DNA methylation and cognitive functioning in healthy older adults

Olga J. G. Schiepers¹, Martin P. J. van Boxtel¹, Renate H. M. de Groot¹,²,³, Jelle Jolles¹,², Frans J. Kok⁴, Petra Verhoef⁵,⁶ and Jane Durga⁵,⁷

¹Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS)/European Graduate School of Neuroscience (EURON), Maastricht University/Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
²Faculty of Psychology and Education, AZIRE Research Institute, VU University Amsterdam, Amsterdam, The Netherlands
³Centre for Learning Sciences and Technologies, Open University, Heerlen, The Netherlands
⁴Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
⁵Top Institute Food and Nutrition, Wageningen, The Netherlands
⁶Unilever Research and Development, Vlaardingen, The Netherlands
⁷Cognitive Sciences Group, Nutrition and Health Department, Nestlé Research Centre, Lausanne, Switzerland

(Received 4 March 2011 – Revised 23 May 2011 – Accepted 2 June 2011 – First published online 27 July 2011)

Abstract

Long-term supplementation with folic acid may improve cognitive performance in older individuals. The relationship between folate status and cognitive performance might be mediated by changes in methylation capacity, as methylation reactions are important for normal functioning of the brain. Although aberrant DNA methylation has been implicated in neurodevelopmental disorders, the relationship between DNA methylation status and non-pathological cognitive functioning in human subjects has not yet been investigated. The present study investigated the associations between global DNA methylation and key domains of cognitive functioning in healthy older adults. Global DNA methylation, defined as the percentage of methylated cytosine to total cytosine, was measured in leucocytes by liquid chromatography–MS/MS, in 215 men and women, aged 50–70 years, who participated in the Folic Acid and Carotid Intima-Media Thickness (FACIT) study (clinical trial registration number NCT00110604). Cognitive performance was assessed by means of the Visual Verbal Word Learning Task, the Stroop Colour-Word Interference Test, the Concept Shifting Test, the Letter–Digit Substitution Test and the Verbal Fluency Test. Using hierarchical linear regression analyses adjusted for age, sex, level of education, alcohol consumption, smoking status, physical activity, erythrocyte folate concentration and 5,10-methylenetetrahydrofolate reductase 677 C → T genotype, we found that global DNA methylation was not related to cognitive performance on any of the domains measured. The present study results do not support the hypothesis that global DNA methylation, as measured in leucocytes, might be associated with cognitive functioning in healthy older individuals.

Key words: DNA methylation: Epigenetics: Cognitive performance: Population-based studies

Most cognitive functioning declines with advancing age, and identifying the risk factors for age-related cognitive decline has become a topic of increasing interest. Previous research has indicated that a low folate status might increase the risk of cognitive impairment(¹). However, the potential biological mechanisms underlying this relationship remain to be elucidated.

One possible mechanism that might explain the involvement of folate status in cognitive performance is DNA methylation, which refers to the epigenetic modification of gene expression by the addition of methyl groups to cytosine residues in DNA(²). Recent studies on animals have suggested that DNA methylation may be involved in regulating synaptic plasticity in hippocampal neurons, thereby influencing learning and memory processes²,³. In humans, both hypomethylation and hypermethylation of DNA have been implicated in psychiatric disorders, including schizophrenia(⁴), neurodegenerative disorders, such as Alzheimer’s disease, and syndromes associated with mental retardation, e.g. Fragile X syndrome⁵.

Methyl groups for DNA methylation are provided by the universal methyl donor S-adenosylmethionine, which is synthesised from methionine⁶. Folic acid may increase the availability of S-adenosylmethionine by promoting the conversion of homocysteine into methionine, thereby influencing DNA methylation status⁷. Indeed, an intervention study in

Abbreviations: FACIT, Folic Acid and Carotid Intima-Media Thickness (FACIT); MTHFR, 5,10-methylenetetrahydrofolate reductase.

* Corresponding author: O. J. G. Schiepers, fax +31 433884092, email olga.schiepers@maastrichtuniversity.nl
older women has shown that low dietary folate intake was associated with global DNA hypomethylation, which could be reversed by folate repletion\(^{(10)}\). In addition, the common 5,10-methylenetetrahydrofolate reductase (\(MTHFR\) \(677\) \(C\) \(\rightarrow\) \(T\) polymorphism, which mimics folate deficiency by impairing the conversion of homocysteine into methionine, has also been related to DNA hypomethylation\(^{(11)}\).

Given the role of folate metabolism in generating methyl donors for methylation processes, and the involvement of DNA methylation in brain functioning, it seems reasonable to hypothesise that folate status might influence cognitive functioning by exerting effects on DNA methylation. However, the association between DNA methylation status and cognitive performance in the general population has not yet been investigated. Therefore, the present study examined whether leucocyte global DNA methylation was associated with cognitive performance in healthy older adults.

Methods

Study population
The present study was performed using data from the Folic Acid and Carotid Intima-Media Thickness (FACIT) study, a randomised, double-blinded, placebo-controlled trial, originally designed to investigate the effects of 3-year folic acid supplementation on the risk of CVD\(^{(12)}\). The study population consisted of 818 healthy men and women, aged 50–70 years at baseline. A detailed description of the study design and the selection of participants can be found elsewhere\(^{(12)}\).

Venous blood samples were collected at baseline. Leucocyte global DNA methylation was determined in a sub-sample of 216 participants. First, the study population was stratified by \(MTHFR\) \(677\) \(C\) \(\rightarrow\) \(T\) genotype, to ensure equal distribution of \(MTHFR\) \(677\) \(C\) \(\rightarrow\) \(T\) genotypes in the final sample. Thereafter, participants in the folate treatment group were randomly selected from the three strata and were individually matched with participants in the placebo group on the variables age, sex, smoking status and \(MTHFR\) \(677\) \(C\) \(\rightarrow\) \(T\) genotype, as these variables may influence DNA methylation\(^{(11,13,14)}\). Some samples were not measured due to human error in sample retrieval. Valid DNA methylation data were available for 111 participants in the treatment group and 105 participants in the placebo group. As valid data on cognitive functioning were lacking for one participant in the folate treatment group, the final study sample consisted of 215 individuals.

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human participants were approved by the Medical Ethics Committee of Wageningen University. Written informed consent was obtained from all the participants.

Cognitive functioning

Cognitive functioning on the domains of memory, sensorimotor speed, complex speed, information processing speed and word fluency was assessed by a comprehensive neuropsychological test battery, consisting of the Visual Verbal Word Learning Task, the Stroop Colour-Word Interference Test, the Concept Shifting Test, the Letter–Digit Substitution Test and the Verbal Fluency Test, as described earlier\(^{(12)}\).

DNA methylation status and genotyping

Genomic DNA was isolated from peripheral blood leucocytes at baseline. Global DNA methylation was determined by liquid chromatography-MS/MS, as described previously\(^{(15)}\). Genomic DNA methylation status was calculated as the percentage of methylated cytosine to total cytosine (mCyt/(Cyt + mCyt)) \(\times\) 100%.

\(MTHFR\) \(677\) \(C\) \(\rightarrow\) \(T\) genotype was determined by PCR with restriction fragment length polymorphism analysis with \(Hinfi\)\(^{(16)}\), and was defined as a common variant (CC or CT genotype) or a rare variant (TT genotype).

Blood measurements

Fasting venous blood samples were collected at baseline, processed directly and stored at \(-80^\circ\)C. Serum folate was measured using a chemiluminescent immunoassay (Diagnostic Products Corporation, Los Angeles, CA, USA). Erythrocyte folate was determined in duplicate and the average was taken to reduce measurement error. Erythrocyte folate concentrations were calculated using the following formula: (unadjusted erythrocyte folate/haematocrit) – ((1 – haematocrit/haematocrit) \(\times\) serum folate). Plasma total homocysteine was determined by HPLC and fluorimetric detection, as described previously\(^{(17)}\).

Demographic and lifestyle variables

Level of education (low/middle/high) was measured by classifying formal schooling according to the Dutch educational system\(^{(18)}\). Alcohol consumption (g/d) and current smoking (yes/no) were ascertained by means of self-report questionnaires. BMI (kg/m\(^2\)) was calculated from height and weight, and physical activity was estimated using the Physical Activity Scale for the Elderly\(^{(19)}\).

Statistical analysis

Normality of data distributions was ascertained by normal plots. Baseline data were used to assess the cross-sectional associations between global DNA methylation status and cognitive functioning. Independent samples \(t\) tests and univariate ANOVA were carried out to examine whether DNA methylation status varied across sex, level of education, smoking status or \(MTHFR\) \(677\) \(C\) \(\rightarrow\) \(T\) genotype.

Hierarchical linear regression analyses were performed for DNA methylation status in relation to each of the five cognitive performance indices. The analyses were corrected for sociodemographic and lifestyle variables that were considered potential confounders, i.e. age, sex, level of education, alcohol consumption, smoking status, physical activity, erythrocyte folate concentration and \(MTHFR\) \(677\) \(C\) \(\rightarrow\) \(T\) genotype\(^{(11,13,14,20)}\).
To investigate the possibility of a non-linear relationship between global DNA methylation and cognitive performance, we repeated the analyses with the quadratic term for DNA methylation status as the independent variable, adjusted for covariates and the linear term for DNA methylation status. The quadratic term for DNA methylation status was expressed as the residuals of regressing (DNA methylation)^2 on DNA methylation, i.e. the quadratic component that is orthogonal to the linear component of DNA methylation.

The statistical power for detecting associations between DNA methylation status and each of the dependent variables, assuming a small effect size of f^2 = 0.03, was 0.80. Statistical differences were considered significant at P<0.05. All analyses were performed using SPSS 16.0 (SPSS, Inc., Chicago, IL, USA).

Results

Table 1 summarises the characteristics of the study population. The percentage of methylated cytosine to total cytosine residues in leucocyte DNA ranged from 4·0 to 5·6 %, which was comparable to the range reported by other population-based studies(11,15). The extent of global DNA methylation did not vary according to sex (t = −1.285, P=0.200), level of education (F = 0.611, P=0.544), smoking status (t = 1.611, P=0.109) or MTHFR 677 C → T genotype (t = −0.907, P=0.365).

Hierarchical linear regression analyses corrected for age, sex, level of education, alcohol consumption, smoking status, physical activity, erythrocyte folate concentration and MTHFR 677 C → T genotype did not reveal any significant associations between leucocyte global DNA methylation and cognitive performance on any of the domains measured (Table 2). In addition, repeating the analyses with the quadratic term for DNA methylation status as the independent variable did not yield any significant results (data not shown), implying that global DNA methylation did not show a non-linear relationship with cognitive performance.

Discussion

The present study did not support the hypothesis that individual variation in cognitive functioning in older adults might be related to the extent of leucocyte global DNA methylation. Although there are no previous studies investigating the relationship between global DNA methylation and cognitive functioning in healthy human subjects, aberrant DNA methylation has been implicated in neurodevelopmental disorders(7), psychiatric diseases(5) and neurodegenerative disorders(6). In addition, animal research has suggested that DNA methylation status may be involved in learning and memory processes, e.g. by regulating synaptic plasticity in hippocampal neurons(3,4).

The observed lack of a relationship between global DNA methylation and cognitive performance in healthy adults might imply that there is no functional relationship between the extent of cytosine methylation within DNA and individual differences in cognitive performance in the general population. In line with earlier reports(15), we observed that global DNA methylation has a relatively narrow distribution in healthy individuals. These findings suggest that under non-pathological conditions, there appears to be little inter-individual variation in DNA methylation-based regulation of gene expression, which decreases the likelihood that individual differences in cognitive performances may be mediated by this epigenetic mechanism.

Although global DNA methylation might not be involved in cognitive functioning, the present results do not rule out the possibility that DNA methylation at specific loci may be related to cognitive performance. In human subjects, gene-specific alterations in DNA methylation patterns have been associated with a number of pathological conditions characterised by cognitive deficits. Animal studies have suggested that diet-induced folate deficiency may result in overexpression of the Presenilin 1 gene by causing hypomethylation of its promotor region(21). Increased expression of this gene, which leads to elevated production of β-amyloid peptide, has been implicated in the aetiology of Alzheimer’s disease(22). In addition, schizophrenia has been associated with reduced expression of the gene encoding the protein Reelin, which is involved in neurodevelopment and synaptic plasticity, due to hypermethylation of the gene’s promoter region(5). However, although it may be speculated that gene-specific changes in DNA methylation might underlie part of the individual differences in non-pathological cognitive functioning, little is known

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total sample (n 215)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>60-9</td>
<td>60-2, 61-6</td>
</tr>
<tr>
<td>Female sex (%)</td>
<td>34-9</td>
<td></td>
</tr>
<tr>
<td>Level of education (% low/middle/high)</td>
<td>26-0/39-1/34-9</td>
<td></td>
</tr>
<tr>
<td>Alcohol consumption (g/d)*</td>
<td>12-6</td>
<td>4-5, 23-5</td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>14-9</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26-7</td>
<td>26-2, 27-2</td>
</tr>
<tr>
<td>Physical activity (PASE score)</td>
<td>149-2</td>
<td>140-5, 158-0</td>
</tr>
<tr>
<td>Erythrocyte folate (nmol/l)</td>
<td>716-0</td>
<td>681-2, 750-8</td>
</tr>
<tr>
<td>MTHFR 677 C → T genotype (% CC/CT/TT)</td>
<td>13-4</td>
<td>12-9, 13-8</td>
</tr>
<tr>
<td>Leucocyte global DNA methylation status (%)†</td>
<td>4-6</td>
<td>4-6, 4-7</td>
</tr>
</tbody>
</table>

PASE, Physical Activity Scale for the Elderly; MTHFR, 5,10-methylenetetrahydrofolate reductase.

* Median (Interquartile range) is given because of skewed data distribution.
† Percentage of methylated to total cytosine.
DNA methylation and cognitive functioning

Table 2. Cross-sectional associations between leucocyte global DNA methylation and cognitive performance in older adults
(Regression coefficients and 95% confidence intervals)

<table>
<thead>
<tr>
<th>Cognitive performance indices*</th>
<th>R^2 (step 1)†</th>
<th>P</th>
<th>R^2 change (step 2)†</th>
<th>β‡</th>
<th>95% CI‡</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>0·201</td>
<td><0·001</td>
<td>0·006</td>
<td>0·35</td>
<td>−0·19, 0·00</td>
<td>0·204</td>
</tr>
<tr>
<td>Sensorimotor speed</td>
<td>0·231</td>
<td><0·001</td>
<td>0·006</td>
<td>0·30</td>
<td>−0·16, 0·75</td>
<td>0·202</td>
</tr>
<tr>
<td>Complex speed</td>
<td>0·197</td>
<td><0·001</td>
<td>0·000</td>
<td>0·08</td>
<td>−0·60, 0·43</td>
<td>0·755</td>
</tr>
<tr>
<td>Information processing speed</td>
<td>0·212</td>
<td><0·001</td>
<td>0·000</td>
<td>0·10</td>
<td>−0·48, 0·68</td>
<td>0·736</td>
</tr>
<tr>
<td>Word fluency</td>
<td>0·141</td>
<td><0·001</td>
<td>0·008</td>
<td>0·43</td>
<td>−0·18, 1·03</td>
<td>0·164</td>
</tr>
</tbody>
</table>

* Cognitive performance indices are expressed as Z scores.
† R^2 represents the proportion of explained variance and R^2 change represents the change in the proportion of explained variance after each step in hierarchical linear regression analyses. The covariates age, sex, level of education, alcohol consumption, smoking status, physical activity, erythrocyte folate concentration and 5,10-methylenetetrahydrofolate reductase 677C → T genotype were entered in step 1 and DNA methylation status in step 2.
‡ Unstandardised regression coefficient and 95% CI for DNA methylation status in step 2.

about the genetic correlates of cognitive performance in healthy human subjects.

An alternative explanation for the present null findings is that cognitive performance might be related to short-term changes, i.e. within the range of hours, in DNA methylation patterns rather than individual variation on the level of global DNA methylation. Indeed, animal studies have reported that dynamic and reversible changes in DNA methylation, such as the transient methylation and demethylation of DNA, are crucial for synaptic plasticity, learning and memory processes\(^\text{[3,4]}\). It might be complicated, however, to measure such short-term changes in DNA methylation in volunteers, which makes it rather difficult to test this possibility.

From a methodological perspective, the present study was limited by its cross-sectional nature. In addition, the fact that we determined global DNA methylation in leucocytes rather than brain tissue should also be considered a limitation, as the extent of DNA methylation might differ between cells derived from the periphery and the brain\(^\text{[23]}\). However, no direct measures of DNA methylation status in the central nervous system were available, given the inability to measure cerebrospinal fluid or brain DNA methylation status in volunteers.

It might also be argued that because of the relatively small sample size, the present study might have been underpowered to detect very modest associations. However, it should be noted that the present study had 80% power to detect a 3% change in the proportion of explained variance, which may be considered a small effect size\(^\text{[24]}\).

The present study did not support the notion that folate metabolism might influence cognitive performance through the mechanism of global DNA methylation, as measured in leucocytes. In line with the present findings, we found that long-term supplementation with folic acid, which significantly improved cognitive performance in the FACIT population\(^\text{[12]}\), did not have any effect on leucocyte global DNA methylation status (A. Jung, Y. Smulders, P. Verhoef, F. J. Kok, H. Blom, R. Kok, E. Schouten, E. Kampman, J. Durga, 2010, unpublished results). This might be explained by the fact that methylation capacity is not exclusively dependent on folate status, as methyl groups may also be provided by dietary intake of methionine, or by betaine-mediated remethylation of homocysteine\(^\text{[9]}\).

To the best of our knowledge, this is the first study to investigate the relationship between leucocyte global DNA methylation and non-pathological cognitive functioning in healthy older adults. Future studies focusing on gene-specific DNA methylation patterns or short-term changes in DNA methylation status might contribute further to identifying the epigenetic mechanisms involved in cognitive functioning.

Acknowledgements

The FACIT study was supported by the Netherlands Organization for Health Research and Development (grant number 200110002), Sanquin Blood Bank (grant number 02-001), Wageningen University, and Top Institute Food and Nutrition. The author contributions were as follows: O. J. G. S. and J. D. designed the study. F. J. K., P. V. and J. D. were responsible for data acquisition and management of the FACIT study. O. J. G. S. analysed and interpreted the data and wrote the manuscript. All the authors reviewed and approved the final manuscript. None of the authors had a personal or financial conflict of interest.

References

