410</td>
<td>0.016</td>
<td>0.313</td>
</tr>
<tr>
<td></td>
<td>HC‡</td>
<td>369</td>
<td>0.022</td>
<td>0.255</td>
</tr>
<tr>
<td>22</td>
<td>BW§</td>
<td>441</td>
<td>0.001</td>
<td>17.09</td>
</tr>
<tr>
<td></td>
<td>BL†</td>
<td>384</td>
<td>0.011</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td>HC**</td>
<td>343</td>
<td>0.005</td>
<td>0.133</td>
</tr>
<tr>
<td>32</td>
<td>BW§</td>
<td>457</td>
<td>0.003</td>
<td>28.41</td>
</tr>
<tr>
<td></td>
<td>BL††</td>
<td>396</td>
<td>0.017</td>
<td>0.379</td>
</tr>
<tr>
<td></td>
<td>HC††</td>
<td>353</td>
<td>0.006</td>
<td>0.162</td>
</tr>
<tr>
<td>Delivery</td>
<td>BW§</td>
<td>467</td>
<td>0.002</td>
<td>22.45</td>
</tr>
<tr>
<td></td>
<td>BL††</td>
<td>407</td>
<td>0.001</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>HC††</td>
<td>363</td>
<td>0.000</td>
<td>0.042</td>
</tr>
</tbody>
</table>

BW, birth weight; BL, birth length; HC, head circumference. R^2, coefficient of determination of the total model; r^2, square of the semi-partial correlation coefficient of fatty acid concerned; B, regression coefficient of fatty acid of interest; P, P value of fatty acid concerned. P<0.010 refer to a significant relationship and 0.010 ≤ P<0.050 refer to a non-significant trend.

* The total modal P values of the (final) multivariable-adjusted analyses were all <0.000.
† The same cases as included in the unadjusted model.
‡ For all the models, the following covariables appeared relevant: infant sex; gestational age; maternal height.
§ Additional relevant covariables: parity, weight increase during pregnancy, BMI at study entry, smoking and drinking during pregnancy.
|| Additional relevant covariables: parity and BMI at study entry.
†† Additional relevant covariables: parity, smoking during pregnancy, BMI at study entry, and weight increase during pregnancy.
** Additional relevant covariables: parity and weight increase during pregnancy.
*** Additional relevant covariables: weight increase during pregnancy, BMI at study entry, smoking and drinking during pregnancy.
Table 4. Unadjusted and multivariable-adjusted (backward) regression analyses of the relationships between birth outcome variables and arachidonic acid contents in phospholipids of maternal plasma, collected at different times during pregnancy and at delivery

<table>
<thead>
<tr>
<th>Pregnancy duration (weeks)</th>
<th>Birth outcome</th>
<th>Unadjusted model (no covariates included)</th>
<th>Multivariable-adjusted model (all covariables included)*†</th>
<th>Final multivariable-adjusted backward model (only relevant covariables included)*‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>R²</td>
<td>B</td>
<td>P</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW§</td>
<td>473</td>
<td>0·000</td>
<td>1·468</td>
<td>0·912</td>
</tr>
<tr>
<td>BL§</td>
<td>410</td>
<td>0·000</td>
<td>0·008</td>
<td>0·914</td>
</tr>
<tr>
<td>HCl§</td>
<td>369</td>
<td>0·000</td>
<td>0·014</td>
<td>0·791</td>
</tr>
<tr>
<td>BWǁ</td>
<td>441</td>
<td>0·001</td>
<td>-7·875</td>
<td>0·604</td>
</tr>
<tr>
<td>BLǁ</td>
<td>384</td>
<td>0·001</td>
<td>0·051</td>
<td>0·554</td>
</tr>
<tr>
<td>HCǁ**</td>
<td>343</td>
<td>0·006</td>
<td>0·090</td>
<td>0·167</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW§</td>
<td>457</td>
<td>0·009</td>
<td>-32·85</td>
<td>0·042</td>
</tr>
<tr>
<td>BLǁ†</td>
<td>396</td>
<td>0·004</td>
<td>-0·105</td>
<td>0·232</td>
</tr>
<tr>
<td>HClǁ</td>
<td>353</td>
<td>0·000</td>
<td>0·020</td>
<td>0·772</td>
</tr>
</tbody>
</table>

For explanations of symbols, see Table 3.

Table 5. Unadjusted and multivariable-adjusted (backward) regression analyses of the relationships between birth outcome variables and dihomo–γ-linolenic acid contents in phospholipids of maternal plasma, collected at different times during pregnancy and at delivery

<table>
<thead>
<tr>
<th>Pregnancy duration (weeks)</th>
<th>Birth outcome</th>
<th>Unadjusted model (no covariates included)</th>
<th>Multivariable-adjusted model (all covariables included)*†</th>
<th>Final multivariable-adjusted backward model (only relevant covariables included)*‡</th>
<th>95% CI (B) Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW§</td>
<td>473</td>
<td>0·002</td>
<td>24·75</td>
<td>0·400</td>
<td>0·357</td>
<td>8·829</td>
</tr>
<tr>
<td>BL§</td>
<td>410</td>
<td>0·000</td>
<td>0·026</td>
<td>0·875</td>
<td>0·279</td>
<td>-0·035</td>
</tr>
<tr>
<td>HCl§</td>
<td>369</td>
<td>0·000</td>
<td>0·028</td>
<td>0·825</td>
<td>0·181</td>
<td>0·106</td>
</tr>
<tr>
<td>BWǁ</td>
<td>441</td>
<td>0·003</td>
<td>37·64</td>
<td>0·237</td>
<td>0·337</td>
<td>-3·640</td>
</tr>
<tr>
<td>BLǁ</td>
<td>384</td>
<td>0·001</td>
<td>0·121</td>
<td>0·496</td>
<td>0·275</td>
<td>0·029</td>
</tr>
<tr>
<td>HCǁ**</td>
<td>343</td>
<td>0·006</td>
<td>0·202</td>
<td>0·143</td>
<td>0·155</td>
<td>0·257</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW§</td>
<td>457</td>
<td>0·000</td>
<td>10·31</td>
<td>0·748</td>
<td>0·335</td>
<td>-38·30</td>
</tr>
<tr>
<td>BLǁ†</td>
<td>396</td>
<td>0·000</td>
<td>-0·053</td>
<td>0·764</td>
<td>0·288</td>
<td>-0·161</td>
</tr>
<tr>
<td>HClǁ</td>
<td>353</td>
<td>0·002</td>
<td>0·100</td>
<td>0·462</td>
<td>0·162</td>
<td>0·177</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW§</td>
<td>467</td>
<td>0·002</td>
<td>-28·96</td>
<td>0·337</td>
<td>0·342</td>
<td>-48·04</td>
</tr>
<tr>
<td>BLǁ†</td>
<td>407</td>
<td>0·003</td>
<td>-0·187</td>
<td>0·271</td>
<td>0·269</td>
<td>-0·340</td>
</tr>
<tr>
<td>HClǁ</td>
<td>363</td>
<td>0·001</td>
<td>-0·083</td>
<td>0·518</td>
<td>0·148</td>
<td>-0·050</td>
</tr>
</tbody>
</table>

For explanations of symbols, see Table 3.
Maternal fatty acids and birth dimensions

covariables\(^{17,26,27,30,31}\). Furthermore, most observational studies were restricted to relationships with maternal fatty acids in late pregnancy, whereas we observed significant associations with maternal DHA contents early in pregnancy only. This finding suggests a fetal growth-programming potential of maternal DHA, especially, early in pregnancy, which (if confirmed) could imply that DHA supplementation after this period may not significantly affect birth dimensions anymore. Indeed, as initially observed by Olsen et al.\(^{32}\) and recently confirmed by a meta-analysis containing five additional randomised controlled trials, no significant effects on birth weight or birth length are observed when \(n-3\) LCPUFA is supplemented from 15 to 30 weeks of pregnancy onwards\(^{33}\).

The present results agree with those of van Eijsden et al.\(^{34}\) who observed a significant positive correlation between DHA proportions measured in maternal plasma phospholipids at 13 weeks of pregnancy and birth weight. However, this association lost significance after adjustment for covariables\(^{35}\). It should be mentioned that, when compared with our volunteers, their (multi-ethnic) population had relatively high DHA values, and the association they observed was mainly present at the lower range of the DHA distribution.

Previous observational studies suggested that AA has growth-promoting effects early in life in both preterm\(^{34,35}\) and term neonates\(^{7,26,36,37}\). By contrast, we observed negative associations between AA contents in maternal plasma phospholipids and neonatal birth weight and birth length. Although present throughout pregnancy, these associations were only significant at late pregnancy and directly after delivery, which suggests the involvement of AA in fetal growth limitation. These results confirm earlier observations of van Eijsden and co-workers that higher AA proportions in plasma phospholipids of women at about 13 weeks of pregnancy were significantly and negatively associated with birth weight and birth length\(^{38}\). At 16 weeks of pregnancy, the negative association we observed in the present study for birth weight was not quite significant \((P=0.037)\), which may have been due to the smaller study population \((n=665)\), compared with the study of van Eijsden \((n=3706)\).

In general, maternal plasma contents of DGLA, the precursor of AA, were negatively associated with birth weight and birth length after correction for relevant covariables. Although not significant for fatty acid proportions early in pregnancy, the associations became significant as pregnancy progressed. From the literature, hardly anything is known about the possible association between maternal DGLA contents and birth outcome. In their (uncorrected) study, Elias and Innis did not observe a significant relationship with DGLA contents measured in maternal plasma phospholipids, TAG or cholesteryl esters at 35 weeks of pregnancy for birth weight and birth length\(^{7}\). It should be mentioned that in the present study, significant results for DGLA were observed only after correction for relevant covariables. van Eijsden and co-workers found a significant ‘positive’ association between maternal DGLA proportions, measured early in pregnancy, and birth weight in unadjusted and multivariable-adjusted analyses \((P<0.010)\)\(^{15}\). Although we tested several possible scenarios, we were unable to reconcile these contrasting results.

In agreement with the inhibitory effect of trans unsaturated fatty acids on the endogenous LCPUFA synthesis from their essential fatty acids precursors and on their placental transfer\(^{12-14}\), 18 : 1 \(\{\text{trans}\}\) contents in maternal plasma phospholipids were found significantly and negatively associated with maternal DHA and AA proportions measured during pregnancy and directly after delivery (data not shown). Despite the rather strong relationships \((P<0.011)\) and the significant associations we observed between maternal LCPUFA contents and birth dimensions, associations between maternal 18 : 1 \(\{\text{trans}\}\) proportions and the various birth outcome variables were not significant. This might be partly explained by the rather low 18 : 1 \(\{\text{trans}\}\) contents in the plasma phospholipids of the present study population (Table 2), resulting in a narrow exposure range, which usually impedes the detection of any association. As in the (unadjusted) analyses of Elias and Innis, the trans fatty acid proportions were also not significantly related to infant birth weight and birth length\(^{7}\), it seems that any potential effect of industrial trans unsaturated fatty acids is either small or non-existing.

One of the strengths of the present study is that the plasma for fatty acid content measurement was collected at several time points during pregnancy and directly after birth. This allowed us to investigate the associations of these fatty acids with birth dimensions from early pregnancy onwards until and including delivery. Second, the database of this cohort contains a relatively large number of maternal and neonatal covariables. However, as with all observational studies, residual confounding cannot be ruled out and it is not possible to decide whether or not the associations observed are causal.

Even though significant correlations existed between DHA, AA, DGLA and 18 : 1 \(\{\text{trans}\}\), we regarded it justified to include them in the multivariable-adjusted analyses together, because the correlation coefficients between these fatty acids were \(\leq 0.4\). In addition, the multicollinearity checks revealed a tolerance value of \(>0.1\) and a variance inflation factor of \(<10\), which allowed us to make this decision\(^{16}\). By including the fatty acid contents simultaneously, it was first possible to take into consideration their metabolic interactions\(^{3,8}\). Second, since fatty acid contents are reported in proportions, any change in the proportion of one fatty acid will result in a change in the relative proportions of the other fatty acids included in the analysis.

To check whether confounding was present and in what direction it worked, the same subjects were used in the unadjusted as well as the multivariable-adjusted regression analyses. When unadjusted regression analyses were performed with the maximum number of cases available, the associations were considerably more significant than those reported in Tables 3–5 (data not shown).

The present results support earlier suggestions\(^{15}\) that differences in maternal LCPUFA contents (irrespective of their causes) can have a significant impact on neonatal birth dimensions. Moreover, the present results can be taken to indicate that maternal DHA contents may programme fetal growth in a positive way, whereas maternal AA and DGLA contents later in pregnancy might be involved in fetal growth limitation. If these associations prove to be causal, they imply that birth dimensions can be optimised by the adaptation of the maternal LCPUFA intake during pregnancy, because circulating proportions of LCPUFA depend, at least partly, on the LCPUFA intake. Thus, intervention studies clearly demonstrated that plasma contents of DHA, AA and DGLA, as well as their proportions, can be modified by...
changing the consumption of these LCPUFA or their precursor
(8, 37–41), although non-dietary factors can also play a modu-
lating role (42–44). Therefore, randomised clinical trials are
needed to test the causality of the associations observed and
to find the ideal maternal LCPUFA status for optimum fetal
growth and infant development. As it is known that maternal
and neonatal essential fatty acid contents are positively related
with each other (5, 6, 17), such intervention studies would be
especially appropriate if it can be confirmed that associa-
tions with birth dimensions, as observed in the present study for
maternal LCPUFA contents during pregnancy, also exist for
neonatal LCPUFA contents at birth. These studies are now
underway.

Acknowledgements

The present study was financially supported by the Malaysian
Palm Oil Board, Kuala Lumpur, Malaysia. G. H. conceived
and designed the project; A. D. K. provided statistical
advice; C. E. H. D. performed the statistical analyses, under
the supervision of G. H. and A. D. K.; C. E. H. D. and G. H.
wrote the manuscript and A. D. K. provided additional writing
advice. G. H. was the recipient of a project grant of the Malay-
sian Palm Oil Board, Kuala Lumpur, Malaysia, to perform the
present study. None of the authors had any personal or finan-
cial conflicts of interest.

References

influence of head growth in fetal life, infancy, and childhood
on intelligence at the ages of 4 and 8 years. Pediatrics 118,
1486–1492.
3. Innis SM (1991) Essential fatty acids in growth and develop-
ment. Prog Lipid Res 30, 39–103.
acids in plasma lipids of newborn infants and their mothers.
5. Ghebremeskel K, Crawford MA, Lowy C, Min Y, Thomas B,
Golfetto I, Bitsanis D & Costeloe K (2000) Arachidonic and
docosahexaenoic acids are strongly associated in maternal and
polysaturated fatty acids, pregnancy, and pregnancy outcome.
fatty acids and conjugated linoleic acids are related to maternal
plasma fatty acids, length of gestation, and birth weight and
8. Hornstra G (2001) Importance of polysaturated fatty acids of
the n-6 and n-3 families for early human development. Eur J
acids in plasma lipids of newborn infants and their mothers.
11. van Houwelingen AC & Hornstra G (1994) Trans fatty acids in
13. Koletzko B (1992) Trans fatty acids may impair biosynthesis
81, 302–306.
15. van Eijden M, Hornstra G, van der Wal MF, Vrijkotje TG &
Bonsel GJ (2008) Maternal essential fatty acid status early in
pregnancy and term birthweight: a prospective cohort study.
17. Al MD, van Houwelingen AC, Kester AD, Hasaath TH, de Jong
during normal pregnancy and their relationship to the neonatal
essential fatty acid status. Br J Nutr 74, 55–68.
135, 41–46.
C & Hulten L (2000) Sociodemographic characteristics influ-
encing birth outcome in Sweden, 1908–1930. Birth variables
Community Health 54, 269–278.
Maternal smoking, alcohol drinking, caffeine consumption,
and fetal growth: results from a prospective study. Epidemiology
6, 115–120.
outcomes: an overview. J Nutr 133, 1592S–1596S.
23. Luo ZC, Wilkins R & Kramer MS (2006) Effect of neighbour-
hood income and maternal education on birth outcomes: a
population-based study. CMAJ 174, 1415–1420.
172, 1459–1463.
25. Maldonado G & Greenland S (1993) Simulation study of con-
during pregnancy increase fetal weight? A study of the size
of the newborn, placental weight and gestational age in relation
to fish consumption during pregnancy. Int J Epidemiol 19,
971–977.
27. Olsen SF & Secher NJ (2002) Low consumption of seafood in
early pregnancy as a risk factor for preterm delivery: prospec-
of seafood intake in pregnancy as a determinant of birth weight:
evidence for a dose dependent relationship. J Epidemiol Com-
munity Health 47, 436–440.
29. Olsen SF, Hansen HS, Secher NJ, Jensen B & Sandstrom B
(1995) Gestation length and birth weight in relation to intake
fish intake in late pregnancy and the frequency of low birth
weight and intrauterine growth retardation in a cohort of British
infants. J Epidemiol Community Health 58, 486–492.
MW (2004) Associations of seafood and elongated n-3 fatty
acid intake with fetal growth and length of gestation: results
Maternal fatty acids and birth dimensions

