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Abstract

The commensal bacteria Lactobacillus are widely used as probiotic organisms conferring a heath benefit on the host. They have been

implicated in promoting gut health via the stimulation of host immunity and anti-inflammatory responses, as well as protecting the

intestinalmucosa against pathogen invasion. Lactobacilli grow by fermenting sugars and starches and produce lactic acid as their primary

metabolic product. For efficient utilisation of varied carbohydrates, lactobacilli have evolved diverse sugar transport and metabolic systems,

which are specifically induced by their own substrates. Many bacteria are also capable of sensing and responding to changes in their

environment. These sensory responses are often independent of transport or metabolism and are mediated through membrane-spanning

receptor proteins. We employed DNA-based pyrosequencing technology to investigate the changes in the intestinal microbiota of piglets

weaned to a diet supplemented with either a natural sugar, lactose or an artificial sweetener (SUCRAMw, consisting of saccharin and

neohesperidin dihydrochalcone (NHDC); Pancosma SA). The addition of either lactose or saccharin/NHDC to the piglets’ feed

dramatically increased the caecal population abundance of Lactobacillus, with concomitant increases in intraluminal lactic acid

concentrations. This is the first report of the prebiotic-like effects of saccharin/NHDC, an artificial sweetener, being able to influence the

commensal gut microbiota. The identification of the underlying mechanism(s) will assist in designing nutritional strategies for enhancing gut

immunity and maintaining gut health.
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The microbial colonisation of the gastrointestinal tract at birth,

predominantly by lactic acid bacteria, including Lactobacillus,

Bifidobacteria and Streptococcus, is of paramount importance

to health and performance through the stimulation of gut

function, immunity and maturation(1–4). After weaning, the

gut microbiota becomes more complex and is capable of fer-

menting indigestible dietary components to monocarboxylates,

mainly acetate, propionate, butyrate and lactate. The absorption

of acetate, propionate and butyrate by colonic epithelial cells

provides a valuable energy source, with butyrate also

regulating homeostasis of the colonic epithelium by controlling

the expression of genes associated with the proliferation,

differentiation and apoptosis of colonic epithelial cells(5–9).

Furthermore, the production of lactic acid reduces colonic

pH, thereby inhibiting pathogenic organisms(10).

In today’s commercial pig industry, piglets are weaned

between 21 and 35 d of age(11). Although early weaning

increases the number of piglets born per annum, the sudden

and major change in the diet greatly increases the risk of

enteric disease, diarrhoea and malnutrition(11). It has been

suggested that the high susceptibility of early-weaned piglets

to enteric disorders is due to disruption in the establishment

of a stable intestinal microbiota, thereby allowing pathogenic

bacteria to flourish and cause disease(12–14).

Nutritional strategies, designed to prevent enteric disorders

and improve the health and growth of piglets, may have the

potential to influence the gastrointestinal microbiota. These

strategies commonly entail the inclusion of dietary supplements

such as dairy products(15), natural sugars(16,17), artificial

sweeteners(18), fermentable carbohydrates(19,20) and even
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probiotic micro-organisms(21). However, the precise effects of

these dietary supplements on the gastrointestinal microbiota

have not been fully characterised. We employed 16S rDNA-

based 454 pyrosequencing technology(22) to assess the

composition of caecal microbiota in piglets. The present brief

study focuses on the effect of dietary supplementation of

the piglets’ feed with either lactose or an artificial sweetener

(saccharin/NHDC) specifically on the population abundance

of gut Lactobacillus.

Dietary lactose has previously been shown to act as a

prebiotic, promoting the growth of beneficial commensal

bacteria, such as Bifidobacteria and Lactobacillus, and

improving gut health and growth performance in weaning

piglets(15,16). Dietary supplementation with saccharin/NHDC

(SUCRAMw), the only artificial sweetener that has approval

for use as a feed additive in the European Union(23), has

also been shown to dramatically reduce enteric disease and

to enhance growth performance in early-weaned piglets(18).

However, very few studies(24,25) on the prebiotic-like effects

of sweeteners on the gastrointestinal microbiota have been

published.

In the present study, we observed significant increases in

the caecal population abundance of Lactobacillus in response

to the inclusion of artificial sweetener consisting of saccharine

and NHDC in the piglets’ feed. The mechanism(s) underlying

the increased abundance of caecal Lactobacillus in response

to dietary supplementation with saccharin/NHDC are

presently unknown. Processes, such as the influence of

host-derived factors upon the microbiota(26,27) and/or the

involvement of a Lactobacillus cell membrane-associated

sensor for recognising artificial sweetener, are proposed to

explain this observation.

Methods

Animals and collection of samples

Male and female suckling Landrace £ Large White piglets aged

28 d were placed in pairs and housed in standard pens (1·5 m2,

12 h light–dark cycle and 26·78C). A total of three groups, each

consisting of eight animals, were weaned to and maintained

on the following isoenergetic (16·76–16·82 kJ/g) diets for

2 weeks: group 1, a commercial wheat- and soya-based

swine basal diet (Target Feeds Limited) containing 42 %

(w/w) hydrolysable carbohydrates (HC); group 2, the same

basal diet but containing 5 % (w/w) lactose (in the form of

dairy crest whey) (HC þ L); group 3, the same basal diet

but supplemented with 0.015 % (w/w) SUCRAMw (an artificial

sweetener consisting of saccharin and neohesperidin dihydro-

chalcone) (HC þ S). All the animals had free access to food

and water at all times and consumed the same amount of

feed. They all remained healthy throughout the course of

the feeding trial, and had no signs of enteric disturbances.

After 2 weeks, the piglets were killed with an intravenous

injection of pentobarbitone (200 mg Pentoject/ml; AnimalCare

Limited) into the cranial vena cava (according to UK Home

Office Schedule 1 regulations). National/institutional guide-

lines for the care and use of animals were followed, and all

experiments were approved by the University of Liverpool

Ethics Committee. Immediately post-mortem, caecal and

rectal contents were removed, wrapped in aluminium foil

and frozen in liquid N2. All samples were subsequently

stored at 2808C until used for microbial DNA extraction or

capillary GC analysis.

Extraction of bacterial DNA from caecal content samples

Nucleic acid was extracted from the samples of caecal contents

using the method outlined by Lin & Stahl(28) and described

previously(29). Approximately 1 g aliquots of frozen samples

were transferred to screw-cap tubes containing SDS, Tris-

buffered phenol (pH 8·0) (Sigma-Aldrich Company Limited)

and sterile acid-washed glass beads. The samples were

immediately homogenised using a mini beadbeater (Biospec

Corporation, Stratech Scientific). The aqueous supernatant

was then extracted with phenol–chloroform–isoamylalcohol

and treated with DNase-free RNase A to remove contaminating

RNA. Total DNA (primarily bacterial) was precipitated by the

addition of sodium acetate and isopropanol. Purified DNA

was resuspended in sterile Tris buffer and stored at 2808C.

DNA integrity was assessed by agarose gel electrophoresis.

We observed that rapid freezing of samples in liquid N2,

followed by homogenisation in a buffer containing phenol, is

an effective method for inactivating nuclease activity. This

approach also avoids repeated freeze–thawing of samples

that may be deleterious to the efficient isolation of DNA from

Gram-negative microbes.

PCR amplification of bacterial 16S rRNA genes (rDNA)

Purified DNA was used as a template for PCR amplification

of bacterial 16S rRNA genes using GS FLX þ Titanium

fusion primers, targeted to flanking regions of the V1–V3

loop of bacterial 16S rDNA, producing amplicons of approxi-

mately 500 bp (sense 50-CAGGCCTAACACATGCAAGTC-30;

antisense 50-ATTACCGCGGCTGCTGG-30). PCR cycling was

kept to a maximum of eighteen cycles to avoid chimera pro-

duction. Amplicons from each group of piglets, labelled by

the inclusion of a Multiplex Identifier sequence tag, were

pooled in equimolar amounts, and sequenced at the Centre

for Genomics Research, University of Liverpool, on a 454 GS

FLX þ Titanium sequencing platform (Roche).

Analysis of 454 GS FLX þ sequence reads

Post-sequencing, raw reads were de-multiplexed using

the Multiplex Identifier sequence tags and corrected for

PCR and sequencing artifacts using AmpliconNoise(30) and

ChimeraSlayer(31). The reads were aligned using PyNAST

and Greengenes(32,33) and phylogenies calculated with FAST-

TREE(34). Operational taxonomic units were defined, using a

similarity threshold of 97 %, with UCLUST(35) and taxonomy

was assigned via RDP Classifier 2.2(36) using Qiime version

1.5(37) to implement analysis workflow.
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Measurement of caecal lactic acid concentrations

The concentration of lactic acid in the caecal contents of piglets

was measured as described previously(38). Briefly, thawed

caecal contents were centrifuged to remove particulates, and

lactic acid was extracted from supernatants by the addition of

concentrated HCl and diethyl ether. The diethyl ether layer

extracts were then derivatised and lactic acid concentrations

determined by capillary GC, quantified in relation to an internal

standard.

Statistical analysis

Data are presented as means with their standard errors. Signifi-

cance of differences was determined using one-way ANOVA

with Bonferroni’s multiple comparison test (GraphPad Prism 5;

GraphPad Software, Inc.). Results were considered significant

if P,0·05.

Results

Effect of lactose on the population abundance of
swine gut Lactobacillus

Supplementation with the HC þ L diet resulted in a significant

enhancement of the caecal Lactobacillus population

(expressed as a percentage of the total number of sequences)

from 8·7 (SEM 1·7) to 24·5 (SEM 4·1) %, a 2·8-fold increase

(P,0·01; Fig. 1). Furthermore, this increase was observed to

be almost entirely due to one particular phylotype, designated

Lactobacillus OTU4228, which increased from 7·4 (SEM 1·5) %

of the total microbiota in piglets weaned to the basal HC diet

to 21·4 (SEM 4·0) % of the total microbiota in those weaned to

the HC þ L diet (P,0·01; Fig. 1).

Moreover, the measurements of lactic acid concentrations in

the caecal contents of piglets weaned to the HC þ L diet

showed lactic acid to be present at a concentration of 15·2

(SEM 1·8) mM; a 10-fold increase compared with caecal lactic

acid concentrations in piglets weaned to the basal HC diet

(1·5 (SEM 0·2) mM) (P,0·001; Fig. 2).

Effect of saccharin/NHDC on the population abundance
of swine gut Lactobacillus

A significant enhancement of the relative population size of

caecal Lactobacillus was similarly observed in piglets weaned

to the HC þ S diet. In these piglets, Lactobacillus accounted

for 21·6 (SEM 4·9) % of the total microbiota (expressed as a

percentage of the total number of sequences), compared with

8·7 (SEM 1·7) % in piglets weaned to the basal HC diet. This

represents an increase of 2·5-fold (P,0·05; Fig. 1). Again, this

increase was observed to be almost solely due to an increase

in the population of Lactobacillus OTU4228, which comprised

15·3 (SEM 4·6)% of the total microbiota in piglets weaned to

the HC þ S diet (P,0·05; Fig. 1).

Furthermore, caecal lactic acid concentrations in response

to the inclusion of saccharin/NHDC were increased by

2·1-fold over concentrations of caecal lactic acid in piglets

weaned to the basal HC diet (3·2 (SEM 0·6) v. 1·5

(SEM 0·2) mM, P,0·05; Fig. 2).

Discussion

Lactobacilli are the predominant lactic acid bacteria found in the

pig intestine and constitute a major proportion of the entire

intestinal microbiota. As such, they are of particular importance

to the maintenance of gut health. The presence and activity of

lactobacilli have a stimulatory effect on both gut immunity

and maturation, enhancing immune protection and reducing

gastrointestinal inflammatory responses(39,40). They also dis-

play antimicrobial activities that participate in host epithelial

defence, such as reduction of colonic pH (through the

production of lactic acid), protection against mucosal pathogen

invasion and production of bacteriocins(9,41,42).

We used PCR amplification of bacterial 16S rRNA gene

sequences and subsequent 454 pyrosequencing to identify

changes in swine gut microbiota in response to dietary

supplementation. The average number of sequence reads per
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Fig. 1. Population abundance of caecal total lactobacilli ( ) and Lactobacillus

OTU4228 ( ) (expressed as a percentage of the total microbiota) in piglets

weaned to a basal hydrolysable carbohydrate (HC) diet and a HC diet

supplemented with 5 % (w/w) lactose (HC þ L) or 0·015 % (w/w) saccharin/

NHDC (HC þ S). Values are means, with their standard errors represented

by vertical bars. Mean values were significantly different from those of the

HC diet: *P,0·05, **P,0·01.
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Fig. 2. Concentration of lactic acid in the caecal contents of piglets fed a basal

hydrolysable carbohydrate diet (HC) and a HC diet supplemented with 5 %

(w/w) lactose (HC þ L) or 0·015 % (w/w) saccharin/NHDC (HC þ S). Values

are means, with their standard errors represented by vertical bars. Mean values

were significantly different from those of the HC diet: *P,0·05, ***P,0·001.
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sample was in excess of 15 000 and using a similarity threshold

of 97 % allowed classification of over 1000 phylotypes.

Taxonomic assignment of these phylotypes showed that, in

these piglets, the caecal microbiota is dominated by three

major bacterial classes: Bacteroidia, Bacilli and Clostridia,

which together contribute over 90 % of all sequences. Major

bacterial groups represented include Porphyromonas

and Prevotella (Bacteroidia), Lactobacillus (Bacilli) and

Ruminococcus, Lachnospira and Veillonella (Clostridia).

In the present study, which focuses exclusively on changes

within the Lactobacillus populations, we report that there

were significant enhancements in the relative population

abundance of lactobacilli in the caecal contents of piglets

in response to dietary supplementation with either a natural

sugar, lactose or an artificial sweetener (saccharin/NHDC).

The addition of lactose (5 %, w/w) to the basal diet resulted

in caecal Lactobacillus populations increasing from

approximately 9 % to over 24 % of the total microbiota. Notably,

supplementation of the basal diet with saccharin/NHDC

(0·015 %, w/w; a 330-fold lower concentration than lactose)

also increased caecal Lactobacillus populations to almost

the same level (approximately 22 % of the total microbiota)

(Fig. 1). In parallel, caecal lactic acid concentrations (1·5 mM

in piglets weaned to the basal HC diet) increased 10-fold to

over 15 mM in piglets weaned to the same diet containing

lactose and 2-fold to over 3 mM in piglets weaned to the diet

containing saccharin/NHDC (Fig. 2).

Interestingly, the increase in Lactobacillus abundance

observed in the caecal contents of piglets weaned to diets

containing either lactose or artificial sweetener is not a general

enhancement in all Lactobacillus populations present in the pig

caecum. In fact, one particular phylotype, designated Lacto-

bacillus OTU4228, is almost solely responsible for the observed

increase. Lactobacillus OTU4228 constitutes approximately 7 %

of the total microbiota in piglets weaned to the basal HC diet

(over 85 % of the total Lactobacillus community). This increases

to over 21 and 15 % of the total microbiota in piglets weaned

to the HC þ L and HC þ S diets, respectively (Fig. 1). Although

the response of Lactobacillus OTU4228, in terms of increased

population abundance, is similar in piglets weaned to diets

supplemented with either lactose or saccharin/NHDC, the dis-

parity between caecal lactic acid concentrations suggests that

the underlying mechanisms are quite different.

It has been shown that there is a rapid and significant

decrease in pig intestinal lactase activity with both age

and weaning(43–45), indicating that a substantial amount of

ingested lactose may not be digested by the host(46). Lactose

is then available as a highly metabolisable substrate readily

utilised by bacteria (particularly lactobacilli), initially in the

distal regions of the small intestine as well as in the

caecum(46). Increases in the population abundance of

Lactobacillus have previously been demonstrated in piglets

fed diets supplemented with lactose(15,16), primarily due to

the metabolism of lactose by lactobacilli.

The highly fermentable nature of lactose is reflected in the

large increase in lactic acid concentrations seen here in the

caecal contents of piglets weaned to the diet containing

lactose (population abundance of lactobacilli increases

2·8-fold; lactic acid increases 10-fold). In contrast, the increase

in lactic acid concentrations measured in the caecal contents

of piglets weaned to the same diet containing saccharin/

NHDC is in proportion to the increase in the population abun-

dance of Lactobacillus (2·1- and 2·5-fold, respectively). This

suggests that, unlike lactose which provides an additional

substrate for the growth of lactobacilli and subsequent lactic

acid production, this artificial sweetener is not a metabolisable

energy source that can be fermented by Lactobacillus

populations to produce lactic acid.

The effects of artificial sweeteners on gut microbiota have

previously been studied in human subjects. It has been

shown that the addition of maltitol, a sugar alcohol, to confec-

tionery significantly enhanced the population abundance

of both Bifidobacteria and Lactobacillus (25). However, it is

notable that maltitol is a fermentable substrate for these gut

microbes(25,47).

In the mammalian intestine, the sweet taste receptor,

T1R2–T1R3, expressed in enteroendocrine cells, can detect the

presence of sugars and artificial sweeteners. This initiates an

intracellular signalling pathway leading to the up-regulation of

the intestinal glucose transporter, Naþ/glucose co-transporter 1

(SGLT1), and an increased capacity of the gut to absorb

glucose(48–50). Likewise, yeasts, such as Saccharomyces

cerevisiae, possess mutated glucose transporters (Snf3 and

Rgt2) that act as transmembrane sweet sensors controlling the

expression of hexose transporter proteins in the presence of

glucose and other sugars(51,52).

Lactobacilli, and many other enteric bacteria, express mul-

tiple sugar transport and metabolic systems that allow them

to utilise a variety of carbohydrate substrates and adapt

quickly to changes in nutrient availability(53). This versatility

is of particular importance in an environment such as the

gastrointestinal tract. The predominant sugar transport

mechanism in these bacteria is the phosphoenolpyruvate:

carbohydrate phosphotransferase system (PTS); with over

twenty different PTS systems being identified, each is specific

for only one or a few sugars(54). There are also multiple

non-PTS sugar transport systems such as non-PTS permeases

and ABC transporters for various poly- and oligosaccharides(54).

The vast majority of these systems are regulated in the

presence of a specific substrate(53,54).

Extracellular sensing is a key method employed by bacteria

in order to respond to changes in their environment such as

alterations in pH, chemical composition or nutrient

availability. Many of these sensory responses are independent

of transport or metabolism, but involve the binding of chemi-

cal ligands to membrane-spanning sensory receptors in order

to initiate intracellular signalling pathways(55,56). Notably,

recent evidence has shown that transcription of genes

responsible for utilisation of diverse polysaccharides by

enteric Bacteroides species can be directly activated by the

recognition of signature oligosaccharide ligands by specific

receptors(57,58), demonstrating that these systems play a key

role in bacterial ability to sense and utilise polysaccharides

in gut ecosystems. In the light of results presented here, we

propose that lactobacilli may possess a plasma membrane-

associated sweet sensor capable of sensing artificial
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sweeteners and initiating pathways controlling carbohydrate

transport and metabolism.

However, the influence of the host on the composition and

activity of the gut microbiota is becoming increasingly evident

and should not be underestimated. Epithelial factors, such as

the secretion of growth-promoting mucosal glycans or toxic

inhibitory compounds, have been highly implicated in

regulating the composition of the intestinal microbiota(26).

Furthermore, differences in microbial community structure

between different host species have been proposed to arise

from distinct selective pressures imposed from within the gut

habitat of the respective host(59). Moreover, host genetic factors

have also been shown to contribute in part to gut microbiota

composition(27,60).

Whatever the underlying mechanism(s), the data presented

here show that dietary supplementation with saccharin/NHDC

artificial sweetener can alter the gastrointestinal microbiota

by positively influencing the population abundance of

lactobacilli, commensal bacteria that are able to exert a

beneficial effect on gut health, immunity and maturation(39,40).

The identification and characterisation of the underlying

mechanism(s) will assist in the design of nutritional strategies

aimed at manipulating the pig commensal microbiota,

promoting the health of the gut particularly during the critical

post-weaning period.
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