Diabetes mellitus is an important risk factor for CVD. A previous study showed that high glucose induced the apoptosis of human umbilical vein endothelial cells (HUVEC) via the sequential activation of reactive oxygen species, Jun N-terminal kinase (JNK) and caspase-3. The apoptosis cascade could be blocked by ascorbic acid at the micromolar concentration (100 \mu M). In addition to ascorbic acid, quercetin, the most abundant dietary flavonol, has been recently actively studied in vascular protection effects due to its antioxidant effect at low micromolar concentrations (10–50 \mu M). Quercetin sulfate/glucuronide, the metabolite of quercetin in blood, however, has been rarely evaluated. In the present study, we investigated the effect of quercetin sulfate/glucuronide on the prevention of high glucose-induced apoptosis of HUVEC. HUVEC were treated with media containing high glucose (33 mM) in the presence or absence of ascorbic acid (100 \mu M) or quercetin sulfate/glucuronide (100 nM, 300 nM and 1 \mu M). For the detection of apoptosis, a cell death detection ELISA assay was used. The level of intracellular H2O2 was measured by flow cytometry. JNK and caspase-3 were evaluated by a kinase activity assay and Western blot analysis. The results showed that high glucose-induced apoptosis was inhibited by quercetin sulfate/glucuronide in a dose-dependent manner. The effect of quercetin sulfate/glucuronide on H2O2 quenching, inhibition of JNK and caspase-3 activity at the nanomolar concentration (300 nM) was similar to that of ascorbic acid at the micromolar concentration (100 \mu M). The findings of the present study may shed light on the pharmacological application of quercetin in CVD.

Quercetin metabolites: Glucose: Endothelial cells: Apoptosis: Reactive oxygen species: Jun N-terminal kinase: Caspase

Diabetes mellitus is a major risk factor of cardiovascular atherosclerosis\(^1\). High glucose-induced endothelial cell apoptosis\(^2\)–\(^5\), which may disturb the integrity of the endothelial monolayer, plays a pivotal role in diabetes-associated vascular dysfunction, including atherosclerosis\(^6\). In cultured human umbilical vein endothelial cells (HUVEC), high glucose has been found to generate H2O2, which in turn activates Jun N-terminal kinase (JNK), triggers caspase-3 and finally leads to apoptosis. The high glucose-induced H2O2 generation, JNK activation, triggering of caspase-3 and facilitation of apoptosis could be suppressed by ascorbic acid\(^7\)–\(^8\). To reduce the cardiovascular events, ascorbic acid, one of the most common antioxidants, has been widely used to improve vascular function\(^7\)–\(^8\). However, the results of clinical studies have been disappointing\(^9\)–\(^11\). The discrepancy between the experimental and clinical studies may be because the concentrations of ascorbic acid used in experiments were much higher than those detected in humans\(^12\)–\(^13\).

To seek other strong antioxidants, interest has grown in dietary flavonoids, which are mainly derived from vegetables and fruits. Flavonoids represent the major class of polyphenolics, and comprise several thousand plant-derived compounds with a common skeleton of phenylchromane\(^14\). Several epidemiological studies have shown an inverse correlation between the dietary consumption of flavonols and flavones (two main classes of flavanoids) and mortality from CVD\(^15\)–\(^16\). Quercetin, which is well absorbed in the small intestine, and rapidly metabolised to circulating sulfates and glucuronides in plasma\(^17\)–\(^18\), is the most abundant dietary flavonol, and recently actively studied in its vascular protection effects\(^5\)–\(^19\)–\(^20\). In the present study, we evaluated the role of quercetin metabolites (quercetin sulfate/glucuronide) on the prevention of apoptosis of HUVEC within the range of physiological concentrations\(^13\)–\(^21\).

Materials and methods

Preparation of quercetin sulfate/glucuronide

Quercetin sulfate/glucuronide was prepared from the serum of rats that were administered with quercetin and the

Abbreviations: DCFH-DA, 2′,7′-dichlorofluorescin diacetate; EGTA, ethylene glycol tetra-acetic acid; HUVEC, human umbilical vein endothelial cells; JNK, Jun N-terminal kinase; ROS, reactive oxygen species.

* Corresponding author: Dr Feng-Ming Ho, fax +886 3 3697118, email heart@mail.tygh.gov.tw
concentration of quercetin sulfate/glucuronide was determined by HPLC after hydrolysis with sulfatase/gluconidase as described previously\(^{22,23}\). The serum concentration of quercetin sulfate/glucuronide was 4.7 \(\mu M\) at the sampling time. Our quantification result indicated that the serum metabolites contained mainly sulfates and only a trace of glucuronides. There was no trace of quercetin aglycone.

Cell culture and cell treatment

HUVEC were cultured as previously described\(^2\). Cells were seeded at a density of 1 \(\times\) 10\(^5\) per 75 cm\(^2\) flask in medium 199 (Gibco, Grand Island, NY, USA), supplemented with 20 mm-HEPES, endothelial cell growth substance (100 \(\mu g/ml\)) (Collaborative Research Inc., Waltham, MA, USA) and 20 \% fetal calf serum (Gibco). The cultures were maintained at 37°C with a gas mixture of 5 \% \(CO_2\)–95 \% air. After normalisation of protein concentration, the equal amounts of protein were incubated with protein A- sepharose and anti-JNK1 (1 \(\mu g\); C17; Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 3 h at 4°C. The immune complexes were washed twice with lysis buffer and then once with kinase assay buffer (20 mm-4-morpholino-4-propanesulphonic acid (pH 7.2), 2 mm-EGTA, 20 mm-MgCl\(_2\), 1 mm-dithiothreitol and 0·1 \% Triton X-100). The immune complexes were then re-suspended in 20 ml of kinase assay buffer containing 185 MBq of \([^{32}P]\)ATP, 30 \(\mu M\)-cold ATP and 2 mg of glutathione S-transferase-c-Jun (1/79) as a substrate for JNK1, and incubated for 20 min at 30°C. Reaction was terminated by the addition of SDS sample buffer and boiling for 5 min. The protein was resolved by SDS-PAGE and visualised by autoradiography.

Caspase-3 activity assay

Caspase-3 activity was measured as described previously\(^2\). In brief, cells (1 \(\times\) 10\(^5\)) were treated as indicated and the cytosolic extracts were prepared by repeated cycles of freezing and thawing in 300 \(\mu l\) of extraction buffer (12·5 mm-2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) (pH 7·0), 1 mm-dithiothreitol, 0·125 mm-EDTA, 5 \% glycerol, 1 mm-phenylmethylsulfonyl fluoride, aprotinin (1 \(\mu g/ml\)) and leupeptin (1 \(\mu g/ml\)). The cell lysates (100 \(\mu g\)) were diluted with the buffer (50 mm-Tris (pH 7·0), 1 mm-EDTA and 10 mm-EGTA) and incubated at 37°C with 10 mm-acetyl-Asp-Glu-Val-Asp-amino-4-methylcoumarin (Ac-DEVD-AMC), a caspase-3 substrate. The fluorescence of the cleaved substrate was measured by a spectrofluorometer (Hitachi F-3000; Hitachi, Tokyo, Japan) with an excitation wavelength at 380 nm and an emission wavelength at 460 nm.

Western blot analysis

Protein levels of JNK1 and caspase-3 were analysed by Western blot as described previously\(^2\). Briefly, the cell lysates were prepared, electrotransferred and then immunoblotted with anti-JNK1 and caspase-3 polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Detection was performed with Western blotting reagent ECL (Amersham, Centennial Avenue, Piscataway, NJ, USA) and chemiluminescence was exposed by the filters of Kodak X-Omat films.

Statistical analysis

Data were obtained from at least three separate experiments and presented as mean values and standard deviations. All statistical data were obtained by ANOVA followed by Student’s \(t\) test. \(P<0·05\) was considered statistically significant.

Results

Effect of quercetin sulfate/glucuronide on high glucose-induced apoptosis

High glucose induced apoptosis of HUVEC in a time-dependent manner that could be effectively inhibited by ascorbic acid...
Apoptosis induced by high glucose at 48 h was inhibited by quercetin sulfate/glucuronide (100 nM, 300 nM and 1 μM) in a dose-dependent manner. The inhibitory effect of quercetin sulfate/glucuronide (300 nM) on high glucose-induced apoptosis was similar to that of ascorbic acid (100 μM) (Fig. 1(b)).

Effect of quercetin sulfate/glucuronide on high glucose-induced reactive oxygen species generation

Flow cytometry was used to investigate the amount of H$_2$O$_2$ that was generated in high glucose-induced apoptosis of HUVEC. Treatment with high glucose was found to increase DCFH fluorescence at 48 h, which was completely suppressed by quercetin sulfate/glucuronide at the concentration of 300 nM (Fig. 2).

Effect of quercetin sulfate/glucuronide on high glucose-elicited Jun N-terminal kinase activity

In our previous study(2), JNK activity in high glucose-treated HUVEC was identified to increase at 24 h and sustain up to 48 h. In the present study, after 48 h treatment of high glucose, quercetin sulfate/glucuronide (300 nM and 1 μM) was demonstrated to suppress caspase-3 activity effectively (Fig. 4). Quercetin sulfate/glucuronide alone did not alter JNK activity.

Discussion

Endothelial dysfunction is an early manifestation of vascular atherosclerosis and also an independent predictor of poor prognosis in CVD(6). Diabetes mellitus is an important risk factor for CVD(1). Research has revealed that high glucose would induce production of reactive oxygen species (ROS), which can cause endothelial dysfunction and even cell apoptosis(2–5). Our previous studies demonstrated that the high glucose-induced ROS could activate c-JUN N-terminal protein kinase (JNK), which leads to triggering of caspase-3 and facilitation of apoptosis in human endothelial cells(2,3). Experimental studies have shown that vitamin C is a strong antioxidant and prevents ROS-mediated vascular dysfunction and apoptosis at high or above physiological concentrations(7,8,12,13). However, most of the clinical observational
Previous studies revealed that polyphenolic flavonoids, including quercetin, exerted protective effects in vitro against apoptosis mediated by H$_2$O$_2$ and oxidised LDL in HUVEC at the doses between 10 μM and 50 μM(20,24). In the present study, we investigated the effect of quercetin sulfate/glucuronide on high glucose-induced apoptosis and found that the anti-apoptotic effect of quercetin sulfate/glucuronide was dose-dependent and remained significant at the nanomolar concentrations (300 nM and 100 nM). The effective concentrations of quercetin sulfate/glucuronide used in the present experimental study were within the range of quercetin concentrations detected in humans(13,21). The single concentration of ascorbic acid (100 μM) chosen for reference in the present study was based on the experience of our previous study(2) and the study conducted by Rössig et al. (7), which showed that the effective concentration of ascorbic acid on inhibiting TNF-α(50 ng/ml)-induced apoptosis in HUVEC was 100 μM, but not 10 μM and 50 μM. Nevertheless, in the present study, we did not evaluate the dose-dependent effect of ascorbic acid on apoptosis and would not attempt to jump to a conclusion that quercetin metabolites rather than vitamin C could have superior cardiovascular benefits in clinical studies.

High glucose may activate NADPH oxidase and lead to the production of ROS, including the superoxide anion and H$_2$O$_2$(25,26). Recently, quercetin was found to down-regulate NADPH oxidase and prevent endothelial dysfunction in spontaneously hypertensive rats(27). Although previous studies have shown that quercetin in the low micromolar range is an effective scavenger of H$_2$O$_2$(20,24), the antioxidant effect of quercetin sulfate/glucuronide in the nanomolar range on high glucose-treated HUVEC has not yet been clarified. In the present study, we demonstrated that the low concentration of quercetin sulfate/glucuronide (300 nM) could also completely suppress the increase of DCFH fluorescence, which is used for detection of intracellular H$_2$O$_2$ induced by high glucose.

In the present study, quercetin sulfate/glucuronide (300 nm) was also found to inhibit JNK activity effectively. In different cell types, however, there were discrepant effects of quercetin on cell viability via inhibition of JNK activity. In HUVEC, quercetin showed little cytotoxicity at 100 μM, and inhibited JNK activity with consequent prevention of apoptosis in the low micromolar range (10 μM to 50 μM)(20). In contrast, quercetin at 100 μM induced apoptosis of intimal-type rat vascular smooth muscle cells via the inhibition of JNK activity(28). It is not clear why quercetin has either an anti-apoptotic or pro-apoptotic effect on different cells. However, either anti-apoptosis of HUVEC or pro-apoptosis of intimal vascular consumption and mortality from CVD(15,16). Many experimental data have accumulated regarding the protective effects of flavonoids on the endothelium(14). Quercetin (3,3',4',5,7-penta-hydroxyflavone), one of the most abundant flavonoids in the human diet, has been known as an antioxidant and represents the most prototypical example of flavonoids(19,20). Quercetin is well absorbed in the small intestine and further metabolised to circulating sulfates and glucuronides(17,18). Therefore, in view of the potential of quercetin metabolites as a pharmacological agent, it would be of interest to investigate the effect of quercetin sulfate/glucuronide within the range of physiological concentrations on ROS and the possible involvement of the signalling pathway in high glucose-induced apoptosis of human endothelial cells(13,21).
smooth muscle cells plays an important role in the anti-atherosclerotic effect of quercetin. Quercetin has been demonstrated to prevent H$_2$O$_2$-mediated and LDL-induced apoptosis of HUVEC via the inhibition of caspase-3 in the low micromolar range (10–50 μM).5,20,24 In the present study, we showed that even lower doses of quercetin sulfate/gluconuronde (300 nM and 1 μM) effectively suppressed caspase-3 activity. The dose-dependent inhibitory effect of quercetin sulfate/gluconuronde on H$_2$O$_2$ production, JNK and caspase-3 activity was consistent.

Previous studies have shown that quercetin-3'-sulfate and quercetin-3'-glucuronide are the two major quercetin conjugates in human plasma, but the ratio of them may vary between individuals.18,29 Other studies have also reported that quercetin-3'-sulfate and quercetin-3'-glucuronide can exert different or opposing effects on variant endothelial cells.30–32 The opposing properties of the coexisting natural compounds have been postulated as the existence of the yin-yang paradigm,33 and the balance of circulating quercetin conjugates has been suggested to determine the final effect in vivo.31 In the present study, we were not able to indicate the substitute positions of the metabolites in the study because they were a complex mixture of sulfates and glucuronides. Our quantification result revealed that the serum metabolites contained mainly sulfates and only a trace of glucuronides. However, we also believe that the effect exerted by this metabolite combination prepared from rats mimicked the in vivo situation more than a pure compound.

In conclusion, we showed for the first time that the effect of quercetin sulfate/gluconuronde on H$_2$O$_2$ quenching, inhibition of JNK and caspase-3 activity was effective at a nanomolar concentration. The findings of the present study may be useful and shed light on the pharmacological application of quercetin metabolites (quercetin sulfate/gluconuronde) in CVD.

Acknowledgements
The present study was supported by grants (PTH9707 and PTH9709) from Taoyuan General Hospital, Department of Health, the Executive Yuan, Taiwan. We are grateful to Ms Chia-Chi Chen and Mr Sh philing Cho for their technical assistance in the present study.

The present study was supported by grants (PTH9707 and PTH9709) from Taoyuan General Hospital, Department of Health, the Executive Yuan, Taiwan. The authors C.-L. C., C.-S. W. and F.-M. H. conducted the design and implementation of the experiments, and the completion of the manuscript. Y.-C. H. and P.-D. L. C. contributed to the preparation of quercetin sulfate/gluconuronde. All authors read and approved the submission of this paper. There are not any conflicts of interest in the submission of this paper.

References

