Vitamin B$_6$ has sometimes been referred to as a ‘vitamin without a deficiency’. Non-specific clinical symptoms and functional losses, such as compromised haem synthesis, immunocompetence and electroencephalographic (EEG) abnormalities, have been observed in experimental (depletion) studies, but ‘spontaneous’ cases of clinical vitamin B$_6$ deficiency in man are rare (for review, see Leklem, 1991; Bender, 1992). Biochemical evidence for an inadequate vitamin B$_6$ supply, such as low plasma pyridoxal phosphate (PLP) levels, has been reported, however, in several studies and for various groups, but especially in elderly (van der Wielen et al. 1996; Brussaard et al. 1997). Whether the higher prevalence of a marginal vitamin B$_6$ status among elderly has indeed functional consequences, and reflects inadequate intake, or results from metabolic changes resulting in increased vitamin B$_6$ needs, is still under debate. Depletion–repletion studies among elderly males and females by Ribaya-Mercado et al. (1988) and Pannemans (1996; Brussaard et al. 1997) indeed showed that more vitamin B$_6$ was needed to normalize plasma PLP and tryptophan loading test results compared with results found in similar (earlier) studies with younger adults. Based upon these data, the panel on ‘Folate and other B-vitamins’ from the Food and Nutrition Board in the USA recently recommended a higher RDA for vitamin B$_6$ for older adults (51+) compared with younger age groups.

In this issue, Bates et al. (1999) confirm these findings of low plasma PLP in the elderly in a representative sample of British older (65+) males and females. They also measured plasma 4-pyridoxic acid (4-PA), a catabolic product of vitamin B$_6$, and observed a clear increase of 4-PA with age, which was not solely caused by renal impairment. In this study, as in most other studies, a strong correlation between dietary vitamin B$_6$ intake and plasma PLP was established; however, the mean intake as such was inadequate, with only 2–3 % of individuals with intakes below the lower nutrient reference intake (LNRI).

The increase in (relative) 4-PA excretion, indicative of a higher catabolic rate, has been reported earlier (e.g. Lee & Leklem, 1985), but is not found in all studies (Kant et al. 1988; Pannemans et al. 1994). In livers of ageing (female) rats, an age-related increase in pyridoxal (PL) oxidase (EC 1.2.3.8) and dehydrogenase (EC 1.1.1.107) activities has been found which may result in an increased flux of PL through this oxidative pathway (Bode et al. 1991). The availability of PL, i.e. the substrate for 4-PA formation, is regulated by the extent of PLP binding by (enzyme-) proteins. Protein-bound PLP is protected from hydrolysis by alkaline phosphatase (EC 3.1.3.1; AP). When the protein-binding capacity decreases, the pool of unbound (‘free’) PLP increases, resulting in higher PL concentrations. Two enzymes compete for substrate PL: PL-oxidase, resulting in irreversible oxidation to 4-PA, and PL-kinase (EC 2.7.1.35), resulting in (re)phosphorylation to PLP. These mechanisms explain the decrease in 4-PA excretion if protein intake is increased under conditions of an equal vitamin B$_6$ intake. A higher protein intake will result in an increased protein turnover and protein catabolic rate associated with a subsequent increase in transaminase enzyme activity, resulting in an increase in PLP-binding capacity. Actually, 4-PA is a spill-over product, and 4-PA excretion increases when vitamin B$_6$ supply is in excess of PLP-binding capacity. Based upon biokinetic studies in ageing rats, Bode & van den Berg (1991) speculated that the lower plasma PLP levels, and the age-associated increase in 4-PA excretion, might reflect changes in the slowly exchanging vitamin B$_6$ body pools, i.e. in muscle PLP disposition.

Approximately 80 % of the vitamin B$_6$ body store is located in (striated) muscle tissue as PLP bound to glycogen phosphorylase (EC 2.4.1.1). Ageing is generally associated with a decrease in lean body mass, which is mainly muscle tissue, and may consequently result in a decrease in the vitamin B$_6$ body pool. Pannemans et al. (1994) investigated the age-dependent relationship between vitamin B$_6$ status indicators and protein turnover by comparing the response of various vitamin B$_6$ status indicators between a group of young (29 (SD 1) years) and elderly (70 (SD 1) years) adults fed on standardized diets containing 12 and 21 % of energy as protein respectively. Plasma PLP was significantly lower for the older, compared with the younger age group in both diet periods. Remarkably, plasma PLP levels were higher on the high-protein compared with the lower-protein diet in the older age group, while there was no effect of protein intake level on plasma PLP in the young adults. In the younger age group, 4-PA excretion indeed became lower on the high-protein diet; however, the reverse effect was seen in the elderly group. Although there was a tendency for a negative correlation between protein breakdown and plasma PLP in the elderly, correlations between protein turnover and indices of vitamin B$_6$ status were not significant. From these data it can be concluded that there is indeed a difference in protein intake-related vitamin B$_6$ needs whereby elderly subjects apparently need less vitamin B$_6$ at a higher protein intake compared with the younger adults. A higher vitamin B$_6$ catabolic rate in the elderly might thus be interpreted as indicative for an increased vitamin B$_6$ need, but could also reflect reduced PLP-binding capacity, i.e. lower body needs. More studies are clearly needed to unravel these complex interactions between vitamin B$_6$ biokinetics and protein turnover in the elderly.

In spite of this ambiguous interpretation of the age-related changes in vitamin B$_6$ metabolism, functional indicators suggest an apparently higher vitamin B$_6$ need in the
elderly. In the study from Bates et al. (1999), plasma PLP levels were inversely correlated with plasma homocysteine, an independent risk factor for cardiovascular disease. A similar relationship was reported earlier by Selhub et al. (1993). Although folate appears to be the most important determinant of homocysteine levels, and vitamins B₆ and B₁₂ of only secondary importance, the repeated finding of a relationship between hyperhomocystinaemia and vitamin B₆ status and intake in the elderly may reflect a suboptimal vitamin B₆ supply. It should be noted, however, that vitamin B₆ contrary to folate supplementation, has not been shown to result in homocysteine lowering, except in rare cases of congenital cystathionine synthase deficiency, nor is there as yet any evidence for a protective effect of vitamin B₆ supplementation on cardiovascular disease risk from controlled intervention trials (Ubbink et al. 1994). The reported effects of vitamin B₆ supplementation in elderly subjects on maintenance of an adequate immune response (Riggs et al. 1991) and the association with cognitive performance (Riggs et al. 1996) also stress the importance of vitamin B₆ adequacy in the elderly. It may therefore turn out that this vitamin 'without a deficiency' has indeed protective effects beyond known functions, but needs more appropriate markers to define optimal intake and adequacy.

H. van den Berg
TNO Nutrition and Food Research Institute
PO Box 360
3700 AJ Zeist
The Netherlands

References