Dietary intake measurement using 7 d diet diaries in British men and women in the European Prospective Investigation into Cancer-Norfolk study: a focus on methodological issues

Marleen A. H. Lentjes1*, Alison McTaggart1, Angela A. Mulligan1, Natasha A. Powell1, David Parry-Smith1, Robert N. Luben1, Amit Bhaniani1, Ailsa A. Welch2 and Kay-Tee Khaw3
1Strangeways Research Laboratories, Department of Public Health and Primary Care, University of Cambridge, 2 Worts Causeway, Cambridge CB1 8RN, UK
2Medical School, Diet and Health Group, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
3Clinical Gerontology Unit, Addenbrooke’s Hospital, University of Cambridge School of Clinical Medicine, Cambridge CB2 2QQ, UK

(Submitted 4 December 2012 – Final revision received 4 July 2013 – Accepted 18 July 2013 – First published online 9 September 2013)

Abstract
The aim of the present study was to describe the energy, nutrient and crude v. disaggregated food intake measured using 7 d diet diaries (7dDD) for the full baseline Norfolk cohort recruited for the European Prospective Investigation into Cancer (EPIC-Norfolk) study, with emphasis on methodological issues. The first data collection took place between 1993 and 1998 in Norfolk, East Anglia (UK). Of the 30 445 men and women, aged 40–79 years, registered with a general practitioner invited to participate in the study, 25 639 came for a health examination and were asked to complete a 7dDD. Data from diaries with data recorded for at least 1 d were obtained for 99 % members of the cohort; 10 354 (89·8 %) of the men and 12 779 (91·5 %) of the women completed the diet diaries for all 7 d. Mean energy intake (EI) was 9·44 (SD 2·22) MJ/d and 7·15 (SD 1·66) MJ/d, respectively. EI remained approximately stable across the days, but there was apparent under-reporting among the participants, especially among those with BMI ≥ 25 kg/m². Micronutrient density was higher among women than among men. In conclusion, under-reporting is an issue, but not more so than that found in national surveys. How foods were grouped (crude or disaggregated) made a difference to the estimates obtained, and comparison of intakes showed wide limits of agreement. The choice of variables influences estimates obtained from the food group data; while this may not alter the ranking of individuals within studies, this issue may be relevant when comparing absolute food intakes between studies.

Key words: Diet diaries; Comparison food groups; Energy intake; European Prospective Investigation into Cancer-Norfolk

The European Prospective Investigation into Cancer (EPIC) study is a ten-country, half-a-million-participant collaboration. Its primary purpose was to elucidate diet–cancer associations; however, the aims of the study have broadened to incorporate other exposures and health outcomes. Before recruitment of participants for the EPIC study in Norfolk (EPIC-Norfolk) started, comparisons of dietary assessment methods were undertaken to establish their relative validity(1) as well as their associations with recovery biomarkers(2). Although it was acknowledged that the FFQ has its place within the wider EPIC study(3), Norfolk participants were asked to complete both a FFQ and a 7 d diet diary (7dDD) because of higher correlations with biomarker data(4), its flexibility with respect to hypothesis generation(2) and the growing food supply(3). The open-ended prospective recording of dietary intake in the 7dDD reduces recall bias(4), but it is substantially more laborious in terms of data entry because of data interpretation. The intakes obtained from 7dDD can be used in an absolute way, but similar to other observational measures of dietary assessment, they are prone to energy under-reporting and require vigilance when interpreting results(3,5). After 16 years, the 7dDD of the full cohort of over 25 500 participants taking part in the EPIC-Norfolk study are available to study diet–disease associations.

Health advice to the general public is given in terms of the quantities of foods to be consumed, rather than in terms of

Abbreviations: 7dDD, 7 d diet diary; CHEDDAR, Correct Handling of EPIC-Norfolk Data Diminishes Awful Results; CoF, McCance and Widdowson’s Composition of Foods; EI, energy intake; EPIC, European Prospective Investigation into Cancer; F&V, fruit and vegetable; PAL, physical activity level; TEE, total energy expenditure.

* Corresponding author: M. A. H. Lentjes, fax +44 1223 740 177, email marleen.lentjes@phpc.cam.ac.uk
nutrient intake(6). This brings another layer of data interpretation, i.e. grouping the foods chosen during data entry into substantially enough groups for statistical analysis while maintaining consistency within food groups to aid in the formulation of clear guidelines for public health messages. We disaggregated composite dishes into their constituent parts, which in the case of meat dishes has already been shown to improve precision in the estimation of the amount of meat consumed using national survey(7,8) and cohort data(9). Disaggregation is important for the formulation of recommendations as well as the establishment of sources of nutrients. However, the extent to which the measures of disaggregated intakes and cruder measures are in agreement for groups such as fruit, vegetables and fish is less well documented. These comparisons are of importance when food group data across studies are compared or pooled, a process that is further complicated by decisions made by researchers on food classification(10) and unclear information provided by researchers regarding the foods that are included or excluded from particular food groups.

In the present study, we aimed to describe the process of dietary intake measurement, i.e. from data collection to data fit for statistical analysis, used in the EPIC-Norfolk study and the different interpretation stages that are involved. We analysed population energy and nutrient intakes from the largest prospective cohort that completed 7dDD. Knowing that under-reporting takes place, we estimated the proportion of participants who under-reported. Finally, we analysed the amounts of commonly consumed food groups quantified in the traditional (‘label-based’) way and using disaggregation, followed by an assessment of agreement between these two ways of data interpretation.

Methods

European Prospective Investigation into Cancer-Norfolk

Recruitment for the EPIC-Norfolk study started in 1993(11). For the present study, 30,445 men and women between the ages of 40 and 79 years were invited via thirty-five general practices based in Norwich, East Anglia (UK), of whom 25,639 came for a health examination and were asked to complete a 7dDD (Table 1). In the UK National Health Service, where all residents are registered with a general practitioner, practice registers provide a good proxy for population-based registers. The study was conducted according to the Declaration of Helsinki and was approved by the Norwich District Health Authority Ethics Committee, and all participants gave signed informed consent.

Anthropometry and energy requirements

During their health examination, participants’ weight was measured to the nearest 0.2 kg using a digital scale (Salter). Height was measured to the nearest millimetre using a free-standing stadiometer; for both measures, the participants wore light clothing and no shoes. To estimate under-reporting, height and weight were used to calculate BMR using the Henry equation taken from the report of the Scientific Advisory Committee on Nutrition(12). Total energy expenditure (TEE) was estimated by multiplying the BMR with three levels of assumed physical activity (PAL) in the EPIC-Norfolk population. The PAL were taken from the same report and based on studies that used doubly labelled water methods to estimate TEE: 1.40 (10th centile); 1.49 (25th centile); 1.63 (with 50th centile representing light physical activity)(13). PAL values of 1-27 are considered a minimum survival requirement, and PAL in healthy, mobile, older adults are considered to be the same as those in adults. We included the 10th centile PAL of 1.40 to represent very low levels of physical activity.

The 7d diet diary

The 7dDD is an A5 booklet with four pages for each day to record the foods and drinks consumed over seven meal occasions (before breakfast, breakfast, between breakfast and lunch, lunch, between lunch and dinner, dinner and after dinner), based on the diary used in the National Survey of Health and Development(14). For each day, there is a separate area for recipe notation and a checklist of commonly consumed, but often forgotten, foods. The last four pages in the diary are in the style of a general questionnaire where
details regarding the types of milk, bread and spread are recorded to aid data entry in case the participants did not provide enough details in their 7dDD.

During the participants’ health examination, a nurse conducted a 24 h diet recall according to a standardised protocol(14) and explained how to complete the booklets and record the amount of details that would be necessary in order to analyse the diaries, avoiding evaluation of their diet and using the aforementioned checklist to help them remember. The participants recorded data for the remaining 6 d at their home. They were asked to write down the type and amount of foods consumed at the time of consumption. Portions could be estimated using household measures (such as teaspoons and mugs) or one of the seventeen colour-print photos of commonly consumed foods/dishes or by recording weights from packaging. The participants returned the diaries to the study centre by post, where they were recorded as ‘returned’ and immediately stored; no contact with the participants was attempted.

Data entry

The returned diaries were initially selected for data entry as a series of nested case–control analyses. The diaries were entered into Data into Nutrients for Epidemiological Research (DINER), a computer-based coding system developed in house, described by Welch et al.(14). As resources permitted, diaries were entered between 1996 and 2011 by one to six trained data-entry clerks, who were blinded to the case or control status of the participants. Over 11 000 food items and nearly 600 portions were available to choose from by the time data entry was completed. To guide the data-entry clerks’ work and ensure consistency, a manual that explained common situations and the decisions to be made was developed and maintained.

Data cleaning

The process of converting handwritten 7dDD into a digital format involved a two-part cleaning process, covering database- and diary-related errors.

Database checks. The database checks ensured that food items and their associated data such as portion sizes, nutrient quantities, density, cooking loss, water gain and edible part fractions were kept consistent across the various source tables. Nutrient data from the 5th edition of McCance and Widdowson’s Composition of Foods (CoF)(15) and the ten supplement books(16–25) were comprehensively checked and missing values were completed for carotenoids, vitamin C, Fe, vitamin D, vitamin E and vitamin K. The nutrient data have expanded extensively to include a total of thirty-two fat fractions, sixteen phyto-oestrogens(26,27), six phytosterols(28), haem and non-haem Fe and thirty-five distinct flavonoids. For the majority of the added phytochemicals, the nutrient quantity takes the ranges into account, i.e. the variety found in published and/or analysed data, by creating separate nutrients for ‘minimum’, ‘median/mean’ and ‘maximum’ nutrient amounts.

Table 2. Examples of several foods and the categories to which they belong, depending on the food group

<table>
<thead>
<tr>
<th>Qualitative food groups</th>
<th>Quantitative/disaggregated food groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food items</td>
<td>Crude group</td>
</tr>
<tr>
<td>Chicken risotto</td>
<td>Cereal, other</td>
</tr>
<tr>
<td>Beef fillet steak, grilled</td>
<td>Red meat</td>
</tr>
<tr>
<td>Veal in tomato sauce</td>
<td>Red meat dish</td>
</tr>
<tr>
<td>Quiche Lorraine</td>
<td>Pie</td>
</tr>
<tr>
<td>Muesli</td>
<td>Cereal, other</td>
</tr>
<tr>
<td>Apple crumble</td>
<td>Cereal pudding</td>
</tr>
<tr>
<td>Custard, made up with skimmed milk</td>
<td>Milk dessert</td>
</tr>
<tr>
<td>Tuna and sweetcorn sandwich filling</td>
<td>Fish & seafood</td>
</tr>
<tr>
<td>Iceberg lettuce</td>
<td>Leafy salad</td>
</tr>
<tr>
<td>Vegetable soup, canned</td>
<td>Soups</td>
</tr>
<tr>
<td>Orange juice, commercial</td>
<td>Drinks</td>
</tr>
<tr>
<td>Lemonade, fizzy</td>
<td>Drinks</td>
</tr>
</tbody>
</table>

F, fruit; V, vegetable.

* Another version of this quantitative food group that acknowledges the contribution of fruit juices to fruit (i.e. a proportion of 1) exists.
Diary checks. The first checks on a 7dDD were done after entry by the data enterers where a supplementary program to Data into Nutrients for Epidemiological Research (DINER) identified meal times missed or extreme portion sizes. Most checks, however, were done by the nutritionists' team using a suite of in-house designed programs. Notes on how to use the different parts were compiled in a single user manual CHEDDAR (Correct Handling of EPIC-Norfolk Data Dennitit An Wul Resulte)(299). CHEDDAR ensured similar handling and interpretation of the computer output, as well as an explanation of data management for both paper and digital diary data.

The programs for data cleaning and calculation have seen two extensive revisions in the past 6 years. The first revision took place at the start of the Medical Research Council Centre for Nutritional Epidemiology in Cancer Prevention and Survival in 2007(30). The original program relied on expensive commercial software and it was thought beneficial to use open-source software. The checking and calculation programs have been called 'DINERMO' since their inception (a name reflecting 'moving onwards' from data entry). The checks described by Welch et al.'(141) were incorporated into DINERMO, and these were extended with date validity checks, whereby diaries containing details for less than three meal times per d were evaluated for validity; more detailed portion-size allocation checks, such as suitability of portion defaults; improvements on day completion checks and a general improvement of interface and data output provided. The second revision of DINERMO has taken place over the last 2 years and focused on making the checking process more efficient by merging elements of checking and calculation together as well as improving computer efficiency. We also incorporated the food group calculation into this version and revised the user manual to reflect these changes, which is now called the EPIC-Norfolk Diary All-in-one Method (EDAM).

Output

Nutrients. The recently revised nutrient calculation program can calculate all the 208 nutrient quantities (and food group data) for all the 25,507 diaries much more rapidly due to parallel processing capabilities. Each food item is calculated for the full range of nutrients. This ensures a high level of flexibility since data can be summed and averaged to provide nutrient variables that can be compared between the seven individual days (or any other time element in the diaries, such as per meal) or averaged over the number of days data have been recorded. The nutrient intake data can also be combined with the food group data to provide information on the sources of nutrients (e.g. the amount of vitamin C derived from vegetables).

Food group data. Food group data enable us to analyse the data in different ways. Most of the food groups are hierarchical in nature. Similar foods are grouped together in the same category, and in the crudest grouping system available, foods are labelled with names such as 'vegetable', 'meat' and 'dairy'. (Table 2). A detailed food grouping system creates sub-categories such as 'Brassicaceae', 'beef' and 'cheese'. Another group focuses on all fruit and vegetable (F&V) varieties (e.g. further categorising Brassicaceae into vegetables such as Brussels sprouts, cabbage and broccoli) and their respective preparation methods such as 'raw/fresh', 'cooked', 'dried', 'sauce/soup', 'juice' or 'dish'. Specific groups, not fitting into the hierarchy, were created for several projects such as a group that matches the 7dDD food items to their respective FFQ item (if present), dairy food groups and a group for canned products. For dairy products, the food items were characterised by three elements: dairy source (milk, cheese, cream, butter, yogurt, etc.), dairy fat content (skimmed/semi-skimmed/whole, double/single, full fat/reduced fat, and categories of the percentage of fat in spreads) and subjective dairy content (100% dairy/high dairy/low dairy/non-dairy).

Table 3. Classification of food items into crude groupings and the criteria applied for disaggregating food items in the European Prospective Investigation into Cancer-Norfolk study

<table>
<thead>
<tr>
<th>Crude/qualitative</th>
<th>Disaggregated/quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit</td>
<td>Food items that are 100 % fruit, eaten raw or cooked. As well as fruit used in dishes such as stewed fruit, fruit crumble and fruit fool, for which a percentage of fruit content is assigned (fruit juice, fruit purée in yogurt and jams are set to 0 % fruit)</td>
</tr>
<tr>
<td>As well as food items with some minimal additions such as sugar when stewed or canned, but excluding fruit juices</td>
<td>Food items that are 100 % fruit, eaten raw or cooked. As well as fruit used in dishes such as stewed fruit, fruit crumble and fruit fool, for which a percentage of fruit content is assigned (fruit juice, fruit purée in yogurt and jams are set to 0 % fruit)</td>
</tr>
<tr>
<td>Vegetables</td>
<td>Food items that are 100 % vegetable, eaten raw or cooked. As well as vegetables used in dishes, for which a percentage of vegetable content is assigned (potatoes, pulses, lentils and Quorn are not considered vegetables)</td>
</tr>
<tr>
<td>Food items that are completely vegetable (excluding potatoes), eaten raw or cooked. As well as the full weight of dishes such as cauliflower cheese, vegetable burgers and vegetable curries, but not vegetables used in dishes such as soups, sauces and meat/fish stews. ‘Pure’ pulses and lentils are excluded</td>
<td>Food items that are 100 % vegetable, eaten raw or cooked. As well as vegetables used in dishes, for which a percentage of vegetable content is assigned (potatoes, pulses, lentils and Quorn are not considered vegetables)</td>
</tr>
<tr>
<td>Meat</td>
<td>Food items that are completely meat (red, white or processed), as well as the full weight of meat dishes such as stews/casseroles, bolognese sauce and chilli con carne, but not rice or pasta dishes, meat pies, soups and offal</td>
</tr>
<tr>
<td>Food items that are completely meat (red, white or processed), as well as the full weight of meat dishes such as stews/casseroles, bolognese sauce and chilli con carne, but not rice or pasta dishes, meat pies, soups and offal</td>
<td>Food items that are 100 % meat, as well as meat in dishes, for which a percentage of meat content is assigned. Offal is excluded</td>
</tr>
<tr>
<td>Fish</td>
<td>Food items that are completely fish (white or fatty), crustaceans or molluscs, as well as fish dishes such as fish cakes, fish in sauce/bake and battered fish, but not rice or pasta dishes or soups</td>
</tr>
</tbody>
</table>
The above-described crude, qualitative food groupings have in common that the food item (e.g. custard) can only be categorised into one category (e.g. cereal, other) of the same food group (‘crude’). Another, quantitative set of groupings identifies the fractions of a food item that are: fruit, vegetables, red meat, white meat, processed meat, fatty fish and white fish (Table 2). For example, veal stewed in tomato sauce would be classified as 40% red meat and 55% vegetable (though in the crude group, 100% of the weight consumed would have been assigned to ‘meat’). Fractions for disaggregation were mainly obtained by calculating recipes published in the CoF(15) and its supplements(16–25), as well as collected manufacturers’ data for commercial products, an approach that is similar to the methods applied in other food databases(7,9).

Although a distinction was made between the qualitative and quantitative food groups, they can be combined (Table 2). For example, ‘apple crumble’ contains ‘apple, used in dishes’ according to the F&V variety group; multiplying the portion size consumed with the fruit fraction group (here 0.62) will give the amount of cooked apple in this dish. Another example is that an estimate of the minimum (here 0.62) will give the amount of cooked apple in this dish. Another example is that an estimate of the minimum (here 0.62) will give the amount of cooked apple in this dish.

Statistical analyses

All analyses were stratified by sex. We calculated the mean, median, standard deviation, 25th and 97.5th percentiles of energy intake (EI), and the amounts of macronutrients and a selection of micronutrients. Differences between the sexes were tested using the Mann–Whitney test; a P value <0.05 was considered significant. In order to compare energy intakes with nationally representative data(31,32), the Spearman correlations of these food group data were calculated and Bland–Altman plots were created to assess agreement. All analyses were conducted using SPSS version 19 (IBM).

<table>
<thead>
<tr>
<th>Table 4. Energy intake (EI) by subcategories of BMI*</th>
<th>(Mean values and standard deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI (MJ/d)</td>
<td>Lower§ (MJ/d)</td>
</tr>
<tr>
<td>Men BMI (kg/m²)</td>
<td>Lower (MJ/d)</td>
</tr>
<tr>
<td>≤25</td>
<td>2421</td>
</tr>
<tr>
<td>>25</td>
<td>2411</td>
</tr>
<tr>
<td>Women BMI (kg/m²)</td>
<td>Lower (MJ/d)</td>
</tr>
<tr>
<td>≤25</td>
<td>3483</td>
</tr>
<tr>
<td>>25</td>
<td>843</td>
</tr>
</tbody>
</table>

In the European Prospective Investigation into Cancer-Norfolk population, EI and TEE were compared using Bland–Altman plots. The limits of agreement were calculated using Bland–Altman plots. The Spearman correlations of these food group data were calculated and Bland–Altman plots were created to assess agreement. All analyses were conducted using SPSS version 19 (IBM).

Although a distinction was made between the qualitative and quantitative food groups, they can be combined (Table 2). For example, ‘apple crumble’ contains ‘apple, used in dishes’ according to the F&V variety group; multiplying the portion size consumed with the fruit fraction group (here 0.62) will give the amount of cooked apple in this dish. Another example is that an estimate of the minimum (here 0.62) will give the amount of cooked apple in this dish. Another example is that an estimate of the minimum (here 0.62) will give the amount of cooked apple in this dish.
The degree of estimated under-reporting was lower in participants with a BMI $\leq 25 \text{kg/m}^2$, but two to three times as many participants under-reported by $>2 \text{MJ/d}$ when overweight/obese. We explored whether the duration for which the participants were asked to record data in their diet diaries contributed to the mean lower EI, but found no evidence of declining EI as diary completion progressed (Fig. 1).

Nutrient intake

There were small, but mostly significant differences in men and women, when comparing the two age groups ($\leq 65 \text{ v.} >65 \text{ years}$) for their contribution of macronutrient intake to total energy consumption (Fig. 2). Energy was mainly provided by carbohydrates, followed by fat, protein and alcohol. Of the energy providers, only sugars were consumed in a greater proportion by women than by men. Micronutrient intake, with the exception of vitamin C intake, was significantly higher among men than among women ($P<0.001$), although when expressed per MJ of EI, women consumed a more nutrient-dense diet than men (Table 5).

Intake of fish, meat, fruit and vegetables

Table 6 shows that the mean intakes of foods consumed were influenced by aggregation or disaggregation of the data. For F&V, the crude groupings underestimated the amounts con-

Nutrient Intake

Energy intake

The mean energy consumed was 9.44 (SD 2.22) MJ/d for men and 7.15 (SD 1.66) MJ/d for women. However, EI was 0.4 MJ/d lower among overweight and obese participants ($P<0.001$) compared with that among participants with a BMI $\leq 25 \text{kg/m}^2$ (Table 4). The 95% CI of the mean difference between TEE and EI was 1.79 (SD 1.98) MJ/d; the 95% CI of the mean difference between EI and TEE (TEE–EI) showed wide limits of agreement and was influenced by aggregation or disaggregation of the data. For F&V, the crude groupings underestimated the amounts con-

Intake of fish, meat, fruit and vegetables

Table 6 shows that the mean intakes of foods consumed were influenced by aggregation or disaggregation of the data. For F&V, the crude groupings underestimated the amounts con-

Results

Response rate for the 7 d diet diary

At their health examination, 25 639 participants were asked about their dietary habits during an interviewed 24h diet recall (which formed the data for the 1st day of the 7dDD). Only 132 participants did not provide details during the recall. Diary data were obtained for 11 535 (99.4%) of the participants, of whom 10 354 (89.8%) returned a fully completed recall (which formed the data for the 1st day of the 7dDD). Among women, these numbers were 13 972 (99.6%) and 12 779 (91.5%), respectively.

Energy intake

The mean energy consumed was 9.44 (SD 2.22) MJ/d for men and 7.15 (SD 1.66) MJ/d for women. However, EI was 0.4 MJ/d lower among overweight and obese participants ($P<0.001$) compared with that among participants with a BMI $\leq 25 \text{kg/m}^2$ (Table 4). The 95% CI of the mean difference between TEE and EI was 1.79 (SD 1.98) MJ/d; the 95% CI of the mean difference between EI and TEE (TEE–EI) showed wide limits of agreement and was influenced by aggregation or disaggregation of the data. For F&V, the crude groupings underestimated the amounts con-

Intake of fish, meat, fruit and vegetables

Table 6 shows that the mean intakes of foods consumed were influenced by aggregation or disaggregation of the data. For F&V, the crude groupings underestimated the amounts con-

Results

Response rate for the 7 d diet diary

At their health examination, 25 639 participants were asked about their dietary habits during an interviewed 24h diet recall (which formed the data for the 1st day of the 7dDD). Only 132 participants did not provide details during the recall. Diary data were obtained for 11 535 (99.4%) of the participants, of whom 10 354 (89.8%) returned a fully completed recall (which formed the data for the 1st day of the 7dDD). Among women, these numbers were 13 972 (99.6%) and 12 779 (91.5%), respectively.

Energy intake

The mean energy consumed was 9.44 (SD 2.22) MJ/d for men and 7.15 (SD 1.66) MJ/d for women. However, EI was 0.4 MJ/d lower among overweight and obese participants ($P<0.001$) compared with that among participants with a BMI $\leq 25 \text{kg/m}^2$ (Table 4). The 95% CI of the mean difference between TEE and EI was 1.79 (SD 1.98) MJ/d; the 95% CI of the mean difference between EI and TEE (TEE–EI) showed wide limits of agreement and was influenced by aggregation or disaggregation of the data. For F&V, the crude groupings underestimated the amounts con-

Intake of fish, meat, fruit and vegetables

Table 6 shows that the mean intakes of foods consumed were influenced by aggregation or disaggregation of the data. For F&V, the crude groupings underestimated the amounts con-
Table 5. Measures of central tendency and spread in energy, macronutrient and micronutrient intakes in the European Prospective Investigation into Cancer-Norfolk cohort, stratified by sex (n 25 507)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Mean</td>
<td>SD</td>
<td>2.5th percentile</td>
<td>97.5th percentile</td>
<td>Median</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>(MJ/d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(MJ/d)</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>9.36</td>
<td>9.45</td>
<td>2.22</td>
<td>5.36</td>
<td>14.14</td>
<td>7.11</td>
<td>7.15</td>
</tr>
<tr>
<td>Protein</td>
<td>80.9</td>
<td>82.2</td>
<td>18.6</td>
<td>49.4</td>
<td>121.6</td>
<td>64.8</td>
<td>65.4</td>
</tr>
<tr>
<td>Fat</td>
<td>83.9</td>
<td>86.1</td>
<td>26.9</td>
<td>40.5</td>
<td>145.0</td>
<td>63.4</td>
<td>64.6</td>
</tr>
<tr>
<td>Saturated fat</td>
<td>31.2</td>
<td>32.6</td>
<td>11.9</td>
<td>13.4</td>
<td>59.5</td>
<td>23.6</td>
<td>24.6</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>269.7</td>
<td>273.7</td>
<td>73.9</td>
<td>142.4</td>
<td>433.9</td>
<td>210.9</td>
<td>213.2</td>
</tr>
<tr>
<td>Sugars</td>
<td>115.7</td>
<td>119.5</td>
<td>45.9</td>
<td>42.8</td>
<td>221.4</td>
<td>95.2</td>
<td>97.9</td>
</tr>
</tbody>
</table>

Discussion

We have shown the developments and capacities of the DINERMO nutrient and food group calculation programs for 25 507 participants (99%) who contributed diary data at baseline to the EPIC-Norfolk study. Their mean EI remained stable across the diary days. There was under-reporting of EI, especially among overweight/obese participants. Macronutrient density was higher among women than among men. The food groups compared correlated highly, but they were in disagreement greatly with regard to absolute quantities, with the biggest differences being observed for meat and vegetables.

In nutritional epidemiology, under-reporting of EI is well established. Results from the OPEN (Observing Protein and Energy Nutrition) study have shown energy under-reporting to be prevalent in 21% of the men (by reporting 10% lower EI than required) and 22% of the women (by reporting 14% lower EI than required). Measurements of urinary nitrogen and potassium excretion in a subcohort of the EPIC-Norfolk study confirmed that under-reporting takes place. When EI was graphed against BMI quintiles, PAL values decreased with increasing BMI and these PAL values were relatively low (1.22–1.33). In the present analysis, we wanted to express under-reporting in energy amounts and not in PAL, as is common with the Goldberg criteria. Hence, we chose to apply a Bland–Altman plot to assess the agreement between TEE and EI and compensated for our crude definition of defining even small deviations above zero to mean under-reporting, by including three levels of energy disagreement. We used age, weight and height as biomarkers for energy requirement and calculated the BMR with the Henry equation.

We chose to apply a Bland–Altman plot to assess the agreement between TEE and EI and compensated for our crude definition of defining even small deviations above zero to mean under-reporting, by including three levels of energy disagreement. We used age, weight and height as biomarkers for energy requirement and calculated the BMR with the Henry equation.
and the EI, we saw similar trends: women were more likely to under-report and that under-reporting increased in overweight/obese participants. However, for EI in the 50–65 years age category in the National Diet and Nutrition Survey, a mean of 9·55 (SD 2·38) MJ/d for men and 6·91 (SD 1·74) MJ/d for women \(^{(31)}\) has been reported, which is close to the EI in the EPIC-Norfolk study. A similar comparison can be made with the 65–74 years age category in the survey for people aged above 65 years, where men consumed a mean EI of 8·21 (SD 1·97) MJ/d and women 6·07 (SD 1·38) MJ/d \(^{(32)}\). The percentages of energy derived from protein and fat were slightly lower and those derived from carbohydrate and alcohol were slightly higher than those observed in the EPIC-Norfolk cohort \(^{(32)}\). Under-reporting in the EPIC-Norfolk study is hence comparable, and the small differences in EI in these surveys are likely to be because of sampling (different age distributions) as well as differences in data processing programs.

The EI was approximately stable during diary completion. This is encouraging considering that others have observed a downward trend with the duration of diary completion exceeding 3 d \(^{(4)}\). However, the diary days are (mostly) consecutive and measures of variety could, as a result, be lower than expected. This has been compensated for by requesting the participants to complete another 7dDD after 18 months \(^{(35)}\); a subset of these repeat 7dDD has been used to correct OR for measurement error due to variation in nutrient intakes \(^{(30)}\).

The micronutrient data presented herein do not include data on sources of dietary supplements. Supplements are being used by 40% members of the cohort \(^{(36)}\) and have been shown to change the nutrient intake distribution \(^{(37)}\). How this affects the proportions below the estimated average requirements or above the safe upper levels in this cohort is yet to be assessed.

A food is more than the sum of its nutrients, and public health messages on the types and amounts of foods to be consumed are being given; hence, many studies and surveys tend to analyse food consumption rather than nutrient consumption, but as a result, comparisons of study results become more complicated. We were unable to compare the consumption data of meat and fish due to differences in groupings of foods in the National Diet and Nutrition Survey data; however, fruit consumption in the EPIC-Norfolk study appeared to be up to 15% (men) and 18% (women) higher and vegetable consumption ranged from 4% lower (men) up to 13% higher (women) \(^{(38)}\). These differences became more pronounced when comparing disaggregated weights and reached 27% for fruit and 27% for vegetables in men and 20% for both F&V in women. F&V consumption after disaggregation could add as much as 0·5–1 portion to a participant’s 5-a-day; however, it is still unclear whether health effects of F&V are similar when used in a dish such as an apple pie or cauliflower cheese.

The EPIC-Norfolk 7dDD data are the largest data collection of its kind. Until now, the only dietary data from the full EPIC-Norfolk cohort were based on a FFQ \(^{(39)}\), which is known to overestimate fruit, vegetable and milk consumption \(^{(5)}\). Moreover, the 7dDD enables us to study diet variety and meal patterns, which are areas that have shown potential for intervention \(^{(40,41)}\).

The computer programs described are still undergoing development, and we hope to change the calculation

<table>
<thead>
<tr>
<th>Type</th>
<th>Men (n 11 535)</th>
<th>Women (n 13 972)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit (g/d)</td>
<td>117 ± 32</td>
<td>133 ± 32</td>
</tr>
<tr>
<td>Vegetables (g/d)</td>
<td>133 ± 34</td>
<td>131 ± 33</td>
</tr>
<tr>
<td>Meat (g/d)</td>
<td>118 ± 36</td>
<td>125 ± 36</td>
</tr>
<tr>
<td>Red (g/d)</td>
<td>117 ± 38</td>
<td>125 ± 38</td>
</tr>
<tr>
<td>White (g/d)</td>
<td>21 ± 35</td>
<td>27 ± 35</td>
</tr>
<tr>
<td>Processed red, white and processed (g/d)</td>
<td>36 ± 42</td>
<td>34 ± 42</td>
</tr>
<tr>
<td>Sum of red, white and processed (g/d)</td>
<td>52 ± 48</td>
<td>50 ± 48</td>
</tr>
<tr>
<td>Fish (g/d)</td>
<td>33 ± 41</td>
<td>42 ± 41</td>
</tr>
<tr>
<td>Fatty (g/d)</td>
<td>0 ± 13</td>
<td>23 ± 23</td>
</tr>
<tr>
<td>White (g/d)</td>
<td>14 ± 17</td>
<td>17 ± 17</td>
</tr>
<tr>
<td>Sum of fatty and white (g/d)</td>
<td>23 ± 30</td>
<td>21 ± 30</td>
</tr>
</tbody>
</table>

Weights are given for two types of food groupings: crude (C) (qualitative groups) and disaggregated (D) foods. Spearman’s correlation \(r_S\) between the disaggregated and crude variables. All correlations were significant at \(P < 0.01\).
method to an approach that separates all ingredients within dishes, similar to that described by Subar et al.\(^5\), providing a fully ‘matured’ system, which we plan to name PECORINO (Precision in EPIC-Norfolk: Calculation Of Recipes Improves Nutrient Output). This system will have several advantages: first, the reporting of disaggregated amounts would no longer be restricted to the seven groups mentioned in the present paper; second, any extension of the food database with nutrient or phytochemical data will be a process that can be limited to ‘simple/single foods’, since only food items such as ‘flour’, ‘apple’ and ‘sugar’ rather than dishes such as ‘apple crumble’ and ‘apple pie’ will need assessment of their nutrient profile; lastly, it enables modifications and updating of default recipes published in the CoF to make them better suited for the EPIC-Norfolk cohort data.

Conclusion

The response rate for 7dDD in the EPIC-Norfolk study has been extremely good. Under-reporting may be an issue, but not more so than that found in national surveys, and under-reporting is not likely to have been caused by the duration for which participants were asked to record data in their diet diaries, since EI did not decrease during the 7 d. Despite this, the association of under-reporting with BMI will be important for the interpretation of future endpoint analyses. The large number of variables in the EPIC-Norfolk data has made these data highly flexible to test new hypotheses in nutritional epidemiology or even use new approaches such as hypothesis-free nutrient-wide association studies along the lines of gene-wide association studies\(^42\). Groupings of food items and/or disaggregation can cause differences in absolute estimates, though the ranking of individuals will be less affected. The choice of aggregated or disaggregated variables will influence the estimates of food groups and comparison of results between studies.

Acknowledgements

The authors thank the dedicated team of data enterers who entered data for over 6 500 000 food items and all nutritionists.
who made a major contribution to data checking and cleaning in the past 16 years. They cordially thank Sheila Rodwell (Bingham) for her fundamental contributions to the work on dietary biomarkers and development of the 7dDD. The collection of data on the quantitative food groups was partly made possible by collaboration with the Medical Research Council Centre for Nutritional Epidemiology in Cancer Prevention and Survival (CNC); the authors thank the nutritionists who provided these data.

This work was supported by the Medical Research Council. The Medical Research Council had no role in the design and analysis of the study or in the writing of this article.

Contribution of each author was as follows: M. A. H. L. prepared the manuscript, carried out the statistical analyses, checked diary data and assisted in the re-writes of the different DINERMO programs; A. M., A. A. M. and N. A. P. checked diary data, oversaw data entry and contributed with their experience to the many program revisions; D. P.-S. wrote the last revision of the DINERMO program; R. N. L. and A. B. maintained the earlier versions of DINERMO programs as well as the wider range of cohort data available; A. A. W. developed the concept of Data into Nutrients for Epidemiological Research and was involved in the early versions of the programs; K.-T. K. is the principal investigator of the EPIC-Norfolk study. All co-authors read the manuscript and provided their input.

None of the authors has any conflicts of interest.

Additional/online material: More detailed information on the categorisation of foods and food groups will be provided on the website http://www.epic-norfolk.org.uk or can be obtained from the corresponding author.

References

