Human milk has long been recommended as the ideal nutrient source for full-term neonates, but there is still controversy concerning its suitability for the preterm infant (Lawrence, 1994). Most studies comparing the macronutrient composition of preterm human milk with full-term human milk found a difference in composition, with preterm milk having a higher N content and a higher nutritional value than full-term milk (Atkinson et al. 1978, 1980; Gross et al. 1980, 1981; Schanler & Oh, 1980; Anderson et al. 1981; Guerrini et al. 1981; Lemons et al. 1982, 1983; Butte et al. 1984; Lepage et al. 1984; Darwish et al. 1989; Dawodu et al. 1990). These findings gave rise to the common consent that when a mother gives birth prematurely her milk is more suitable for her child than full-term milk. It is also known that the composition of milk shows considerable differences with the stage of lactation (Hytten, 1954; Atkinson et al. 1978, 1980; Gross et al. 1980; Anderson et al. 1981; Hibberd et al. 1982; Anderson et al. 1983; Butte et al. 1984; Pierse et al. 1988; Jain & Bijlani, 1989; Lawrence, 1994).

The underlying factors producing the differences in composition and the mechanisms leading to the patterns of change in composition are still unclear. In the present study we have examined the influence of gestational age at delivery (GA) and duration of lactation (postnatal age; PNA) and, when indicated, of post-menstrual age (PMA; GA + PNA) on the changing macronutrient composition of preterm milk in a group of mothers giving birth before 30 weeks of gestation. Mathematically, PMA is the simple addition of GA and PNA, but developmentally PMA is an independent time measure, reflecting endogenously-generated maturational processes from conception onwards (Prechtl, 1984). As the moment of conception usually is uncertain, it is common practice to use PMA for documenting developmental age.

Materials and methods

Milk donors

Milk samples (n 311) were obtained at weekly intervals from seventy-nine mothers giving birth before 30 weeks of
gestation and who had the intention to breast-feed their infants. GA was determined by the first day of the last menstrual period of the mother. This was confirmed either by an ultrasound examination during early pregnancy or a maturational assessment of the preterm infant with the help of the Dubowitz score (Dubowitz et al. 1970). Thirteen mothers gave birth in the 25th or 26th week of gestation, twenty mothers in the 27th week, twenty-one mothers in the 28th week and twenty-five mothers in the 29th week.

The study protocol was approved by the Medical Ethical Committee of the Academic Medical Center, Amsterdam.

Collection of milk samples

The collection of the 24 h samples started as soon as there was sufficient milk to both feed the child and take a 25 ml sample for analysis. Samples were taken for as long as the infant stayed in the hospital and milk production was adequate. Mothers pumped their breasts manually or mechanically, collecting the milk in sterile (deionized) bottles. The number and duration of expressions of milk varied per mother, according to their own habit. All expressions of milk were pooled over 24 h, mixed thoroughly and the volume was measured. All samples were stored at –20°C until analysed.

Chemical analysis

Total N concentration (mg/kg) was determined using Kjeldhal analysis (Helrich, 1990). Crude protein was calculated by multiplying Kjeldhal N by 6. Fat (g/kg) was determined according to the method of Roese-Gottlieb (Helrich, 1990). Lactose (g/kg) was determined using an enzymic procedure (Boehringer Mannheim GmbH, 1989). Carbohydrate (g/kg) was calculated as:

\[
\text{carbohydrate} = \text{DM} - \text{protein} - \text{fat} - \text{ash},
\]

DM being determined as the mass left after rotary evaporation at 102°C and ash being determined as the mass left after heating at 550°C (Helrich, 1990). Gross total energy content (kJ/kg) was calculated as:

\[
\text{energy} = (\text{protein} \times 5.65 + \text{fat} \times 9.25 + \text{carbohydrate} \times 3.95) \times 4.18,
\]

with protein, fat and carbohydrate expressed in g/kg milk and the constants expressed in kcal/g; 4.18 being the factor used to convert values to kJ (Anderson et al. 1981).

Statistical analysis

To evaluate the effects of GA, PNA or PMA on the macronutrient composition of very premature human milk, unbalanced repeated-measurements analysis of covariance with structured covariance matrices was performed (BMDP 5V; Dixon, 1992). This technique allows for missing data which are estimated implicitly from the available data. Only 24 h samples taken before 56 d of lactation (n = 282) were used in the statistical analysis, as the older lactational ages lacked sufficient samples for reliable statistics. PMA being the same as GA + PNA makes it impossible to analyse all three effects (PNA, PMA and GA) in one model. Thus, analysis of the effects of GA and PNA was first performed for each nutrient and energy density using the following model:

\[
\text{nutrient or energy density} = \text{GA} + \text{PNA} + 24\text{h volume effect},
\]

and for 24 h volume using the model:

\[
24\text{h volume} = \text{GA} + \text{PNA}.
\]

When a statistically significant (P < 0.05) effect of GA was found in this model, PNA was replaced by PMA in order to decide whether the combined effect of GA and PNA could be explained by a single effect of PMA. This would be the case if GA lost its significance in the PMA model. If GA remained significant in this model as well, this was seen as an indication of an independent effect of GA. Time scales of PNA and PMA were both divided into eleven time intervals, for PNA between days 7 and 55 (interval 4–5 d) and for PMA between days 183 and 258 (interval 7 d). GA was used as a between-mother grouping variable with four categories: 25–26 weeks, 27 weeks, 28 weeks and 29 weeks. The 24 h milk volume was used as a time-varying covariate in the nutrient and energy density analysis.

To test the assumptions of the model and to check for outliers, analysis of residuals was performed from the unbalanced repeated measurements analysis. When indicated, a Box-Cox (1964) transformation was applied and the effect of outliers was analysed. When a significant overall effect of GA or time was found, a test of which groups or periods differed was performed by calculating contrasts.

Results

24 h milk volume

Based on the residual analysis this variable was log transformed. The amount of milk produced by the mothers during a 24 h period was not found to be related to GA or PNA (Tables 1–3).

Total nitrogen

Changes in total N were related to PNA; an increase in PNA was associated with a decrease in total N content of 8 (SD 2) mg.

Fat

Fat content was not found to be related to GA or PNA (Tables 1–3), nor was it found to be affected by 24 h milk volume.

Lactose

Based on the residual analysis this variable was transformed using the exponent 2.5. Lactose content was not found to be
Macronutrient content of preterm human milk

Table 1. Milk volume (24 h) and macronutrient composition of preterm human milk for eleven postnatal periods (range 7–55 d)

(Values are means and standard deviations)

<table>
<thead>
<tr>
<th>Postnatal period</th>
<th>Postnatal age (d)</th>
<th>n</th>
<th>Volume (ml/24h)</th>
<th>Total N (g/kg)</th>
<th>Fat (g/kg)</th>
<th>Lactose (g/kg)</th>
<th>Carbohydrate (g/kg)</th>
<th>Energy (kJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7–10</td>
<td>36</td>
<td>308±192</td>
<td>3.2±0.8</td>
<td>35.8±9.1</td>
<td>55.0±6.6</td>
<td>71.9±4.8</td>
<td>3054±421</td>
</tr>
<tr>
<td>2</td>
<td>11–14</td>
<td>31</td>
<td>261±201</td>
<td>3.0±0.6</td>
<td>34.9±10.5</td>
<td>55.9±6.1†</td>
<td>71.5±6.2</td>
<td>2988±419</td>
</tr>
<tr>
<td>3</td>
<td>15–19</td>
<td>32</td>
<td>391±255</td>
<td>2.6±0.6</td>
<td>34.0±5.7</td>
<td>58.9±5.2</td>
<td>74.3±4.2</td>
<td>2930±263</td>
</tr>
<tr>
<td>4</td>
<td>20–23</td>
<td>35</td>
<td>329±253</td>
<td>2.5±0.5</td>
<td>33.9±7.5</td>
<td>57.6±4.7</td>
<td>72.5±4.7</td>
<td>2885±361</td>
</tr>
<tr>
<td>5</td>
<td>24–28</td>
<td>38</td>
<td>263±193</td>
<td>2.5±0.5</td>
<td>32.8±5.8‡</td>
<td>57.7±4.9</td>
<td>72.6±5.5‡</td>
<td>2841±274‡</td>
</tr>
<tr>
<td>6</td>
<td>29–32</td>
<td>24</td>
<td>391±252</td>
<td>2.2±0.4</td>
<td>35.4±5.0</td>
<td>60.2±4.0</td>
<td>75.3±4.0</td>
<td>2946±255</td>
</tr>
<tr>
<td>7</td>
<td>33–37</td>
<td>31</td>
<td>334±218</td>
<td>2.1±0.3</td>
<td>35.4±7.4</td>
<td>60.4±4.0</td>
<td>74.5±4.1</td>
<td>2921±306</td>
</tr>
<tr>
<td>8</td>
<td>38–41</td>
<td>16</td>
<td>264±243</td>
<td>2.4±0.5</td>
<td>31.7±8.7</td>
<td>57.1±6.6</td>
<td>70.4±5.5</td>
<td>2749±334</td>
</tr>
<tr>
<td>9</td>
<td>42–46</td>
<td>18</td>
<td>454±247</td>
<td>2.1±0.3</td>
<td>35.7±4.4</td>
<td>61.8±3.0</td>
<td>75.0±3.5</td>
<td>2933±195</td>
</tr>
<tr>
<td>10</td>
<td>47–50</td>
<td>12</td>
<td>366±281</td>
<td>2.0±0.5</td>
<td>33.3±5.4</td>
<td>59.5±5.1</td>
<td>72.7±5.1</td>
<td>2786±210</td>
</tr>
<tr>
<td>11</td>
<td>51–55</td>
<td>9</td>
<td>348±204</td>
<td>2.0±0.3</td>
<td>32.7±6.4</td>
<td>61.9±2.1</td>
<td>72.9±4.2</td>
<td>2774±274</td>
</tr>
<tr>
<td>all</td>
<td>7–55</td>
<td>282</td>
<td>329±231§</td>
<td>2.5±0.6</td>
<td>34.3±7.3§</td>
<td>58.2±5.4§</td>
<td>72.0±4.9§</td>
<td>2914±329§</td>
</tr>
</tbody>
</table>

* n 35.
† n 30.
‡ n 37.
§ n 281.

Table 2. Milk volume (24 h) and macronutrient composition of preterm human milk for eleven post-menstrual periods (range 183–258 d)

(Values are means and standard deviations)

<table>
<thead>
<tr>
<th>Post-menstrual period</th>
<th>Post-menstrual age (weeks)</th>
<th>n</th>
<th>Volume (ml/24h)</th>
<th>Total N (g/kg)</th>
<th>Fat (g/kg)</th>
<th>Lactose (g/kg)</th>
<th>Carbohydrate (g/kg)</th>
<th>Energy (kJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26–27</td>
<td>1</td>
<td>450</td>
<td>3.8</td>
<td>39.7</td>
<td>57.0</td>
<td>77.1</td>
<td>3384</td>
</tr>
<tr>
<td>2</td>
<td>27–28</td>
<td>9</td>
<td>277</td>
<td>113†</td>
<td>32.0</td>
<td>55.3</td>
<td>74.7</td>
<td>3045±318</td>
</tr>
<tr>
<td>3</td>
<td>28–29</td>
<td>17</td>
<td>324</td>
<td>213</td>
<td>34.8</td>
<td>57.7</td>
<td>74.9</td>
<td>3012±304</td>
</tr>
<tr>
<td>4</td>
<td>29–30</td>
<td>36</td>
<td>310</td>
<td>206</td>
<td>36.3</td>
<td>55.9</td>
<td>72.4</td>
<td>3035±439</td>
</tr>
<tr>
<td>5</td>
<td>30–31</td>
<td>50</td>
<td>300</td>
<td>217</td>
<td>34.1</td>
<td>57.4</td>
<td>72.6</td>
<td>2937±364</td>
</tr>
<tr>
<td>6</td>
<td>31–32</td>
<td>54</td>
<td>315</td>
<td>233</td>
<td>34.3</td>
<td>58.4</td>
<td>73.6</td>
<td>2917±274‡</td>
</tr>
<tr>
<td>7</td>
<td>32–33</td>
<td>46</td>
<td>366</td>
<td>268</td>
<td>33.7</td>
<td>58.7</td>
<td>72.4</td>
<td>2838±284</td>
</tr>
<tr>
<td>8</td>
<td>33–34</td>
<td>32</td>
<td>364</td>
<td>269</td>
<td>34.0</td>
<td>60.3</td>
<td>74.6</td>
<td>2865±281</td>
</tr>
<tr>
<td>9</td>
<td>34–35</td>
<td>22</td>
<td>319</td>
<td>226</td>
<td>33.7</td>
<td>59.2</td>
<td>72.3</td>
<td>2822±327</td>
</tr>
<tr>
<td>10</td>
<td>35–36</td>
<td>11</td>
<td>390</td>
<td>238</td>
<td>34.3</td>
<td>60.3</td>
<td>71.8</td>
<td>2818±252</td>
</tr>
<tr>
<td>11</td>
<td>36–37</td>
<td>4</td>
<td>358</td>
<td>175</td>
<td>30.3</td>
<td>63.2</td>
<td>74.3</td>
<td>2714±178</td>
</tr>
<tr>
<td>all</td>
<td>26–37</td>
<td>282</td>
<td>329±231§</td>
<td>2.5±0.6</td>
<td>34.3±7.3§</td>
<td>58.2±5.4§</td>
<td>73.0</td>
<td>2914±329§</td>
</tr>
</tbody>
</table>

* n 8.
† n 49.
‡ n 53.
§ n 281.

related to GA, but lactose content increased highly significantly with increasing PNA (Tables 1–3). Milk volume also affected lactose content; an increase in 24 h milk volume of 100 ml was associated with an increase in lactose content of 0-14 (SE 0-02) g.

Carbohydrate

Based on the residual analysis this variable was transformed using the exponent 4·5. An effect of GA on total carbohydrate was found, mainly due to differences between carbohydrate content at 28 weeks of GA and both the carbohydrate contents at 25–26 and 27 weeks of GA (Table 4). A trend towards an effect of PNA on total carbohydrate content was found (P=0·057; Tables 1–3). Analysis of an effect of PMR was therefore indicated, confirming an independent effect of GA on carbohydrate while no effect of PMA was found. An increase in 24 h milk volume of 100 ml was associated with an increase in total carbohydrate content of 0·10 (SE 0·02) g.

Energy content

Energy content was not found to be related to GA or PNA (Tables 1–3), nor was it found to be affected by 24 h milk volume.

Discussion

The present study, like others, showed that the composition of very preterm milk changes during lactation (Atkinson et al. 1980; Gross et al. 1980; Schanler & Oh, 1980; Anderson et al. 1981; Pamblanco et al. 1986; Beijers et al. 1992). To explain the observed time effect we evaluated...
the effect of three time variables: PNA, GA and, a novelty, PMA. The major findings of our study are that developmental changes in milk composition are largely determined by PNA, minimally by GA and not at all by PMA. This means that the composition of preterm human milk is not determined by autonomous developmental processes related to the moment of conception, but that the maternal body adapts to the moment of precocious delivery. Milk volume (24 h) itself did not show a dependence on GA, PNA or PMA. The major findings of our study are that developmental changes in milk composition are largely determined by PNA, minimally by GA and not at all by PMA. This means that the composition of preterm human milk is not determined by autonomous developmental processes related to the moment of conception, but that the maternal body adapts to the moment of precocious delivery. Milk volume (24 h) itself did not show a dependence on GA, PNA or PMA. The major findings of our study are that developmental changes in milk composition are largely determined by PNA, minimally by GA and not at all by PMA. This

Statistical analysis

The aim of our study was to get more insight into the patterns underlying the changes in nutrient concentration of preterm human milk, whereas other studies focused only on differences between milk obtained from mothers delivering their babies preterm v. term. In general, the statistical analysis of previous studies has been done on mean nutrient values of small numbers of mothers at different postnatal days (Schanler & Oh, 1980; Guerrini et al. 1981; Anderson et al. 1983; Lemons et al. 1983; Lepage et al. 1984; Darwish et al. 1989; Dawodu et al. 1990), thereby ignoring the considerable variability in milk volume and nutrient concentration which exists between and within individual mothers, particularly in preterm mothers (Green et al. 1981; Hibberd et al. 1982; Anderson, 1984). To allow correction for intra- and inter-individual variations we collected longitudinal data from a total of seventy-nine mothers and used unbalanced repeated measurement analysis. In this way we were able to correct for inter-individual as well as intra-individual variability. Moreover, in our study, possible effects of 24 h volume on the observed differences in macronutrient concentrations between GA, PNA or PMA groups were controlled for by means of the statistical technique of covariance analysis.

Effect of gestational age

We found that total carbohydrate concentration was lower when the GA was higher (Table 4). When differences in composition of very preterm human milk are found to be related to the GA this indicates that the event of birth interrupts the gestational developmental processes occurring in the mammary gland, with a lasting effect on the composition of the milk produced. We have seen this only for the total carbohydrate content. An explanation for this might be that we only studied a small range of GA, a broader range from week 25 to 36 might have led to a different conclusion.

Taking into account that approximately 800 g/kg carbohydrate in human milk is considered to be lactose, we could have expected an effect of GA for lactose as well. However, such an effect was absent (Table 4), possibly due to the relatively large variation in the lactose contribution to the carbohydrate content in our samples (640–930 g/kg).

Effect of postnatal age

Table 3. Statistical significance (P values) of the effect of gestational age at delivery (GA), postnatal (PNA) or post-menstrual (PMA) age (if analysed) and 24 h milk volume on total nitrogen, fat, lactose, carbohydrate and energy content of 24 h milk (model a) and of the effect of GA and PNA on 24 h milk volume (model b), from mothers delivering preterm

<table>
<thead>
<tr>
<th>Variable</th>
<th>GA Mean</th>
<th>PNA Mean</th>
<th>24 h volume</th>
<th>P MA Mean</th>
<th>24 h volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N</td>
<td>0.85</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.95</td>
<td>0.89</td>
</tr>
<tr>
<td>Fat</td>
<td>0.25</td>
<td>0.69</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactose</td>
<td>0.25</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.013</td>
<td>0.71</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>0.0065</td>
<td>0.057</td>
<td><0.0001</td>
<td>0.95</td>
<td>0.11</td>
</tr>
<tr>
<td>Energy</td>
<td>0.45</td>
<td>0.011</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 h volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Effect of PMA.

Table 4. Total carbohydrate and lactose content of preterm human milk for four gestational age at delivery (GA) groups

<table>
<thead>
<tr>
<th>Gestational age (weeks)</th>
<th>Carbohydrate (g/kg)</th>
<th>Lactose (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25–26</td>
<td>74.6</td>
<td>58.5</td>
</tr>
<tr>
<td>27</td>
<td>74.3</td>
<td>59.2</td>
</tr>
<tr>
<td>28</td>
<td>71.1</td>
<td>56.9</td>
</tr>
<tr>
<td>29</td>
<td>72.2</td>
<td>58.3</td>
</tr>
<tr>
<td>25–29</td>
<td>73.0</td>
<td>58.2</td>
</tr>
</tbody>
</table>

* Mean value was significantly different from that for GA of 25–26 weeks (P < 0.001) and from that for GA of 27 weeks (P < 0.02).

† n 76.

‡ n 78.
Lawrence, 1994), indicating that the compositions of both preterm and full-term human milk change in a similar way (Anderson, 1984). In our samples lactose content also changes relative to total carbohydrate content from 760 g/kg by days 7–10 to 800 g/kg by days 29–32 and 850 g/kg by days 51–55 (Table 1), which is in accordance with what has been found in full-term human milk (Coppa et al. 1991, 1993).

Effect of post-menstrual age

Dependency of milk composition on PMA would imply that changes in milk composition are in accordance with developmental changes in the fetal–maternal unit. This could mean that the changes in milk composition are in accordance with the nutrient requirements of the infant at various developmental stages. We did not find such a ‘teleological’ relationship for any of the studied nutrients.

In conclusion, postnatal changes dominate the development of the composition of very preterm human milk. GA affects only carbohydrate content, with a minor net effect on the nutritional value of the milk.

Acknowledgements

First, we want to thank all mothers for their milk samples and cooperation throughout the study. We also thank J. A. Boerma from the laboratories of Nutricia, The Netherlands, for the chemical analyses of the samples. We are grateful to J. G. Koppe and R. de Leeuw for their support of this project. Also, we are grateful to the referee of the journal to whom we submitted the paper previously, for critically reviewing the manuscript. Y. G. H. M. and J. G. were financially supported by Nutricia, The Netherlands. This report is part of a study in fulfilment of the Degree in Philosophy in Science for Y. G. H. M.

References

Pamblanco M, Ten A & Comin J (1986) Proteins in preterm and term milk from mothers delivering appropriate or

© Nutrition Society 1998