Short Communication

Antioxidative and hepatoprotective effects of fructo-oligosaccharide in d-galactose-treated Balb/cJ mice

Hsiao-Ling Chen1,2*, Cheng-Hsin Wang3, Yi-Wen Kuo1 and Chung-Hung Tsai4

1School of Nutrition, Chung Shan Medical University, No. 110, Section 1, Jiaoguo North Road, Taichung City 402, Taiwan, ROC
2Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
3Department of Food and Nutrition, Providence University, Taichung, Taiwan, ROC
4Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC

(Received 23 April 2010 – Revised 20 September 2010 – Accepted 22 September 2010 – First published online 7 December 2010)

Abstract

Chronic subcutaneous (s.c.) administration of D-galactose (DG) to BL/6J mice has been shown to induce oxidative stress and is considered a model to mimic accelerated ageing. Fructo-oligosaccharide (FO) is a well-defined prebiotic and its fermentation by lactic acid bacteria has been shown to exert antioxidative capacity. The present study was aimed to determine whether FO attenuated DG-induced oxidative stress and hepatopathy in Balb/cJ mice. Mice (12 weeks of age, \(n = 40\)) were divided into control (s.c. saline), DG (s.c. 1.2 g/kg body weight), DG + FO (5\%, w/w) and DG + vitamin E (0.2\%, w/w) groups and were killed after 52 d of treatment. Results indicated that DG significantly decreased the hepatic superoxide dismutase and glutathione peroxidase activities. These alterations were ameliorated both by FO and vitamin E. DG increased the hepatic TAG content approximately by 7.2\% compared with the vehicle control, which was in agreement with the histological alteration. FO, similar to vitamin E, almost normalised the hepatic TAG content and ameliorated the histological characteristics of fatty liver. Similarly, the increased plasma alanine aminotransferase activity induced by DG was normalised by FO and vitamin E, respectively. Faecal bifidobacteria counts were greater in the DG + FO and DG + vitamin E groups compared with the DG group, respectively. In conclusion, the present study indicated that FO diminished the altered hepatic antioxidative enzyme activities and morphology caused by chronic DG administration in Balb/cJ mice, partially associated with its prebiotic role in the colon.

Key words: D-Galactose: Fructo-oligosaccharide: Antioxidative capacity: Liver: Ageing

Materials and methods

Animals and diets

Male Balb/cJ mice (10 weeks old) were obtained from the BioLASCO Taiwan Company Limited (Taipei, Taiwan,

Abbreviations: DG, d-galactose; FO, fructo-oligosaccharide.

*Corresponding author: Dr H.-L. Chen, fax +886 4 23248175, email hlchen@csmu.edu.tw
ROD). After acclimatisation for 2 weeks, mice (n = 40) were randomly divided into four groups (n = 10): control (subcutaneous saline, basal diet), DG (subcutaneous 1·2 g d-galactose/kg body weight, basal diet), DG + FO (50 g active ingredients/kg basal diet) and DG + vitamin E (2 g α-tocopherol/kg basal diet, as an antioxidant positive control) and were killed after 52 d of treatment. The basal diet consisted of a ground rodent chow (Lab 5001; Purina Mills, St Louis, MO, USA) and sucrose that match the digestible sugar present in the FO syrup (Institute of Microbial Resources, Taichung, Taiwan, ROC) (11). The mixed powder diet was then re-formed into a small dough with deionised water in order to balance the liquid content among diets and to reduce spillage. The doses of supplements were used based on previous studies, indicating that supplementing 5 % (w/w) FO into a fibre-free diet beneficially modulated colonic microflora and reduced faecal toxicity (14), while 0·2 % (w/w) α-tocopherol altered pro-oxidation status in rats (15). All animals were allowed to have free access to water and food during the study. Animal care followed the guidelines of the National Research Council (16) and was approved by the Institutional Animal Care and Use Committee in the Chung Shan Medical University. The mice were placed in metabolism cages during days 44–49, while fresh faeces were collected and frozen within 30 min of excretion. Faecal samples were lyophilised and kept at −20 °C for further analyses of microflora. The mice were anaesthetised with CO2 on day 52 after a 20 h fasting. Blood samples collected from the right atrium into heparinised tubes were centrifuged at 3000g for 10 min and plasma samples were stored at −20 °C for the analysis of alanine aminotransferase activity. The mice were transcardially perfused with ice-cold phosphate buffer (0·1 M, pH 7·4, containing 1 mM-EDTA). A portion of each liver was homogenised and extracted with 20 vol (v/w) of a chloroform–methanol mixture (2:1, v/v), according to Folch et al. (21). Aliquots of lipid extracts were dried under vacuum and then dissolved in 95 % ethanol. Hepatic TAG concentrations were determined after enzymatic hydrolysis with lipases using a commercial kit (Randox Laboratories, San Francisco, CA, USA).

Plasma alanine aminotransferase activity

Plasma alanotransferase activities were measured by catalysing the formation of pyruvate from alanine (22). Enzyme activity was expressed as μKat/l.

Hepatic antioxidant enzymes

A portion of each liver was homogenised in 10 vol (v/w) of phosphate buffer (0·1 M, pH 7·4, containing 1 mM-EDTA). The homogenate was centrifuged at 10000g for 15 min at 4 °C and the supernatant was immediately analysed. Superoxide dismutase activity was measured based on competition for superoxide radicals between superoxide dismutase and tetratholium salt (17). Glutathione peroxidase activity was measured indirectly by a coupled reaction with glutathione reductase that converted the oxidised glutathione to its reduced form with a concomitant oxidation of NADPH to NADP+ (18). The catalase activity was measured colorimetrically based on the transformation of methanol to formaldehyde using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (19). Protein contents were analysed based on the Bradford method (20), using a protein assay reagent (Life Science Research, Hercules, CA, USA). Enzyme activity was expressed as IU/mg protein.

Hepatic TAG content

A portion of each liver was homogenised and extracted with 20 vol (v/w) of a chloroform–methanol mixture (2:1, v/v), according to Folch et al. (21). Aliquots of lipid extracts were dried under vacuum and then dissolved in 95 % ethanol. Hepatic TAG concentrations were determined after enzymatic hydrolysis with lipases using a commercial kit (Randox Laboratories, San Francisco, CA, USA).

Quantification of faecal microflora by the fluorescence in situ hybridisation method

The genotypic probe Bif164 and a non-specific nucleic acid stain, 4,6-diamidino-2-phenylindole, were used to quantify bifidobacteria and total bacteria, respectively (23). Probe fluorescence was detected with a Zeiss Axioskop2 microscope (Carl Zeiss, Jena, Germany), as described previously (24).

Histological evaluation

Liver tissues were fixed in Bouin’s solution overnight and then processed for histological routine. Paraffin sections (4 μm) were mounted on microscope slices and stained with haematoxylin and eosin. Histological evaluation was done under 200 × magnification.

Statistical analyses

Data were presented as means with their standard errors and analysed using SPSS version 14 (SPSS, Inc., Chicago, IL, USA). Parametric data and log-transformed bacteria counts were analysed by one-way ANOVA, followed by the least significant difference test. Differences were considered significant at P<0·05.

Results

Body and liver weight

There were no significant differences in body weight and weight gain among groups (data not shown). Relative liver weight (percentage of body weight) was similar among groups, 4·7 (SE 0·6), 4·7 (SE 0·5), 4·6 (SE 0·4) and 4·7 (SE 0·6)% for the control, DG, DG + FO and DG + vitamin E groups, respectively.
Antioxidative enzyme activities and TAG content in the liver

Superoxide dismutase and glutathione peroxidase activities were significantly suppressed by DG treatment by approximately 32·3 % (P<0·001 v. control) and approximately 29·7 % (P=0·016 v. control), respectively (Table 1). Both FO (P=0·001 v. DG) and vitamin E (P<0·001 v. DG) reversed the DG-induced decrease in superoxide dismutase activity, and tended to ameliorate (P=0·49 for DG + FO v. control; P=0·11 for DG + vitamin E v. control) the DG-induced decrease in glutathione peroxidase activity. Catalase activity was non-significantly altered by DG (P>0·05 v. control). However, catalase activity in the DG + vitamin E group was raised by approximately 20·0 % (P=0·049 v. DG). Hepatic TAG concentration was 234·4 (SE 5·6), 238·6 (SE 3·4) and 243·8 (SE 5·6) μmol/g liver in the control, DG and DG + FO groups, respectively, all of which were significantly lower than that shown in the DG group, 252·6 (SE 3·4) μmol/g liver (P<0·05, respectively).

Table 1. Hepatic antioxidative enzyme activities in d-galactose-treated Balb/cJ mice

<table>
<thead>
<tr>
<th></th>
<th>SOD (IU/mg protein)</th>
<th>GPx (IU/mg protein)</th>
<th>Catalase (IU/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SE</td>
<td>Mean SE</td>
<td>Mean SE</td>
</tr>
<tr>
<td>Control</td>
<td>80·0a 5·7</td>
<td>46·2a 4·2</td>
<td>844·7a b 53·9</td>
</tr>
<tr>
<td>DG</td>
<td>68·1b 4·9</td>
<td>32·5b 3·3</td>
<td>726·2a 49·5</td>
</tr>
<tr>
<td>DG + FO</td>
<td>78·4* 3·4</td>
<td>41·1*a b 2·0</td>
<td>793·9g* 41·9</td>
</tr>
<tr>
<td>DG + vitamin E</td>
<td>82·4* 3·5</td>
<td>37·5*b 4·5</td>
<td>871·2* 49·8</td>
</tr>
</tbody>
</table>

SOD, superoxide dismutase; GPx, glutathione peroxidase; DG, d-galactose; FO, fructo-oligosaccharide.
a,b Mean values with unlike superscript letters within a column were significantly different (P<0·05; ANOVA followed by the least significant difference test).

Antioxidative enzyme activities and TAG content in the liver

The plasma alanine aminotransferase level (μKat/l) was 0·20 (SE 0·03), 0·32 (SE 0·05) (P=0·016 v. control), 0·22 (SE 0·02) and 0·17 (SE 0·02) in the control, DG, DG + FO and DG + vitamin E groups, respectively. The DG-induced change in alanine aminotransferase activity was normalised by FO (P>0·05 v. control) and vitamin E (P>0·05 v. control), respectively.

Histopathological observation

The liver histological study was conducted to determine the protective effect of FO on DG-induced injury. The hepatocytes in the DG group were filled with lipids in the absence of the nucleus (Fig. 1(b)). However, this histological alteration was not observed in the control (Fig. 1(a)) group, and was ameliorated in the presence of FO (Fig. 1(c)) and vitamin E (Fig. 1(d)).

Faecal microflora

The faecal bifidobacteria concentration was the lowest in the DG group, which was significantly increased by FO (P=0·001 v. DG) and vitamin E (P=0·022 v. DG), respectively (Table 2). The faecal total bacteria counts were similar among groups. FO significantly (P=0·032 v. DG) increased the relative proportions (percentage of total bacteria) of...
faecal bifidobacteria to 33·0 (se 2·3)% compared with that in the DG group, 21·0 (se 2·0)%.

Discussion

This is the first study to show that FO, besides its prebiotic effect on colonic microflora (13,14), exerted systematic effects on antioxidative enzyme activities and TAG synthesis in the liver that were altered by chronic DG administration in Balb/cJ mice.

D-Galactose is normally metabolised by D-galactokinase and galactose-1-phosphate uridyltransferase (25). An overdose of DG leads to the accumulation of galactitol, which in turn leads to osmotic stress and the generation of reactive oxygen species (26). In the present study, we found that FO, similar to the antioxidant vitamin E, prevented the decrease in hepatic superoxide dismutase activity and antioxidative stress partially through its fermentation product that FO, besides being a prebiotic fibre, could prevent oxidative stress and fatty liver that occur during ageing.

Acknowledgements

The present study was partially funded by the National Science Council of Taiwan, NSC 96-2320-B-031-MY3. H.-L. C. designed and carried out the study, and wrote the manuscript. C.-H. W. collated and analysed the data and co-wrote the manuscript. Y.-W. K. carried out the study. C.-H. T. conducted the histological analysis. The technical assistance for the tissue slides from Mr Yang, Lien-Chuan, and the sponsor of FO by the Institute of Microbial Resources (Taichung, Taiwan, ROC) were greatly appreciated. All authors read and approved the findings of the study. There are no conflicts of interest.

References

Table 2. Faecal total bacteria and Bifidobacterium counts of n-galactose-treated Balb/cJ mice (Mean values with their standard errors, n 10)

<table>
<thead>
<tr>
<th></th>
<th>Bifidobacterium (log10 counts/g dry faeces)</th>
<th>Total bacteria (log10 counts/g dry faeces)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td>Control</td>
<td>6.65</td>
<td>0.02</td>
</tr>
<tr>
<td>DG</td>
<td>6.57a</td>
<td>0.02</td>
</tr>
<tr>
<td>DG + FO</td>
<td>6.73a</td>
<td>0.02</td>
</tr>
<tr>
<td>DG + vitamin E</td>
<td>6.66b</td>
<td>0.02</td>
</tr>
</tbody>
</table>

FO, fructo-oligosaccharide; DG, n-galactose.

* Mean values with unlike superscript letters within a column were significantly different (P<0.05; ANOVA followed by the least significant difference test).