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COTORSION THEORIES AND COLOCALIZATION
R. J. MCMASTER

Introduction. Let R be an associative ring with unit element. Mod-R and
R-Mod will denote the categories of unitary right and left R-modules, respec-
tively, and all modules are assumed to be in Mod-R unless otherwise specified.
For all M, N € Mod-R, Hom (M, N) will usually be abbreviated as [M, N].
For the definitions of basic terms, and an exposition on torsion theories in
Mod-R, the reader is referred to Lambek [6]. Jans [5] has called a class of
modules which is closed under submodules, direct products, homomorphic
images, group extensions, and isomorphic images a TTF (torsion-torsionfree)
class. Since such a class .7 is not closed under injective hulls, while a torsionfree
class is closed under injective hulls, we find this terminology misleading and
shall instead (following a suggestion by J. Golan) call.Z” a Jansian class from
now on. (A torsion class 7~ which is closed under injective hulls is called stable,
and hence a stable Jansian class is a true torsion-torsionfree class.)

If (7, % ) is a torsion theory then modules in.7 are called torsion, and
modules in.# are called torsionfree. Each M € Mod-R has a unique maximal
torsion submodule, denoted by .7 (M). (It is the unique submodule X C M
such that X is torsion and M /X is torsionfree.) A submodule D of M is called
dense if M/D is torsion. Let 94 denote the set of all dense right ideals of R.
D4 forms an idempotent (or Gabriel) filter, i.e. it satisfies the following condi-
tions:

0)R € D,

W)D€DsandD C K=K € Dy,

2)D € Dgandr € R= (r:D) € D4, where (r: D) = {x € R|rx € D},

B)D € Dyand @:K) € Dyforalld c D=DNK € D,.

Gabriel [4] has shown that there is a one-to-one correspondence between
torsion classes in Mod-R and idempotent filters of right ideals of R: to a torsion
class I associate the idempotent filter &5, and to an idempotent filter &
associate the torsion class 7 g = {M € Mod-R|(m : 0) € & for all m € M}.

Jans [5] showed that a torsion class.Z is a Jansian class if and only if &4
contains a unique minimal right ideal 7', in which case 7" is an idempotent
two-sided ideal, and 7" = % (R) where (¥, ) is the pre-torsion theory with
J  as the pre-torsionfree class. Thus there is a one-to-one correspondence
between Jansian classes and idempotent ideals of R, with the inverse cor-
respondence given by T"— {M € Mod-R|MT = 0}.

Given an injective module Ik, one can form the largest torsion theory for
which I is torsionfree (where (9, % ) C (J '\ ")if9 CJ '), and in fact
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every torsion theory is of this form for some injective I. For a given torsion
theory (7, ), a module M is called divisible (or J -injective) if I(M)/M €
&, where I (M) denotes the injective hull of M. Every module M has a divisible
hull D (M) defined by D(M)/M =.7 (I(M)/M). One also defines the quotient
module Q(M) of M by Q(M) = D(M/J (M)). Q(M) is also called the localiza-
tion of M at I, where I is an injective module such that (J,% ) is the largest
torsion theory for which I is torsionfree.

1. Cotorsion theories. Let Py be a projective module, let E = [P, P], and
let P* = [P, R]. As mentioned above, every torsion theory can be thought of
as the largest torsion theory for which some injective module I is torsionfree,
where a module M is torsion if and only if [M, I] = 0. We dualize this in the
following definitions:

Definition 1.1. (a) A module M is cotorsion if [P, M] = 0.

(b) A module M is cotorsionfree if [M, X] = 0 for all X cotorsion.

(c) If  * denotes the class of cotorsion modules, and % * the class of
cotorsionfree modules, then (& *,.7 *) is a cotorsion theory.

(d) (M) is the evaluation mapping [P, M] @ g P — M, i.e., e(M) (> g: ® p:)
= 2g:(p1)-

() T = e(R)(P* ®g P), the trace ideal of P.

The following lemma appears in [12, Proposition 1.2], and is easily proved.
LeEmMmA 1.2. M € Mod-R s cotorsion if and only if MT = 0.

The equivalence of (2) and (5) in the next proposition also has been noted
by Sandomierski [12, Proposition 1.2].

ProposiTION 1.3. For all M € Mod-R, the following conditions are equivalent:
(1) M 1s cotorsionfree.

(2) MT = M.

B)MrR/T = 0.

(4) €(M) s an epimorphism.

(5) M 1is an epimorphic image of a direct sum of copies of P.

Proof. (1) < (2) M/MT is cotorsion since (M/MT)T = 0, hence the pro-
jection mapping M — M/M7T = 0. Conversely, for all X cotorsion, and all
¢ €M, X], o(M) = ¢(MT) = o(M)T C XT = 0.

2)e @) M/MT =2 M ®r R/T.

2) = @) Im (M) = MT.

(4) & (5) This is clear.

Since 7? = T'and PT = P, M1? = MT and ([P, M]®zP)T =[P, M] Q@ P
for any M in Mod-R, and thus M7 and [P, M] ® g P are cotorsionfree. The
class 7 * of cotorsion modules is closed under submodules, direct products,
homomorphic images, group extensions, and isomorphic images, i.e. it is a
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Jansian class. The class # * of cotorsionfree modules is closed under homo-
morphic images, direct sums, group extensions, isomorphic images, and by
(11, Proposition 1] minimal epimorphisms (and hence projective covers if they
exist).

Definition 1.4. A module M is codivisible if for any epimorphism ¢: B — 4
such that Ker ¢ is cotorsion, any homomorphism M — 4 can be extended to a
homomorphism M — B, i.e.,

M

4
/

v, \Z
/
i
B—m2% 54

ProposiTION 1.5. For all M € Mod-R, [P, M] ® g P is codivisible.

Proof. We prove that for any H € Mod-E, H ® P is codivisible. Let
¢: B— A be any epimorphism such that Ker ¢ is cotorsion. Let ¢ be any
homomorphism: H @ 5 P — A. Define y,: P — A by ¢, (p) = ¢(h ® p) for all
h € H, p € P. Then since P is projective there exists ¢,’: P — B such that
oYy = Y. Definea: H Xz P — Bbya((h, p)) = ¢/ (p). Since P is projective
and [P, Ker ¢] = 0, [P, B] = [P, A], and it is now easily shown that « is
bilinear. Therefore there exists y': H ® z P — B such that

oW (Xh: @ po) = ¢’ (P0) = (1) = 24 ® py) =
Y(2h ® pe)

forall >k, ® p, € H @z P. Thus ¢y’ = ¢, and hence H ® z P is codivisible.
ProposIiTION 1.6. For all M € Mod-R, Ker (M) s cotorsion.

Proof. Let 3°f: ® p: € [P, M] ® zx P such that e(M)(3.f: @ p:) = 2 .fi(py)
= 0. Then for all f € P*and p € P, (Xf: ® p)f(p) = Xfi @ pif(p) =
2fpif ® p=0,sinceforallx € P, (Cfpf)(x) = 2Zf:(p.f(x)) = Z(fi(ps))-
fx) = (Cf:(p))f(x) = 0. Therefore (3°f; ® p)T = 0, and Ker ¢(M) is

cotorsion.

CoRrOLLARY 1.7. P 1is a generator < e(M) is an 1somorphism for all M €
Mod-R.

Proof. P is a generator <& T = R, i.e. e(R) is an epimorphism, < Ker ¢(M)
= 0and MT = M for all M € Mod-R < ¢(M) is an isomorphism for all
M € Mod-R.

The next theorem is due mainly to Miller [10, Theorem 2.1], in particular
the equivalence of statements (2) to (7). (2) < (5) was also proved by
Azumaya [1, Theorem 6], along with several more equivalent statements. First
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we need a lemma, which also appeared in [10], but without proof. Since the
proof is not completely trivial, we include it here.

LEMMA 1.8. Let# = {X € Mod-R|X'T = X' forall X' C X}. Then X € ¥
if and only if x € xT for all x € X. Also, H is a torsion class (i.e. it is closed
under submodules, direct sums, homomorphic images, group extensions, and
isomorphic images).

Proof. Let X € J, then for all x € X, xR = xRT = xT, and therefore
x € xT. Conversely, let X’ € X. Then for all x € X’, x € xT and hence
X' = X'T. Thus X € 5. The non-trivial step in proving that.# is a torsion
class is to show that it is closed under direct sums, and this is done by an
argument given by Chase [2, Proposition 2.2]. Let X = ®,; X4 where
X, €, 1¢ I Let X' C X,and letxy, + ... 4+ x;, € X'. We will show by
induction on % that there exists ¢ € 7 such thatx;; = x,tforallj =1,...,n.
It is true for » = 1 since each X; € J#. Assume it is true for » = ¢ — 1, and
let ¢, € T such that x;, = x48. Then there exists ¢’ € T such that x;; —

Xty = (g — xgt)t forj=1,..., kb — 1. Lett =t — t;t' 4+ t;, then x,;¢t =
xijtl - xijtktl + xijtk = Xij fOrj = ]., e eey kR — 1, and xikt = xiktl - x1ktkt’ +
Xyt = x4. Hence it is true for all #, and therefore X’ € S#, since x;, + ... +

X4 € (X4 + ..o+ x4,)7T.

THEOREM 1.9. T'he following statements are equivalent:

(1) T *, the class of cotorsion modules, is closed under injective hulls.

(2) F *, the class of cotorsionfree modules, is closed under submodules. i.e.,
Fx =K.

(38) Pet.

4) T €.

(5) R/T s flat as a left R-module.

(6) (p:0) + T = R forall p € P.

(7) ¢:0) + T =R forallt € T.

(8) Ewvery cotorsionfree module is codivisible.

(9) F: M — M/MT for all M € Mod-R s an exact functor.

Proof. (1) & (2) This is well known.

(2) = (7) Since F * =, F * is a torsion class by Lemma 1.8, and thus
has a corresponding idempotent filter & 4,. Since T" € F *, (¢:0) € D4, for
t € T,ie., R/(t:0) € # *and hence (¢:0) + T = R.

(7)= (5) R = (t:0) + T for ¢t € T, and therefore 1 = x + ¢’ for some
x € (.:0)and ' € T,forany t € T. Hence t = tx + 1t/ = #t' € tT,fort € T,
and z(R/T) is flat by [2, Proposition 2.2].

(5) = (2) Let X €. * then forall X' C X,

0-X' ®rR/T—>X QrR/T

is exact since zx(R/T) is flat. But then X’ ® x R/T = Osince X Q g R/T =0
by Proposition 1.3, and X’ € % *. Therefore # * = #.
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(3) & (6) By Lemma 1.8, for all p € P there exists ¢t € T such that p = pt.
Therefore p(1 —¢) = 0,i.e.,, (1 —¢) € (p:0),and R = (p:0) + T forall p € P.
Conversely, if (p:0) + T = R for p € P, then 1 = x + ¢ for some x € (p:0)
and ¢t € T, for all p € P. Hence p = px + pt = pt € pT for p € P, and
P ¢ s by Lemma 1.8.

(4) & (7) This is proved in the same way as (3) & (6).

(2) = (3) This is clear.

(3) = (2) Let X ¢ & *. Then by Proposition 1.3, X is an epimorphic image
of a direct sum of copies of P. But P € # and S is a torsion class, hence
X € and F * = .

(2) = (9) Let

045 BE& o0

be an exact sequence in Mod-R. Then

A4/4T7L B/BT S Cc/CT— 0

is always exact. Suppose f'(a¢ + AT) = 0, i.e., f(a) € BT, for some a € 4.

Then since & * is closed under submodules, f(¢)R = f(a)RT = f(a)7T, and

therefore there exists ¢t € T such that f(a) = f(a)t = f(at). But f is a mono-

morphism, and hence ¢ = at, i.e., a + AT = 0, and f’ is a monomorphism.
9) = (8)

0——Kere(M) —— [P, M] @4 P <) v 50

is an exact sequence for all M € Mod-R, and therefore, in particular,
0 — Ker ¢(M)/(Ker ¢«(M))T — [P, M] @z P/([P, M] @z P)T

is exact. But [P, M] ®y P is cotorsionfree, and hence so is Ker (). By
Proposition 1.6, Ker ¢(M) is also cotorsion, and thus it is zero. Therefore
MT = [P, M] ® P, and hence is codivisible by Proposition 1.5.

(8) = (1) Let M be a cotorsion module, i.e., MT = 0. Let I(M) denote
the injective hull of M. We show that I(M)7T = 0 also. Let 7 be the projection
map: I(M)T — I(M)T/I(MYT N\ M. I(M)T/I(M)T M M is cotorsionfree
and hence codivisible, and I(M)T° N\ M = Ker = is cotorsion since M is
cotorsion. Therefore there exists f: I(M)T/I(M)T M M — I(M)T such that
mf = 1 rrcanr 0 s and hence I(M)T M M is a direct summand of I(M)T.
But M essential in I (M) then implies I(M)T = I(M)T N\ M. Thus I(M)T =
I(M)T2 C MT = 0.

2. Colocalization. The next result is the dual of a well-known characteriza-
tion of the localization of M at I. (See, e.g., (8, Proposition 1.1].)
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ProrposiTiOoN 2.1. For all M € Mod-R, let o: X - M and ¢: YV — M be
homomorphisms with cotorsion kernels and cokernels, where X and Y are cotor-
stonfree and codivisible modules. Then X = V.

Proof. Since X is cotorsionfree, X = XT and therefore ¢(X) € MT. But
Cok ¢ = M/p(X) is cotorsion, and therefore MT C (X). Hence ¢(X) =
MT, and similarly ¢(¥) = MT. We may regard ¢ as an epimorphism from
X to MT, and ¢ as an epimorphism from ¥ to MT. Since Ker ¢ is cotorsion
and Y is codivisible, there exists f: ¥ — X such that ¢f = ¢. Similarly there
exists g: X — Y such that g = ¢. Then o(1x — fg) = ¢ — ¢fg = ¢ — Yg =
¢ — ¢ = 0, and therefore (1x — fg): X — Ker ¢. Hence 1x = fg since X is
cotorsionfree and Ker ¢ is cotorsion. Similarly 1y = gf,and X = V.

We are now able to make the following definition.

Definition 2.2. For all M € Mod-R, ¢: X — M is (up to isomorphism) the
colocalization of M at P if X is cotorsionfree and codivisible, and Ker ¢ and
Cok ¢ are cotorsion.

Given a projective module P, Lambek and Rattray [9] have constructed a
cotriple (S’, ¢, 8’) on Mod-R, and formed a colocalization of a module M
at P by taking the coequalizer of the pair of mappings

¢S'(M)
S'(S"(M)) ——3 S"(M).
S'e (M)
For P a finitely generated projective module, they showed that this colocaliza-
tion of M at P is [P, M] ®z P. The next theorem states that this is our
colocalization of M at P for any projective P. We will later verify that the two
colocalizations are the same for any projective P.

TuEOREM 2.3. For all M € Mod-R, [P, M] ® g P is the colocalization of M
at P.

Proof. Since clearly [P, M] ® 5 P is cotorsionfree and Cok e(M) = M/MT
is cotorsion, the result follows from Propositions 1.5 and 1.6.

Ifwelet F = _®5 P: Mod-E — Mod-R and U = [P, _]: Mod-R — Mod-E,
then F is the left adjoint of U, i.e. there exist natural transformations 7: 1 yoq.z
— UF, given by 9(B) (b)(p) = b ® p forall B € Mod-E, b € B, p € P, and
e FU — 1pog-r, given by €(4)(Xg: ® pi) = > gi(p:) for all 4 € Mod-R,
>g:®p,€[P,A] Qg P,such that UeonU = lyand eF o Fn = 1p.

We can then form the cotriple (S* = FU, ¢ 8) on Mod-R. S*(M) is by
Theorem 2.3 the colocalization of M at P for all M € Mod-R. The coequalizer
of the mappings eS*(M), S*e(M): S*2(M) — S*(M) is just the identity on
S*(M), since eS*(M) is an isomorphism and therefore S*(M) = S*e(M)
(since GS*(M)B = lsr(M) = S*G(M)a)

The dual situation (see [8, Section 3]) is more complicated. If I is an injective
module and H = [I, I], then [_, I]: Mod-R — (H-Mod)? has a right adjoint
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Hompg(, xI). If we form the triple (S = Homg([_, I], gI), u, ) arising from
this pair of adjoint functors, then Q(M), the localization of M at I, for all
M € Mod-R, is given by the equalizer of the pair of mappings nS(M), Sy(M):
S(M) — S*(M). S(M) is torsionfree and divisible, and Ker (M) is torsion,
but in general S(M) # Q(M). (They are equal if [M, I is a finitely generated
left H-module.) In general, then, Cok »() is not torsion.

For example, let R = Z. We take the largest torsion theory in Mod-Z for
which Z/pZ is torsionfree, where p is a prime number. A Z-module M is
torsion if and only if for all m € M, (m:0) & pZ, and Q(Z) is the usual localiza-
tion of the commutative ring Z at the prime ideal pZ, i.e., Q(Z) consists of all
rational numbers whose denominators are prime to p. Every torsionfree factor
module of Q(Z) is divisible (in fact, if D is any dense ideal DQ(Z) = Q(Z) and
hence the localization functor Q preserves all colimits), and therefore S(Z) is
the I(Z/pZ)-adic completion of Q(Z) [8, Theorem 4.2]. But the I(Z/pZ)-adic
topology on Q(Z) coincides with the p-adic topology [7, Proposition 4], and
thus S(Z) is the ring of p-adic integers. ButS(Z)/Z = Cok (n(Z):Z — S(Z))

is not torsion, since for all 2 + z1p + z9p2 + ... € S(Z), if there exists #,
m € Zsuch thatn ¢ pZand n(z + z1p + 2202 + ...) = m, then z + z:p +
zop? 4+ ... =m/n € Q(Z).

Definition 2.4. ¢: X — M is a codivisible cover of M € Mod-R if
(1) ¢ is a minimal epimorphism;

(2) Ker ¢ is cotorsion;

(3) X is codivisible.

ProposiTION 2.5. If @ module M has a codivisible cover, then 1t is unique up to
isomorphism.

Proof. Let ¢: X — M and ¢: ¥V — M be codivisible covers of M. Then there
exists f: X — V such that yf = ¢ since X is codivisible and Ker ¢ is cotorsion.
¢ an epimorphism and Ker ¢ small in V implies that f is an epimorphism, and
Ker f is cotorsion and small in X since Ker f C Ker ¢. Therefore there exists
g: ¥V — X such that fg = 1y, hence X = g(V) @ Ker f. But then Ker f = 0
since Ker f is small in X, and hence f is an isomorphism.

We will show that if M € Mod-R has a projective cover, then it has a co-
divisible cover.

LEMMA 2.6. If M € Mod-R is codivisible and M’ & M is a cotorsionfree sub-
module of M, then M/M' is codivisible.

Proof. Let w: M — M /M’ be the projection map, and let ¢: B — 4 be any
epimorphism with Ker ¢ cotorsion, and y: M/M’ — A. Since M is codivis-
ible there exists ¢': M — B such that oy’ = yr. o/ (M) = Yo (M’) = 0, and
therefore 0 = ¢/, 1 M’ — Ker ¢ since M’ is cotorsionfree and Ker ¢ is cotor-
sion. Therefore ¥’ induces a homomorphism ¢/: M/M’ — B such that ¢y’ =
¥, and hence M/M’ is codivisible.
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ProrposiTION 2.7. If ¢: P(M) — M 1is the projective cover of M € Nod-R,
then : P(M)/(Ker ¢)T — M s the codivisible cover of M, where o is the homo-
morphism induced by ¢.

Proof. Clearly ¢: P(M)/(Ker ¢)T is a minimal epimorphism, and Ker ¢ =
Ker ¢/(Ker ¢)T is cotorsion. It remains to show that P(M)/(Ker ¢)T is
codivisible, but this follows from the preceding lemma.

COROLLARY 2.8. If ¢: P(M) — M 1is the projective cover of M € Nod-R,
then the codivisible cover of M in the cotorsion theory determined by P (M) is the
maximal co-rational extension over M.

Proof. Courter [3, Theorem 2.12] showed that P(M)/X is the maximal co-
rational extension over M, where

X= 2  fr@n).

JE€IP(M),Kero]

But if 7'p¢5 denotes the trace ideal of P (M), then it is clear from the proof of
Proposition 1.3 that X = (Ker ¢)T p(an.

CoROLLARY 2.9. If ¢: P(M) — M 1is the projective cover of M ¢ Mod-R,
then M 1s codivisible if and only if Ker ¢ is cotorsionfree.

Proof. Ker ¢ cotorsionfree implies that Ker ¢ = 0, and hence M = P(M)/
(Ker ¢)T which is codivisible. Conversely, if M is codivisible then by Proposi-
tion 2.5 P(M)/(Ker ¢)T" = M, and therefore Ker ¢ = (Ker ¢)7".

TaEOREM 2.10. [P, M] @ P =[P, MT] @ P is the codwvisible cover of MT.

Proof. We have already shown that e(M): [P, M] @z P — MT is an
epimorphism (Proposition 1.3) with cotorsion kernel (Proposition 1.6), and
that [P, M] ®5 P is codivisible (Proposition 1.5). Ker ¢(4) is small in
[P, M] @ P, since if Ker ¢(M) + U = [P, M] ® P for some submodule
UC[P, M ®gP,then UD UT = (Kere(M))T + Ul = ([P, M] Qg P)T
= [P, M] ® 5 P. Hence [P, M] ® P is the codivisible cover of M7

The torsion submodule .7 (M) of a module M with respect to a torsion
theory (9 ,% ) is the unique submodule X € M such that X is torsion and
M/X is torsionfree. Dually, M/MT is the unique factor module M/X of M
such that M/X is cotorsion and X is cotorsionfree. We call M/MT the co-
torsion factor module of M. And, we can colocalize in two steps, namely

[P, M ®zP —> MT > M
codivisible
cover of M1
dualizing M — M/T (M) — Q(M).
divisible
hull of M /9 (M)
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3. Colocalization as coequalizer. We now return to the colocalization at P
obtained by Lambek and Rattray [9], and we will show that it is the same as
our colocalization at P. They started with a cotriple (S’, ¢, §') on Mod-R,
where S’: Mod-R — Mod-R is defined by

S'(M)= Y, P forall M € Mod-R,
IPoM

and an element of S/ (M) is written as 3 ,(f, p;). S'(M) is a right R-module in
view of the definitions 3°,(f, p,) + 2,(f,q,) = 2,(f,ps+ g5),and (Z,(f,p,)r
= > (f,pr) forallr € R. & (M): S'(M) — M is given by (M) (3 ,(f, p;)) =
> P If by P — 3P is the canonical injection then ¢ (M)k, = f. For any
g: M — N in Mod-R, §'(g): S'(M) — S'(N) is given by S'(g) ,(f, ;) =
> /(gf, py),i.e. for the canonical injection k,, S’ (g)k, = k,,. Their colocalization
Q' (M) of M at P is given by the coequalizer «(M): S’ (M) — Q' (M) of the pair
of mappings ¢S’ (M), S'¢ (M): §'(S"(M)) — S'(M). The following lemma is
the dual of [9, Lemma 1].

LeEmwMma 3.1. For all M € Mod-R, k(M) is the joint coequalizer of all pairs of
mappings u, v: P — S’ (M) which equalize ¢ (M): S’ (M) — M.

Proof. Let u: P — S (M), then ¢S (M)k, = u and S'¢ (M)ky = ke (anyu-
Therefore k(M) coequalizes all mappings (%, ke (anu). Now let v: P — S (M)
be such that ¢ (M)u = ¢ (M)v. Then (M) coequalizes (u, v) since

k(M)u = k(M)keanu = k(M)ke o = k(M)
Conversely, any mapping which coequalizes all (u, v) such that ¢ (M)u =
¢ (M)v coequalizes (u, ke () in particular, since ¢ (M)ke (i = € (M)u by
definition of ¢ (M), and hence coequalizes (¢S’ (M), S’¢ (M)). It follows that
« (M) is the joint coequalizer.

LemMmaA 3.2. Let f: B — A be an epimorphism where B is a cotorsionfree module
and A is a codivisible module. Then Ker f 1s cotorsionfree.

Proof. Let f: B/(Ker f)T — A be the homomorphism induced by f. Then
since A is codivisible and f is an epimorphism with cotorsion kernel, there
exists g: 4 — B/(Ker f)T" such that fg = 1,. Therefore (B/(Ker /)T)T =
B/(Ker YT =Img @ Kerf = (Img)T @ (Ker /)T = (Im g)T and hence
Ker f = 0, i.e., Ker f = (Ker f)T.

LeEMMA 3.3. For all M € Mod-R, MT is the smallest submodule M’ & M such
that for all f: P — M,

0= @Lu— u/m.
Proof. For all f: P — M,

L = u/ur) = o
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since f(P) € MT. Suppose M’ C M is such that for all f: P — M,

@ yw— u/mn =,

then for all g € [P, M/M’] since P is projective there exists f: P — M such that
the diagram below commutes, and hence g = 0. M /M’ is therefore cotorsion,
and MT C M'.

// Vg

P————s M/M

THEOREM 3.4. For all M € Mod-R, [P, M] ® g P is the coequalizer of the pair
of mappings €S (M), S'¢(M): S'(S"(M)) — S (M).

Proof.
S' (M)

¢ e (M)

M) .
[P, M] o, P, 4

e(M) and ¢ (M) both have the same image, namely M 1", and we consider them
as mappings from [P, M] ® g P to MT and from S’ (M) to MT, respectively.
Then since S'(M) is projective (since it is a coproduct of copies of P) and
Ker (M) is small in [P, M] Q@ P, there exists an epimorphism e: S’ (M) —
[P, M] ® g P, such that e(M)e = ¢ (M). By Lemma 3.2, Ker ¢ is cotorsionfree
since S’ (M) is cotorsionfree and [P, M| ® gz P is codivisible. But since Ker ¢ is
cotorsionfree and Ker e(M) is cotorsion, Ker ¢(M) = Ker ¢ (M)/Ker ¢ is the
cotorsion factor module of Ker ¢ (M), i.e. Ker e = (Ker ¢ (M))T. Hence by
Lemma 3.3 Ker ¢ is the smallest submodule X of Ker ¢ (4/) such that for all

f
fi P> Ker (M), 0= (P Ker ¢(M)— Ker ¢(M)/X). Therefore Ker e
is the smallest submodule X of S'(M) such that for all f: P — S’'(M) such
that ¢ (M)f = 0,

0= (dsan - san/x.
Hence Ker ¢ is the smallest submodule X of S"(M) such that for all f, f': P —

S’ (M) such that ¢ (M)f = ¢ (M)f’,

@L son - sonx = @l san— sanx,
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1.e.,

is

S'(M) S S'(M)/Ker e = [P, M] @ P
the joint coequalizer of all pairs of mappings f, f’: P — S’(M) which equalize

¢ (M). Thus by Lemma 3.1 /(M) = [P, M] Q% P.
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