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Abstract

The aim of the present study was to determine if the consumption of barley tortillas varying in fibre and/or starch composition affected

postprandial glucose, insulin, glucagon-like peptide-1 (GLP-1) or peptide YY concentrations. A double-blind, randomised, controlled trial

was performed with twelve healthy adults. They each consumed one of five barley tortillas or a glucose drink on six individual visits sep-

arated by at least 1 week. Tortillas were made from 100 % barley flour blends using five different milling fractions to achieve the desired

compositions. All treatments provided 50 g of available carbohydrate and were designed to make the following comparisons: (1) low-starch

amylose (0 %) v. high-starch amylose (42 %) with similar b-glucan and insoluble fibre content; (2) low b-glucan (4·5 g) v. medium b-glucan

(7·8 g) v. high b-glucan (11·6 g) with similar starch amylose and insoluble fibre content; and (3) low insoluble fibre (7·4 g) v. high insoluble

fibre (19·6 g) with similar starch amylose and b-glucan content. Blood was collected at fasting and at multiple intervals until 180 min after

the first bite/sip of the test product. Amylose and insoluble fibre content did not alter postprandial glucose and insulin, but high-b-glucan

tortillas elicited a lower glucose and insulin response as compared to the low-b-glucan tortillas. The tortillas with high insoluble fibre had a

higher AUC for GLP-1 as compared to the tortillas with low insoluble fibre, whereas amylose and b-glucan content had no effect. Results

show that processing methods can be used to optimise barley foods to reduce postprandial blood glucose responses and factors that may

influence satiety.
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Barley is a high-fibre cereal grain that contains significant

levels of both b-glucan and insoluble fibre, and it has been

classified as having a low glycaemic index (GI). Health

professionals recommend choosing foods that elicit a low

postprandial glycaemic response (PPGR), without a concomi-

tant increase in insulin, to improve glycaemic control(1).

Furthermore, the potential for the utilisation of barley in func-

tional foods is high(2). Barley has been evaluated for incorpor-

ation into several food products, including bread(3–5), pasta(6),

biscuits(7), noodles(8), tortillas and chips(2,9). Government-

approved health claims have focused on the effect of the

soluble fibre (b-glucan) content of barley on PPGR(10), but

there are several factors that could be manipulated in barley

foods to optimise PPGR, including the amount and type of

fibre and the type of starch.

Barley starch, like that of other cereal grains, contains two

forms of starch, amylose and amylopectin, each with specific

physico-chemical properties. Amylose is a starch that has a
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tightly packed structure, which slows and sometimes (in the

case of resistant starch formed from retrograded amylose) pre-

vents digestive enzymes from breaking it down to glucose.

Amylopectin is a starch that has a branched structure and is

easier to digest(11). Numerous studies have shown that meals

made with high-amylose or high-resistant starches (rice,

maize and wheat) elicit a lower PPGR than meals made

from high-amylopectin starches(11–14). Therefore, it is plaus-

ible that a barley variety with a significantly higher amylose:

amylopectin ratio would result in a food product with a

lower PPGR. However, a study on plasma glucose and insulin

after the consumption of barley varying in amylose content

(7–44 % amylose) showed marginal differences in glycaemic

response(15), which suggests that other constituents, such as

fibre, might play a role. By choosing a barley food with

higher fibre levels, one would anticipate a blunted

PPGR(16–18). However, fibre can be classified as soluble or

insoluble. b-Glucan is a soluble fibre which has been shown

to lower PPGR. Numerous clinical trials have demonstrated

that oat and barley foods containing b-glucan can lower

blood glucose levels through several different mechanisms

in both the upper gastrointestinal tract (GIT) and the lower

intestinal tract(19). In the upper GIT, soluble b-glucan can

develop a high viscosity, thereby slowing the mixing of the

meal with digestive enzymes(20) and slowing the rate of gastric

emptying(21–23). Insoluble dietary fibre (IDF), which includes

resistant starch, like soluble dietary fibre, cannot be digested

into glucose, so it is unclear whether the total fibre or the

type of fibre has a greater effect on postprandial glucose

levels. Barley fibre composition is significantly influenced by

variety to a greater extent than other cereal grains are(24).

Large variation in fibre composition has been reported for

barley genotypes from different origins, with the levels of total

dietary fibre in wholegrain ranging from as low as 9 % to greater

than 30 %(25–30). Similarly, a wide range of b-glucan content has

been reported for barley (3–15 %)(25–28,30,31), with Canadian

hull-less varieties typically containing 4–9 % b-glucan(32,33). It

is also possible to further manipulate the fibre composition of

barley through milling(2,5,34–36). The physiological response to

food products made with specific barley cultivars that have

undergone optimised milling and processing treatments is

unknown; this knowledge is critical in determining whether

or not these optimisation treatments will have a beneficial

influence on glycaemia and whether they are superior from a

nutritional perspective.

The present study investigated the use of cultivar selection

and milling fractions to formulate 100 % barley flour tortillas

with varying proportions of amylose/amylopectin, resistant

starch, soluble fibre and insoluble fibre. Subsequently, a

single-site, double-blind, randomised, controlled clinical trial

was carried out with the objective of better understanding

the relationship between the consumption of barley tortillas

with varying starch and fibre compositions and PPGR while

keeping available carbohydrate constant. Hormones that

play a role in PPGR and satiety, such as the incretin glucagon-

like peptide-1 (GLP-1) and the satiety hormone peptide YY

(PYY), were also measured.

Experimental methods

Barley samples and compositional analysis

Grain samples of four hull-less barley genotypes were obtained

from the Crop Development Centre, University of Saskatche-

wan, including two waxy, low-amylose varieties (CDC Candle,

CDC Fibar) and two high-amylose types (SB94893, SH99250).

Starch amylose content was confirmed according to a method

developed by Schoch(37). Grain was milled into wholegrain

flour (WGF) and several fractions, including straight-grade

flour (SGF), ‘dusted flour from shorts’, ‘dusted flour from

bran’, ‘concentrated shorts’, ‘concentrated bran’ and ‘pearlings’,

as described previously by Harding et al.(38). A commercial

barley fraction with concentrated b-glucan content was

obtained from PolyCell Technologies. The composition of the

flour fractions was analysed using American Association of

Cereal Chemists (AACC) International Approved Methods for

insoluble and total dietary fibre (method 32-07.01(39)),

b-glucan (method 32-23.01(40)), total starch (method

76-13.01(41)) and resistant starch (method 32-40.01(42)) as well

as available carbohydrate content(43). Based on the composition

results (Table 1), CDC Fibar was selected for use as the low-amy-

lose barley (0 % amylose in its starch), because it had the highest

fibre levels. Barley genotype SH99250was selected for use as the

high-amylose variety (42 % starch amylose) (Table 1). Starchwas

extracted from the whole grain of each cultivar, and its amylose

content was measured in order to confirm the amylose content

of the different genotypes. High-amylose barley cultivars

have been shown to have increased levels of dietary fibre

because they have higher levels of resistant starch after heat

processing(44), which may result in a lower glycaemic response.

Therefore, it was hypothesised that SH99250 as a high-amylose

cultivar would contain higher resistant starch levels after being

cooked into tortillas, would result in a low glycaemic response

and would consequently have the potential for industrial signifi-

cance in the future.

Preparation of barley flour blends

By varying the proportions of different milling fractions and

making small adjustments to the serving sizes, several flour

blend scenarios were created and examined for possible use

in test meal treatments (Table 2). We selected five scenarios

to supply a consistent 50 g of available carbohydrate per

serving while varying the following starch/fibre levels:

(1) low amylose (0 %) v. high amylose (42 %) with similar

b-glucan and insoluble fibre content; (2) low b-glucan

(4·5 g) v. medium b-glucan (7·8 g) v. high b-glucan (11·6 g)

with similar amylose and insoluble fibre content; (3) low

insoluble fibre (7·4 g) v. high insoluble fibre (19·6 g) with simi-

lar amylose and b-glucan content. All barley test meal formu-

lations had more than 4 g of b-glucan per serving (Table 2).

The high-amylose variety SH99250 was used for the high-

amylose dusted flour fractions (HA-DFF) flour blend; it was

prepared by combining dusted flour from bran (37·7 %) and

dusted flour from shorts (62·3 %). All other flour blends

(WGF, SGF, bran flour with high b-glucan (BF-BG) and bran

flour with high IDF (BF-IDF)) were prepared from the
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low-amylose cultivar CDC Fibar, as described by Harding

et al.(38). These flour blends were used to prepare the scen-

arios indicated earlier: (1) WGF (low amylose) v. HA-DFF

(high amylose); (2) SGF (low b-glucan) v. WGF (medium

b-glucan) v. BF-BG (high b-glucan); (3) WGF (low insoluble

fibre) v. BF-IDF (high insoluble fibre).

Test meal processing, analysis and presentation

Barley tortillas made only from barley flour and water, as

developed previously at the Cereal Research Centre, Agricul-

ture and Agri-Food Canada(45), were chosen as the test food

product, because they required no additional ingredients

that could interfere with the results. The five selected flour

blends were processed into tortillas in the Metabolic Kitchen

Facility at the Richardson Centre for Functional Foods and

Nutraceuticals (Winnipeg, Manitoba, Canada) using the

following basic protocol: mix 200 g of flour with water for

5 min (GRL200 Mixer, Muzeen & Blythe), rest dough at room

temperature for 10 min, sheet dough (National MFG Company),

die cut to 14·5 cm diameter and cook on a 2508C tortilla grill

(Bakery Equipment and Service Company). The water

amount, sheeting thickness and cooking times were optimised

for each flour blend to manage variation in the dough-handling

properties between treatments. Tortilla moisture content was

measured using the two-stage AACC International Approved

Table 2. Barley test meal treatment scenarios calculated to deliver varying amounts of fibre components in a single serving

Composition per serving (g)

Genotype Milling fraction Dry content per serving (g) Total dietary fibre IDF* b-Glucan Available carbohydrate

Fibar SGF 73·45 10·33 6·11 4·22 50
SH99250 SGF, DFFS, DFFB 72·60 10·34 6·15 4·19 50
Fibar WM 76·85 14·32 6·82 7·49 50
Fibar CB, DFFB 84·34 18·41 7·35 11·06 50
SH99250 DFFS, DFFB 76·67 14·32 7·67 6·65 50
Fibar DFFB, PC 82·28 19·43 7·99 11·43 50
Fibar PC, DFFB 88·37 24·17 10·16 14·01 50
Fibar SGF, P 92·26 19·78 15·23 4·55 50
Fibar SGF, CS, P 97·86 24·50 17·01 7·49 50

IDF, insoluble dietary fibre; SGF, straight-grade flour; DFFS, dusted flour from shorts; DFFB, dusted flour from bran; WM, wholemeal; CB, concentrated bran;
P, pearlings; PC, Polycell Technologies high b-glucan fraction; CS, concentrated shorts.

* IDF was estimated for flour blend scenario calculations (IDF ¼ total dietary fibre 2 b-glucan soluble fibre). All other components were calculated using analytical
data obtained from the milling fractions.

Table 1. Content of various carbohydrates in milling fractions from four barley genotypes

Genotype
Milling
fraction

Total dietary
fibre (%, db)

b-Glucan
(%, db)

Available
carbohydrates

(%, db)

Total
starch
(%, db)

Resistant
starch
(%, db)

SB94893 (starch amylose content ¼ 41·48 %) WM 17·45 7·68 64·14 53·20 1·63
SGF 12·09 4·91 70·66 57·56 1·38
DFFB 12·77 6·75 71·34 59·87 1·44
DFFS 21·64 10·67 59·35 49·96 1·44
CB 22·78 10·98 59·16 49·05 1·46
CS 27·39 13·18 53·83 42·71 1·25

SH99250 (starch amylose content ¼ 41·93 %) WM 19·19 7·70 63·41 53·59 2·11
SGF 13·32 5·18 69·66 57·90 1·60
DFFB 14·72 7·04 71·24 60·31 1·30
DFFS 21·07 9·66 61·57 51·35 1·43
CB 22·74 10·15 59·72 48·98 1·89
CS 27·86 12·30 54·93 43·98 1·19

CDC Candle (starch amylose content ¼ 5·28 %) WM 19·12 6·64 70·92 58·69 0·51
SGF 13·29 4·38 76·91 61·66 0·51
DFFB 15·14 6·28 79·12 64·39 0·43
DFFS 21·54 9·99 64·70 50·99 0·42
CB 22·97 9·51 67·30 54·34 0·54
CS 28·32 11·99 55·81 43·53 0·48

CDC Fibar (starch amylose content ¼ 0 %) WM 18·24 9·66 62·46 52·06 1·03
SGF 14·06 5·74 68·07 51·76 0·47
DFFB 12·05 7·86 73·73 61·05 0·45
DFFS 23·34 11·90 60·85 46·59 0·76
CB 22·38 13·41 58·46 48·68 0·88
CS 29·17 15·58 53·20 42·37 0·90
P 43·51 2·51 12·64 – –

db, Dry basis; WM, wholemeal; SGF, straight-grade flour; DFFB, dusted flour from bran; DFFS, dusted flour from shorts; CB, concentrated bran; CS, concentrated shorts;
P, pearlings.
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Method 44-15A(46) and used to calculate the serving size

required to deliver 50 g of available carbohydrate (therefore,

serving sizes ranged from approximately seven to ten tortillas

depending on the treatment; the average weight of each tortilla

was 15·5 g, and the average approximate diameter was 14·5 cm).

Full chemical analysis of the tortillas (using the methods

described earlier for milling fraction analysis) confirmed

the final composition of the prepared test meals (Table 3).

A difference between the available carbohydrate and total

starch content of the tortilla treatments was noted in the analysis.

This difference was partly a result of the fact that glucose in

starch is in an anhydrous form. When glucose is released after

being exposed to amylases, it binds to another water molecule

(per glucose), i.e. the molecular weight of glucose increases

from 162 to 180 g/mol; therefore, the total starch expressed as

available carbohydrate is 11·1 % higher. The remaining differ-

ence between available carbohydrate and starch content was

likely due to free sugars in the tortilla samples, although these

were not measured. Acid extraction of the tortilla samples was

carried out(47), and viscosity measurements of the acid extracts

were made using a Brookfield DV-II þ Pro Viscometer (LV-4

spindle, 60 rpm; Brookfield Engineering Laboratories) to deter-

mine whether the tortilla samples differed in viscosity (see

online supplementary Fig. S1). As can be seen in Fig. S1, the tor-

tillas differed in viscosity; the high-b-glucan tortillas (BF-BG)

were more viscous than the other treatments were.

Tortillas were stored frozen until use in the clinical trial.

Before presenting test meals to the participants, tortillas

were reheated in a Black & Decker three-tier food steamer

for 10 min wrapped in wax paper. Warmed tortillas were

then wrapped in aluminium foil and placed in a Bravetti

buffet server until served.

Clinical trial

A single-site, double-blind, randomised, controlled, cross-over

study was conducted at the I. H. Asper Clinical Research Insti-

tute at St Boniface Hospital in Winnipeg, Manitoba, Canada.

There were a total of twelve participants, aged 19–35 years

with a glycated Hb of ,6 % and BMI between 20 and 31 kg/m2.

They did not have any allergies to barley flour or any chronic

diseases, such as CVD, hypertension, disorders affecting the

GIT tract or thyroid disease, or require medications for these

conditions. They did not require medication for glycaemic

control or consume supplements which had an effect on

blood glucose response. See Table 4 for details on the demo-

graphics of the participants.

The present study was performed according to the guide-

lines in the Declaration of Helsinki. Ethics approval for the

clinical trial was obtained from the University of Manitoba Bio-

medical Research Ethics Board and the St Boniface Hospital

Research Review Committee. The present study was registered

on http://www.clinicaltrials.gov (NCT00831285). The first

participant’s initial visit was on 6 May 2009, and the final

visit of the last participant was completed on 18 February

2010. Participants provided written informed consent before

undergoing any study-related procedures. A total of thirteen

participants provided written informed consent, but one par-

ticipant dropped out of the study after the first visit due to a

physiological aversion to blood draws. The remaining

twelve participants came in for six visits that were separated

by at least 1 week. The test products consumed included

one of five different barley tortillas (Table 3) or an orange-

flavoured Trutol Glucose Tolerance Beverage containing 50 g

dextrose (from Fisher Scientific) assigned in random order.

Participants arrived at each clinic visit in the morning after

an overnight fast. Blood was collected at fasting and at 15,

30, 45, 60, 120 and 180 min after the first bite/sip of the test

product. Blood was collected into lithium heparin tubes for

Table 3. Barley tortilla test meal treatment composition confirmed by analytical chemistry

Composition per serving (g)

Treatment
Dry content

per serving (g) Total dietary fibre IDF b-Glucan Available carbohydrate Total starch Resistant starch Protein

SGF 75·74 10·29 7·55 4·50 50 38·34 0·45 13·67
WGF 78·24 14·28 7·43 7·77 50 38·92 0·42 13·28
BF-BG 83·33 18·03 7·47 11·55 50 38·47 0·85 14·71
BF-IDF 108·41 26·87 19·64 8·56 50 39·92 0·68 21·50
HA-DFF 76·22 14·14 8·29 6·27 50 40·13 1·41 12·08

IDF, insoluble dietary fibre; SGF, straight-grade flour (low b-glucan/low IDF); WGF, wholegrain flour (medium b-glucan/low IDF); BF-BG, bran flour with high b-glucan/low IDF;
BF-IDF, bran flour with high IDF/medium b-glucan; HA-DFF, high-amylose dusted flour fractions (medium b-glucan/low IDF).

Table 4. Demographics

n Average Minimum Maximum

Male 7
Female 5
Medications/supplements

None 7
Acetylsalicylic acid,
81 mg daily

1

Tylenol plain 1
Valcyclovir, 1000 mg 1
Ventolin, two puffs as

required
1

Vitamin B12, Fe and
Centrum multivitamin,
daily

1

Age (years) 27 19 35
BMI (kg/m2) 23·8 20 31
Waist circumference (cm) 80·6 66·9 107·0
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glucose analysis and EDTA tubes for hormone analysis.

Dipetidyl peptidase IV inhibitor (Millipore) and Halt protease

inhibitor (Pierce) were added immediately to the EDTA tubes

and centrifuged at 1800 g for 10 min at 48C to separate plasma.

Plasma was stored at 2808C until analysis.

Plasma glucose concentrations at each time point were

determined using an enzymatic colorimetric kit (Genzyme

Diagnostics). Plasma insulin concentrations at each time

point were measured using an ultrasensitive ELISA kit from

Alpco Diagnostics. Active GLP-1 and PYY concentrations at

the 0, 30, 60, 120 and 180 time points were determined

using an electrochemiluminescent immunoassay from Meso

Scale Discovery. All samples and respective standards were

analysed in triplicate for glucose and in duplicate for the hor-

mones with a percentage CV of less than 10 %. Incremental

AUC (iAUC) for glucose, insulin, GLP-1 and PYY was calcu-

lated as described by Brouns et al.(48). GI was calculated by

dividing the glucose iAUC for each tortilla by the glucose

drink iAUC and multiplying by 100.

Randomisation procedures

A list of unique product code numbers was prepared to ensure

that volunteers received the treatments in random order.

Randomisation was performed by the research team. After

randomisation occurred, the study nurse was responsible for

ensuring that the assigned randomisation number was applied

to all study documentation for that particular volunteer and

for dispensing the foods with the matching randomisation

number.

Blinding

Although participants knew whether they were consuming

a food product or a liquid, both the research team and the

volunteer were blinded from the time of randomisation and

for the duration of the study in regards to which tortilla they

ate during any given visit.

Statistical analysis

Mäkeläinen et al.(49) incorporated similar methodology to

explore of the effect of b-glucan on the glycaemic and insulin

index with oat products. Their findings showed that n 10

participants were sufficient for attaining evaluable results.

We recruited n 12 to allow us to reach our target sample

while accounting for a small percentage of withdrawals by

subjects who might be unable to complete the study.

The present study was designed to examine three effects:

(1) the effect of low v. high amylose; (2) the effect of low,

medium and high b-glucan; and (3) the effect of low v. high

IDF on glycaemic response. For effects (1) and (3), paired

t tests were used to determine differences in GI, iAUC and

percentage change from baseline at 30 min between the

groups. For effect (3), data were analysed using PROC

MIXED with tortilla as a fixed effect and subject as a random

variable using the SAS system version 9.2 (SAS Institute

Inc.). PROC MIXED repeated measures analysis was used to

determine differences between time points. Differences

among means were determined by Lsmeans.

The primary outcome was iAUC for glucose. The secondary

outcome was iAUC for insulin. Additional outcomes were GI

and percentage change from baseline at 30 min.

Results

Glycaemic index

Foods can be classified as low GI (,55), medium GI (56–69)

or high GI (.70). The plasma glucose curve after consump-

tion of the glucose reference drink is shown in Fig. 1. The

WGF tortillas (low amylose, medium b-glucan and low IDF)

were classified as medium GI, whereas all of the other

tortilla treatments were low GI (Table 5). The high-b-glucan

(BF-BG) tortilla treatment had a 56–60 % lower GI as com-

pared to both the low-b-glucan (SGF) and medium-b-glucan

(WGF) tortilla treatments (Table 5). There was no significant

Table 5. Glycaemic index (GI) of barley tortillas

(Mean values with their standard errors, n 12)

GI values

Treatment Mean SEM

WGF 57·3 13·5
HA-DFF 39·2 14·2

SGF 51·8a 11·8
WGF 57·3a 11·4
BF-BG 22·7b 11·4

WGF 57·3 13·5
BF-IDF 40·9 11·0

WGF, wholegrain flour (low amylose/medium b-glucan/low insoluble dietary fibre);
HA-DFF, high-amylose dusted flour fractions (high amylose); SGF, straight-
grade flour (low b-glucan); BF-BG, bran flour with high b-glucan (high b-glucan);
BF-IDF, bran flour with high insoluble dietary fibre (high insoluble dietary fibre).

a,b Mean values with unlike superscript letters were significantly different (P,0·05).
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Fig. 1. Plasma glucose concentrations after consuming glucose reference

drink. Values are means (n 12), with their standard errors represented by

vertical bars. a,b,c,d Mean values with unlike letters were significantly different

(P,0·05).
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difference in GI between the low-amylose (WGF) and

high-amylose (HA-DFF) treatments (Table 5) or between the

low-IDF (WGF) and high-IDF (BF-IDF) treatments (Table 5).

Plasma glucose

There was no difference in the fasting plasma glucose concen-

trations between the participants at each visit (Fig. 2(A), (D)

and (G)). There was no significant increase in plasma glucose

from baseline at any time point after eating the high-b-glucan

tortillas (Fig. 2(D)). Plasma glucose concentrations were

9–16 % higher at 30 min and 7–15 % higher at 45 min as com-

pared to baseline levels for all of the other treatments, but

plasma glucose concentrations returned to baseline levels by

45 min for the high-IDF tortillas (Fig. 2(A), (D) and (G)).

The high-b-glucan treatment had a 61 % lower glucose iAUC

as compared to the low-b-glucan treatment (Fig. 2(E)).

The high-b-glucan treatment had a percentage change from

baseline at 30 min that was 3·9–5·1 times lower than both

the low- and medium-b-glucan treatments (Fig. 2(F)). There

was no difference in the glucose iAUC or percentage change

from baseline at 30 min between the low- and high-amylose

treatments (Fig. 2(B) and (C)) or between the low- and

high-IDF treatments (Fig. 2(H) and (I)).

Plasma insulin

Fasting plasma insulin concentrations were not significantly

different between visits (Fig. 3(A), (D) and (G)). All treatments

had significantly higher insulin concentrations at 15–60 min as

compared to baseline levels (Fig. 3(A), (D) and (G)). The

high-amylose and high-b-glucan treatments returned to base-

line levels by 120 min, whereas the low-b-glucan treatment

returned to baseline by 180 min. Plasma insulin concentrations
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were still higher than baseline levels at 180 min after eating the

low-amylose/medium-b-glucan treatments with low IDF

(WGF) and high IDF (BF-IDF).

The high-b-glucan tortilla treatment had a 39 % lower iAUC

for insulin as compared to the medium-b-glucan tortillas,

which in turn had a 33 % lower insulin iAUC as compared to

the low-b-glucan treatment (Fig. 3(E)). The low-b-glucan tor-

tillas had a 64–176 % higher percentage change from baseline

at 30 min for plasma insulin as compared to both the medium-

and high-b-glucan tortillas (Fig. 3(F)). There was no significant

difference between the high- and low-IDF tortillas in terms of

insulin iAUC (Fig. 3(H)), but the high-IDF tortillas had a higher

percentage change of plasma insulin from baseline at 30 min

as compared to the low-IDF tortillas (Fig. 3(I)). There was

no significant difference in insulin iAUC or percentage

change from baseline at 30 min between the low- and high-

amylose treatments (Fig. 3(B) and (C)).

Plasma glucagon-like peptide-1

There was no significant difference in fasting GLP-1 concen-

trations between the treatments (Fig. 4(A), (D) and (G)). All of

the treatments had significantly higher plasma GLP-1 concen-

trations at 30 min. The GLP-1 concentrations after eating the

high-amylose (HA-DFF) and high-b-glucan (BF-BG) tortillas

returned to baseline by 60 min. The low-amylose/medium-

b-glucan/low-IDF (WGF) and low-b-glucan (SGF) tortillas had

plasma GLP-1 concentrations that were not significantly differ-

ent from baseline by 120 min, but the GLP-1 concentrations

after eating the low-b-glucan tortillas were higher than
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baseline at 180 min. The high-IDF tortillas had higher GLP-1

concentrations than baseline at every time point (Fig. 4(G)).

There was no significant difference in GLP-1 iAUC or

percentage change from baseline at 30 min between the

low- and high-amylose treatments (Fig. 4(B) and (C)) or

between the low-, medium- and high-b-glucan treatments

(Fig. 4(E) and (F)). The high-IDF treatment had a 54 %

higher GLP-1 iAUC as compared to the low-IDF treatment

(Fig. 4(H)). There was no difference between the low- and

high-IDF treatments in the percentage change from baseline

at 30 min (Fig. 4(I)).

Plasma peptide YY

There was no significant difference in plasma PYY concen-

trations between time points or between treatments. There was

also no significant difference in PYY iAUC or percentage

change from baseline at 30 min between treatments (data

not shown).

Discussion

Overall, the results of the present research provide knowledge

about the effects of high-fibre barley consumption on one of

the physiological factors that is associated with heart disease

and diabetes: postprandial glucose and insulin response.

The Canadian Diabetes Association recommends that people

with diabetes replace high-GI foods with low-GI foods to

improve glycaemic control(1), and the present study showed

that barley tortillas made with high b-glucan or high IDF are

low-GI foods. All of the barley tortillas elicited lower PPGR

as compared to the glucose drink; however, increasing the
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amount of barley b-glucan in the tortillas improved PPGR

further, whereas increasing the amylose or insoluble fibre

content had no effect on PPGR.

Using barley flour from a genotype that is rich in amylose

(SH99250, which has 42 % amylose content in its extracted

starch) did not improve PPGR, which is in line with the

report by Granfeldt et al.(15). High-amylose rice (23 % amylose

content)(50), high-amylose maize starch (70–75 % amylose

content)(51) and high-amylose wheat (38 % amylose

content)(52) have been shown to reduce PPGR, but these

foods contain negligible amounts of b-glucan. Any benefit of

increasing amylose content may be masked by the effects of

b-glucan in foods that contain barley. Moreover, the tortillas

made with high-amylose barley flour contained 1·41 g resistant

starch per serving as compared to 0·42 g in the low-amylose

tortillas. Therefore, the dosage of resistant starch may not

have been sufficient to reduce the glycaemic response in gen-

eral and/or to reduce the glycaemic response further than

what was achieved by the b-glucan content. The present

results do not support the use of barley varieties based on

the amylose:amylopectin ratio to improve the PPGR of food

products made from barley flour.

The European Food Safety Authority has approved a health

claim for b-glucans from oats or barley for their beneficial

effect of improving PPGR(10). According to this claim, a ben-

eficial physiological effect requires the consumption of 4 g

of b-glucan from oat or barley for each 30 g of available carbo-

hydrate consumed per meal. A recent review(53) demonstrated

that in order to achieve a significant lowering of PPGR, 3 g of

b-glucan per meal is sufficient if the b-glucan is consumed

as intact cooked or fermented grains, and 4 g of b-glucan

per meal is sufficient if the b-glucan is processed. The present

tortilla study used b-glucan doses of 4·5, 7·8 and 11·6 g per

50 g of available carbohydrate. Although all of the barley tor-

tilla treatments showed a 20 % reduction in glucose response

as compared to consuming glucose alone, the maximum

reduction was observed with the treatments that contained

the highest amount of b-glucan (which also corresponded

with the highest viscosity). These results suggested that

b-glucan doses of more than 4 g could be more effective at

blunting glycaemic response, and this warrants future clinical

study to examine the dose-dependent effect of b-glucan on

PPGR. Considering the acute nature of the present study, the

role of b-glucan fermentation products, such as acetate, pro-

pionate and butyrate, on glucose metabolism could not be

determined(54,55). Accordingly, slowed glucose absorption as

a result of increased gut viscosity might have been responsible

for the acute effects that were observed(56); this idea was sup-

ported by the supplementary viscosity data. Future long-term

studies in people with type 2 diabetes are needed to validate

these effects and to determine whether there is an added

benefit of increased-fermentation products in the lower GIT

for maintaining lower blood glucose in the longer term.

Although previous studies have shown that the

consumption of IDF is associated with a reduced risk of

type 2 diabetes(57) and lowered PPGR 75 min after consuming

a meal(58), in the present study, the differential intake of low

v. high IDF (7·4 v. 19·6 % flour basis, respectively) did not

alter glycaemic or insulinemic responses. As in a previous

report(59), the present study showed that insulin concen-

trations remained elevated during the study period, whereas

glucose concentrations returned to baseline. We speculate

that this discrepancy might have resulted from the fact that

low levels of insulin may have been required to control the

slow release of glucose. In addition, in the present study,

the high-IDF tortillas elicited the highest GLP-1 response,

which suggested increased satiety. Future studies should

include visual analogue scales and measure ad libitum

energy intake at the next meal(s) to determine if these high-

IDF tortillas result in increased satiety and/or reduced

energy intake.

Overall, the present results indicated that the type of dietary

fibre present in barley flour and its milling fractions could alter

postprandial glucose and insulin responses. The selection of

high-b-glucan barley genotypes and specialised milling frac-

tions could be used to optimise barley-based functional

foods to reduce PPGR. This opens new opportunities and

novel ways to optimise the health benefits of barley tortillas

as low-GI foods. The results of the present acute study indi-

cated that barley food products enriched with b-glucan

could be useful as part of a dietary approach for controlling

and improving PPGR in humans. The results also indicated

that barley tortillas with high IDF could possibly improve sati-

ety, which has implications for weight control and obesity

management. The data also supported the hypothesis that

increasing b-glucan intake specifically is beneficial for helping

control PPGR. More studies using a wholefoods approach for

glycaemic control are needed for barley foods and wholegrain

foods in general.
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