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ALTERNATING 3-FORMS AND EXCEPTIONAL 
SIMPLE LIE GROUPS OF TYPE G2. 

CARL HERZ 

Preface. It is now customary to give concrete descriptions of the 
exceptional simple Lie groups of type G^ as groups of automorphisms of 
the Cayley algebras. There is, however, a more elementary description. Let 
W be a complex 7-dimensional vector space. Among the alternating 
3-forms on W there is a connected dense open subset ^(W) of "maximal" 
forms. If \p <E ty(W) then the subgroup of AUTC(W) consisting of the 
invertible complex-linear transformations S such that \p(S; S% S*) = 
ty(% •, •) is denoted G(ty), and, in Proposition 3.6. we prove 

G(ty) = Gi(ty) X {el: e3 = 1), direct product, 

where G\(\p) is identified with the exceptional simple complex Lie group of 
dimension 14. Thus the complex Lie algebra g(ty) of type G^ is defined in 
terms of the alternating 3-form \p alone without the need to specify an 
invariant quadratic form. In the real case the result is more striking. The 
generic real alternating 3-form ^ on a 7-dimensional real vector space V 
extends to an element of >F( W) for W = C ®R V, but in the real domain 
there are two cases. The case where ^ is "maximal" gives rise to a real form 
G (̂ty) of G(ty) which is compact! Then there is an invariant positive-
definite quadratic form <p, but this is determined by ty. In the other case \p 
is "pseudo-maximal" and the corresponding group G7^) is a version of 
the doubly-connected, connected, non-compact, exceptional simple Lie 
group of dimension 14. 

Most of the results about groups of type G^ may be found in the works 
of Elie Cartan. He defines the complex group [3, p. 297] in terms of an 
alternating 3-form xp and a non-degenerate symmetric quadratic form <p 
as 

Gj(<p, ;//) = component of the identity in 
{S G Aut c(H0: Sty = C(S)ty, Sep = cp} 
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LIE GROUPS OF TYPE G: 777 

where 

SW, % •) = HS-\ S~l; S"1-), Sq{; •) = qiS-\ S~1-). 

In Section 1 we consider some generalities about groups of the form 

G(q>, \P) = {S G A u t C ( ^ ) l SxP = ^ Sq> = q>}. 

These are necessarily groups of automorphisms of quadratic algebras. For 
background material use [8]. The only thing in Section 1 which is vital for 
the sequel is formula (1.23). 

The main ideas of this paper occur in Section 2 where we show that the 
group Go(i//) = Ge{^) of linear transformations of V ~ R7 leaving a 
maximal 3-form \p invariant is the compact group of type G2. Section 3 
treats the complex case and Section 4 the non-compact, doubly connected, 
connected real simple Lie group GY(\p) of type G2. Theorems (2.9) and (4.9) 
classify the "generic" 3-forms on R7. Theorem (3.10) describes the 
"maximal" 3-forms on C7. The symmetric spaces are described concretely 
in Theorems (2.14) and (4.5). 

In Section 5 we give very concrete descriptions of the boundaries and 
parabolic subgroups of G7^). We shall return to this subject later. One of 
our principal objects was to obtain convenient matrix descriptions of these 
objects with a view to analytic applications. There is some historical 
interest in the results since Cartan's first work [1] presents the Lie algebra 
gy(^) as infinitesimal transformations of the minimal boundaries Ba and 
Bp. In Section 6 we establish the global forms of some local statements 
about G2 in Cartan's thesis [2]. 

This work arose from conversations with my student, Maurice Chayet, 
and many of the results come from discussions with him. He deserves not 
only my thanks but also a substantial amount of credit. We hope to obtain 
similar concrete descriptions for other exceptional simple groups. An 
effort has been made here to avoid explicit use of the Cayley product 
wherever possible. In a few places, e.g. the proof of Theorem (2.13) I have 
not succeeded. Unfortunately, while brute force calculations for G2 are 
manageable, they get out of hand for the other exceptional groups. 

Notational conventions. If Fis a vector space ENDR(F) denotes the ring 
of R-linear transformations of V; similarly AUTR(F) is a group, etc. If o is 
an involution of V then Va denotes the fixed subspace of a; for a group G 
contained in AUT(F), Ga is the centralizer of o in G. When a 
non-degenerate quadratic form <p is fixed in the context we write # to 
indicate the transpose, thus 
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<p(*#., •) = v(-, X-) 

defines X* for X e END(F). If v e V then v # is the linear functional 
w i—> <p(w, v) and wv# is the linear transformation w HH> <p(w, v)u. 

1. Vector-products. A complex conjugation y for a complex vector space 
Wis an element y e A U T R ( W ) such that y2 = I and 

y(cv) = cyv for v e J/, c e C. 

If F is finite-dimensional and cp is a non-degenerate symmetric bilinear 
form on W then (W, <p) has an hermitean complex conjugation #, a 
complex conjugation such that 

(1.1) <M, v> - v(w, 0v) 

defines a Hilbert space inner product on W. 
Let \p be an alternating 3-form on W. One says \p is a non-degenerate if 

for each w e W \ {0} t//(% •, w) is a non-trivial 2-form. If y is a complex 
conjugation W then y\p defined by 

Y^(M, v, w) = i£(yw, yv, yw) 

is an alternating 3-form which is non-degenerate if and only if \p is. The 
forms 

2/ 

are invariant under y and 

\p = Rey^ -f / Imyi//. 

Hence, if \p is non-degenerate its restriction to W7 is a real non-degenerate 
form. 

(1.2) Definition. A vector-product structure for (W* <JP) is an alternating 
3-form i// such that Oxp = \p where 0 is an hermitean complex 
conjugation. 

The vector-product structure \p determines a monomorphism of complex 
vector spaces 

L r 
W - » ANTI C (W, <*>), u ^ Lu 

defined by 

(1.3) <P(L?/, v, w) = *//(«, v, w). 
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Here ANTIc(W,<p) is the sub-Lie algebra of ENDC(W) consisting of the 
elements L such that 

<jp(Lv, w) = — <p(v, Lw). 

The vector-product is the complex-linear map 

(1.4) W ® c W -> W\ u0vh^Luv = uXv. 

(1.5) Definition. The non-associative complex algebra with unity given 
by a vector product structure (W, <p, xp) is 

ALG(JF, v , i//) = CI + ^ 

with the product 

(a\ 4 u)(b\ 4 v) = (aft -<p(w, v))l + (AV + te - M X v). 

The adjoint associated to 0 is 

(a\ 4 i/)* = âl - 0w. 

(1.6) THEOREM. TTze algebras A over C which are "quadratic", i.e., each x 
e 4̂ satisfies an equation 

x — 2r(x)x 4 <p(x)l = 0 wzf/i T(JC), <p(.x) G C, 

satisfy the "flexible law" 

x(yx) = (xy)x, 

#/W /zave (2 "positive-definite adjoint", i.e., an R-linear involution x I—» A:* 

(cl)* = cl, (*>>)* = y*x*, and T(X*X) > 0 /or all x e v4-{0} 

are precisely the algebras ALG(W, <p, i//) defined in (1.5) w/r/z 

J^ = {x G ^4: r(x) = 0}, <p(v) = <JP(V, w) for v ^ W, and 

\p(u, v, w) — —T(UVW) for u, v, w e W. 

iVoo/ It is a routine calculation that ALG(W, <p, *//) satisfies all the 
conditions. Conversely, in any quadratic algebra we have 

T(UV) 4 T(VU) = —2<p(u, v) 

where <p(u, v) is defined by 

2<p(w, v) = <p((w 4 v)2) - cp(w2) - <p(v2). 

It follows from the flexible law that T is a commutative and associative 
trace form: 

https://doi.org/10.4153/CJM-1983-045-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-045-2


780 CARL HERZ 

r(xy) = r(yx) and r((xy)z) = r(x(yz)). 

The existence of the positive-definite adjoint only serves to give the 
existence of an hermitean complex conjugation which stabilizes i//. 

(1.7) Definition. For a vector product (W, <p, \p) the group G(<p, vp) is the 
group of automorphisms of ALG(W, <p, \p) over C. The Lie group structure 
is that inherited as a closed subgroup of AXJTC(W). 

It is obvious that 

G(<P, i//) = AUT(Wy <p) n G(xP) 

where AUT(W, <p) is the orthogonal group for the non-degenerate 
symmetric bilinear form <p and G(\p) is the subgroup of AUT(W) 
preserving the 3-form \p. These groups are not affected if one multiplies the 
forms by non-zero constants, but such changes alter the algebra ALG(W, 
<p, \p). In particular, if one replaces <p by c~ !<p then Lu is replaced by cLu for 
each u e V. This is but one indication that a group G(<p, \p) can be 
presented as the group of automorphisms of several different algebras. 

The Lie algebra g(<p, \p) of G(qp, ^) is the algebra of derivations of 
ALG(W, <p, $). Thus, we have 

(1.8) Q(V, ^) = {Z e ENDC(F): Z)^, = 0, Z ) ^ = 0} 

where 

Dxv(% *) = — <p(̂ % *) — <p(% ^*) a n d 
/ ^ = - , /<*., -, •) - iK-, # , •) - <K% % * •)• 

One has 

(1.9) X(u X v) = (Xw) X v + u X (Xv) for X e g(<p, ^). 

We shall now investigate some examples of this Lie algebra. 
Since <p is non-degenerate there exists A e ENDC(W) such that 

(1.10) trace LULV = — <p(Au, v). 

Obviously, 4̂ is <p-symmetric, but the existence of an hermitean complex 
conjugation 6 for the vector product structure (W, <p, \p) gives more. The 
adjoint for the Hilbert space obtained by giving Wthe inner product (1.1) 
is X i—» X* where 

X* = 0X#d, X# = cp-transposed of X. 

Since each Lu is anti-symmetric, i.e., Lw = — Lw, we have 

£ ? = —0LU6 = LQU. 
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If u ^ 0 then Lu ¥= 0 and tr LUL* > 0. This gives 

(1.11) PROPOSITION. For a vector product structure (W, <jp, \p) the linear 
transformation A defined by (1.10) is semi-simple with strictly-positive 
eigenvalues. Moreover A commutes with the elements of G(<p, \p). 

This leads us to define a linear map 

ENDC(W) -> ANTIC(P^, v) by 

(1.12) <p(A(X)v, w) = tr X[LV, Lw] for v, w e W. 

Some direct calculations give 

LEMMA. The map A given by (1.11) has the properties: 

(1.13) A(X) = 0 / / * = X#, 

(1.14) A(X) - - . 4 X ifX G 0(v, ,/,), 

(1.15) A(Wv#) = [LM, Lv], 

(1.16) A(LJ = S l ^ ^ - x J 
/ = i 

eh . . . , en is an <p-orthonormal basis for W. 

Proof If Y e ANT1C(J^, <p) and X is <p-symmetric then tr XY = 0. This 
gives (1.13) with Y = [Lu, Lv]. For (1.14) one uses 

tr X[LU9 Lv] = tr [X, LU]LV. 

If X <E g(v, i//) then [X, Lu] = Lxu and 

tr LXuLv = —<p(AXu, v) 

by (1.10). (1.15) and (1.16) are straightforward computations. 

(1.17) Example. Let g be a complex semi-simple Lie algebra. Put W for 
the underlying vector space of g, 

v(w, v) - -KILL(w, v), xP(u, v, w) = -KILL(i/, [v, w]) 

where KILL is the Killing form. Then (W, <p, \p) is a vector product 
structure since one can take 6 a. compact complex conjugation for g. One 
has Lu = Ad u and g(q>, ^) ~ g, G(<p, i//) = AUTc(g), the group of 
Lie-algebra automorphisms of the complex Lie algebra g. Here A = I. 
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This shows that every semi-simple Lie algebra is the algebra of 
derivations of some ALG(W, <p, \p) as described in Theorem (1.6). The 
interesting question is when semi-simple Lie algebras arise in a non-trivial 
way. We shall be concerned with the case in which ALG(W, <p, \p) is the 
complex Cayley algebra. The corresponding vector product structure is the 
Cayley product. We shall not use the properties of the Cayley algebra 
directly, but rather some facts developed in Section 2 following. The link 
with the usual presentations is based on 

(1.18) PROPOSITION. ALG(W, <p, \p) is alternative if and only if the vector 
product (W, <p, \p) satisfies the Lagrange identity (2.4) below, i.e., jor all u <E 

Lu = —<p(w, u)I -f uu~. 

Proof. To say that ALG(W% <p, $) is alternative is to say Au = Aw2 
where Av is left-multiplication by v <E ALG viewed as a linear 
transformation of CI 4- W. Reinterpretation in terms of Lu for u e W is 
the Lagrange identity. 

This identity has some vital consequences. 

(1.19) PROPOSITION. Suppose the vector product structure (W, <p, \p) 
satisfies the Lagrange identity. Then for the operator A defined by (1.10) one 
has 

(1.20) A = (n - \)I 

and for the map A of (1.12), 

(1.21) A(LH) = (2n - 8)L„ 

where n = àm\çW. 

Proof Taking the trace of the Lagrange identity gives 

tr Vu = —(n — l)qp(w, w), 

and this is (1.20). Formula (1.16) combined with a consequence (2.8) of the 
Lagrange identity. 

(1.22) THEOREM. Suppose (W, <p, \p) satisfies the Lagrange identity and 
dïmçW ¥= 3. Then dimçW = 7, and there is an orthogonal direct sum 
decomposition 

ANT1C(H^, v) = g(<p, xP) + L(W) 
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where L(W) — {Lu: u e W}. Moreover, g(<p, \p) is generated by the 
elements 

(1.23) D(u, v) = [Lu, Lv] + LuXv. 

Proof. Consider ANT1C(W, <p) as a Hilbert space with inner product 
<X, Y> = tr ATY*. Note that for all X e ANT1C(W, <P) one has 

tr A(X)LU = 2 cp(A(X)L^, <?,-) 

= 2 tr ^[L^xe^J by definition of A, (1.12) 
= trXA(Lw) by (1.16) 

= (In - 8)tr X Lu by (1.21). 

We conclude that if X is orthogonal to L(W) then A(A) _L L(W). 
One readily computes that the projection of wv# — vu* on L(W) is 
-2(w - 1) ~lLuXv. Thus 

wv# - vw# = Y - 2(w - 1 ) ~ 1 L M X V where Y±L(W). 

Applying the map A and using (1.15) and (1.21) we get 

2[LW Lv] = MY) - 2LwXv; 

so A(y) = 2D(u, v) according to (1.23) as definition. 
Formula (2.8) below is 

i/v# - vu# = - ii)(w, v) - \LuXv. 

Since Z)(w, v) = ÎA(F) is orthogonal to L(W), it follows that j = 
2(n— 1) \ i.e., « = 7. It also follows that the D(w, v) span L(M/')_L. Now 
suppose X e Q(«JP, \p). By (1.14) and (1.20) we have 

- 6 XxXLu = tr A(A)LW - tr X A(LJ = 6 tr A Lw. 

Therefore g(qp, i//) c L(W)±. The argument at the beginning of Section 2 
shows that dim g(«p, i//) ^ 14; hence g(<p, i//) = L(Wy . 

2. Cayley products. Let ^ be an alternating 3-form on a real vector 
space V. We say that \p is maximal if for each w e F \ {0} the 2-form \pu 

defined by \pu(\ •) = \p(u, % •) gives a symplectic structure to V/Ru. This 
can only occur for V odd-dimensional, say dim V = 2m -f 1. To within 
scalar multiples there is a unique non-trivial (2m -f l)-form 8 on F, and its 
contraction 8U gives the non-trivial 2ra-form on V/Ru. Since ^M is a 
sympletic structure on V/Ru we have 

(2.1) i//M A - ' - A ^ = m\<p(u)8ti 
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where <p\ F—> R is homogeneous of degree m — 1 and <p(w) = 0 only if u 
= 0. The last forces m to be odd. If we change 8 to c8 with c e R \ {0} 
then <p changes to c~ V The orientation of 8 is fixed by the condition <p(w) 
> 0 for u <E F \ { 0 } . If we further impose a suitable normalization 
condition then the constant c is completely determined. Thus for example, 
when m = \ the normalization is <p = 1, 8 = \p. 

The interesting case is m = 3, for then <p is a positive definite quadratic 
form on V. By polarization we obtain a bilinear form also denoted <p. The 
normalization is such that S2(e\, . . . , e7) = 1 for any <p-orthonormal basis 
eh . . . , e1 for F, and the basic identity is equivalent to 

(2.2) ) A ^M A 1^ = 6 <p(W, v)8. 

Put G0(^) for the subgroup of AUTR(F) leaving $ fixed under the 
induced action on alternating 3-forms. Since the space of alternating 
3-forms on V0 has dimension 35 and dim AUTR(K) = 49 we conclude that 
dim G0(\p) ^ 14. On the other hand 

(2.3) Go(\p) is a subgroup of AUT + (F , v ) , 

the latter group being a version of SQ(1). 

A dimension-counting argument gives the crucial 

(2.4) LAGRANGE IDENTITY, U X (u X v) = — <p(w, w)v + ç>(w, v)w. 

Proof. Consider u e F \ { 0 } . The orbit G0(^)w has dimension ^ 6. 
From the fact that dim GQ(^) = 14 we conclude that, for the subgroup 
GQOP, u) leaving u fixed, 

dim G0(^, w) = 8. 

Now G0(^, w) acts as orthogonal transformation on 

K-L = {v G F: <p(w, F) = 0} 

while LM is a skew-symmetric linear transformation which commutes with 
the elements of GQ(^, U). Thus in some orthonormal basis for u±, Lu has 
the matrix 

r ° a i 
i a ° 

° * 
-b 0 

0 c 
- c Oj 
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The basic identity (2.1) gives a2b2c2 = <p(w, u). Unless a1 = b2 = c2 there 
is a 2-dimensional Go(i/>, w)-in variant subspace which implies 

dim G0(^, w) ^ dim 0(2) X 0(4) - 7, 

a contradiction. The conclusion is that 

£M= -<p(u, u)Iu±, 

and this is the Lagrange identity. 
The polarized form of the identity is 

(2.5) LULV + LVLU = uv# + vu# — 2<p(w, v)I 

where # designates the transposed with respect to <p. From this we 
obtain 

(2.6) (u X v) X (u X w) = <p(u, u)v X w -f- 2^(w, v, w)w 
+ <p(w, v)w X w — <p(w, w)t/ X *>. 

(The trick is to use (2.5) on LzLwu with z = u X v.) 

This identity gives 

(2.7) PROPOSITION. For each u e V\ {0} //ze group GQW', W) ^ a version 
ofSUQ). 

Proof. We may assume <p(w, w) = 1 so that Lu = —Iu±. Thus Lw is a 
complex structure for u^. One easily calculates that 

<v, w> = <pfv, w) — /\/>(w, v, w) 

is a Hilbert space inner product on u± with the complex structure Lu and 
Go(̂ > w) is a subgroup of the unitary group. Now define a 3-form x on IT1 

by 

X(vi, v2, v3) - ^(v,, v2, v3) + /^(Lwvb Lwv2, Luv3). 

With the aid of (2.6) one verifies that x is a complex 3-form. It is 
non-trivial. If S is any complex automorphism of u1- we have 

xOSVi, Sv2, Sv3) = (detc S)x(v\, v2, v3) 

from which we conclude that detc S = 1 for S e G0(ip, u). Since 

dim GQ(^, M) = 8, 

it follows that Go0//, ") is all of Sf/(3). 

If one replaces w by w X w in (2.6) and uses (2.4) he obtains the 
identity 
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(2.8) \LU, Lv] + 2LuXv - 3(wv# - vu# ) = 0 

where [A, B] = AB — BA. This enables us to prove 

(2.9) THEOREM. Put Œ3(F) for the 35-dimensional vector space of real 
alternating 3-forms on the 1 -dimensional real vector space V. The maximal 
forms constitute a subset ^(V) U —ty(V) which is a single orbit of 
AUTR(V) for the induced action on Œ3(F). The subset ^(V) is open and 
connected. Given a positive-definite quadratic form <p on V, the set of \p e 
^(V) which yield <JP in (2.2) constitute a compact, connected, 1-dimensional 
regular submanifold ^(V, <p) which is a single orbit for the action of AUT + 

(K cp) - SO(l) on 0f(V). 

Proof Choose an orientation for V. According to (2.2) each maximal 
3-form t// determines a non-trivial 7-form ô; put ^(V) for the collection of 
those i// such that 8 is positively oriented. Since all positive-definite 
quadratic forms are AUT + (F)-equivalent, it suffices to fix <p and prove 
that ^(K, <p) is an orbit of AUT+(K, <p). To this effect consider \p and \p' in 
ty(V, <p) and fix w G V with <p(u, u) = 1. Then Lu and L'u are both 
<jP-orthogonal complex structures for u^. Hence, as operators on w", L^is 
AUT + («-L, <p)-conjugate to ± Lw, i.e., there exists S e AUT + (F , <p) 
with 

Su =--- u and L'u - ± SLUS~U, 

the + sign must be chosen for the orientations to be the same. Replacing 
4'' by S~ ]\p' we have L^ = Lu. Now choose v e K with <p(w, v) = 0, <p(v, v) 
- 1. Put 

w = u^ n vx Pi (w X v)^; 

Note that w X v = Luv = Luv is unambiguously defined. By (2.4), Lv and 
/,' agree on W^. 

Moreover W is an invariant subspace for Lw Lv, and L'v. Let Mu be the 
restriction of Lu to ff and M the restriction of Lv or L'v. Then we have, see 
(2.4) and (2.5), 

M\ = - / , M2 = - / , MUM + MM„ = 0 

where both Mu and Af are skew symmetric. Choose a basis such that 

«.+(-" o)- « - (2 5) 
with A< B, C\ D 2 X 2 matrices. Since A/ is skew-svmmetric we get 
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A = (cos 2a)J for some a e R 
where 

The addition equations yield 

B = (sin 2a) J = C, Z) = - (cos 2a)/. 

Thus M = /t(a)MVJR
-1(a) where 

TW x /cos a/ — s ina / \ ._ / / 0\ 
R ( a ) = I sin a/ cos a/J< M ' = l o - J ' 

Without loss of generality one may suppose that Mv is the restriction of Lv 

to W. Extending R(a) orthogonally as the identity on W1- we have 

L; = R(a)LvR~\a), Lu = R(a)LuR-\a). 

Hence, if we replace \p' by R~\a)\p' we have \p, \p' e ^(V, <p) with the same 
left-multiplications Lw and Lv. The identity (2.8) shows that L'uXv = I„xy. 
and the Lagrange identity allows one to complete the multiplication table 
given Lu, Lv and LuXv- Therefore \pf = \p. The rest is routine. 

(2.10) COROLLARY. The groups GQ(^) for \p a maximal 3-form are 
conjugate in AUT+(K). If ^ and i// are maximal 3 forms yielding the same 
quadratic form <p then GQO/>) and GQO/>') are conjugate in AUT+ (V, <p). 

One knows that the Cayley numbers have the form ALGR( V, <p, \^), see 
(1.5), for some maximal 3-form \p, but (2.9) asserts that all these algebras 
are isomorphic. Thus the groups GQ(^) are versions of the exceptional 
simple compact group G2. The simplicity of G0(^) is a standard algebraic 
fact we require. From what has gone before we know that GQ(^)/GQ(^, U), 

where u e F \ {0}, is a compact 6-dimensional submanifold of the sphere 
Sb, hence it is S6. From (2.7) we conclude that Go(\p) is connected and 
simply-connected. To summarize we record 

(2.11) THEOREM. The groups Go(\p)for xp a maximal 3-form are compact, 
connected, simply-connected, simple, \4-dimensional Lie groups. 

Put STIEF(3, CQ, <p) for the Stiefel manifold of qp-orthonormal 3-frames 
in VQ. The Zorn manifold is defined as, cf. [9], 

(2.12) r 0 W = {P e STIEF(3,F0, v ) : ^(Ph P2, P3) = 1). 
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(2.13) THEOREM. For each P e TQty) the map S H> SP is a 
diffeomorphism of GQ(^) onto T${$). The subgroup o /AUT (FQ) mapping 
TM) to itself is {±I}XGM\ 

Proof Since dim G0(\p) è 14 it follows from (2.7) that G0(yp) acts 
transitively on the 6-sphere [u <p FQ: <p(w, w) = 1}. Therefore, to show that 
GQWO maps onto T0(\p) we have only to show that 

G<M,PI)P = {<2 e r0«/): 6 i = Pi} . 

The group Go(\p;P\) being a version of SU(3) acts transitively on the unit 
sphere in Px . Thus we need only show that 

G<M, Ph P2)P = {Q e r 0 W : Gi = ^ b Qi = Pi). 

Now G0(^, Pi, P2) is a version of SU(2) action of P ^ n P ^ n (Pi X 
P2)"L with complex structure L/>. The action on the unit sphere is a 
diffeomorphism of SU(2) with S3. Not only have we proved the map onto 
but also one-to-one. Finally, suppose S G A U T R ( F 0 ) leaves r0(^) 
invariant. Correcting by an element of G0(^) we may assume SP = P. 
Thus S acts as orthogonal transformations of the 4-dimensional space 
P( n P2 n PJ. U Q e p-t n Pi n PJ- and <p(Ô, (?) = 1 then 

(Pu Pi, Q) e r o « 0 if Ô-L fPi X P2). 

It follows that 

S(P\ X Pi) = *P\ X P2 where c = ± 1. 

One now considers the point 

(2-1/2(Pi + P3), Pi x Pi, 2"1/2(P2 - (Pi x p2) x p 3 » e r0OM; 
the forced conclusion is that 

S[(PX X P2) X P3] = (/>, X P2) X P3 . 

Similar arguments give 

S(Pl X P3) = eP\ X P3 and ,S(P2 X P3) = € P2 X P3. 

Thus det S = c3, so S G GOW0 if det S > 0. 

Consider the Grassmann manifold GRASS(4, F0) of 4-planes through 
the origin in F0. Endowed with the metric induced by a positive-definite 
quadratic form <p, GRASS(4, FQ) is a doubly-connected Riemannian 
symmetric space. Each 4-plane 77 is the fixed point of a unique geodesic 
symmetry — a where a e AUT + (FQ, <P) is the orthogonal involution 
whose — 1 eigenspace F0 ° is m and whose 4-1 eigenspace V% is 77^. 
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(2.14) THEOREM. Given a maximal 3-form \p on VQ put ^o(\p) for the 
subset o/GRASS(4, VQ) constituted by the ^-isotropic 4-planes TT, i.e., 

\p(u, v, w) = 0 for all u, v, w G TT. 

Then 20(^) is a regularly imbedded ^-dimensional, simply-connected, 
compact submanifold of GRASS(4, V0). If GRASS(4, VQ) is given the 
Riemannian structure induced by <p, the positive-definite quadratic form 
derived from \p, then 20(^) is the sub-symmetric space constituted by the 
4-dimensional subspaces TT of VQ of the form TT = VQ with o G GQ(\^). The 
group of isometries of 20(i/>) is GQ(\P), and the subgroup Go WO leaving 
TT = VQ a G 2QW) fixed is canonically isomorphic with AUT + (F 0 °, <p). 

Proof. Consider the map/ : r0WO -» GRASS(4, V0) given by f(P) = TT 
where TT is the 4-dimensional subspace spanned by P\, P2, P3 and (Pi X 
P2) X P3. It is clear that 

f(T0m c 20W). 

On the other hand given TT G 20W), any three orthonormal vectors P\, P2, 
?3 G 7T determine a point P G TQW)- Therefore 

f(T0m = 20W). 

By (2.13), given P G TQW) there is a unique a G G0W) such that oP = 
- P . Since o2P = P it follows that a2 = /. It is also obvious tha t / (P) c 
VQ°, but one sees that dim VQ° = 4. It follow tha t / (P) = F ^ a , and 
that —a is the geodesic symmetry of GRASS(4, VQ) in the <p-metric leaving 
f(P) invariant. Sincef(SP) = Sf(P) for S G G0W) we have that 20W) is a 
homogeneous space of GQW). Given P G r0W), we obtain a homor-
phism 

Ain+(f(P), «p) -> G(#) 

by T 1—> £ where 5" is the unique element of GQW) such that 

SP = (TPh TP2, TP3). 

This is a monomorphism for if TPk = Pk, k = 1, 2, 3, for 3-orthonormal 
vectors in a 4-dimensional orthogonal space and T is a rotation then 
T = I. The subgroup of GQW) leaving 77 G 2Q W) fixed is clearly the cen-
tralizer GQW) of o where TT — VQ°. The action of G°W) on the vector 
space VQ ° given by restriction of the action on VQ is a homomorphism 

G £ W ) ^ A U T + ( K 0 % ) . 
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We have constructed an inverse above; then the restriction map is a 
canonical isomorphism. The rest is routine. 

See [6] for material on symmetric spaces and matters used here and in 
section 4. 

3. Complex Cayley products. Let W be a complex 7-dimensional vector 
space. We say that a complex alternating 3-form vp on W is maximal if 

(2.2) i f A i f „ A ^ v = 6<pO, V)8 

holds with <p non-degenerate where 5 is a non-trivial complex 7-form. We 
fix 8 up to sign by the condition 

(3.1) <pW] A * - A <pUl = 8 ( u h * ' u7)S 

where <pw = cp(% u). This is compatible with previous normalization in the 
real case. 

Put G(\p) for the subgroup of AUTC(W) leaving \p fixed for the induced 
action on alternating 3-forms. If S e G(\p) then (2.2) gives 

(3.2) <p(Su, Sv) = (det S)~l <p(u, v). 

Combining this with (3.1) yields 

(det S)9 = 1 for S e G(I//). 

This is in accordance with the fact that if we replace <j> by c~ l<p and 8 by €0 
where c9 = 1 then (2.2) and (3.1) still hold. Therefore we shall consider the 
group 

GiWO = [S G GO//): det 5 = 1} 

which is then a subgroup of the version of SO(l, C) given by AUTj (W, <p). 
Observe that G\(xp) is precisely the group of automorphisms of ALG 
(W, <p, \p) for any choice of <p satisfying (2.2) and (3.1). 

We now mimic the argument of the proof of (2.4) using 

(3.3) LEMMA. Let U be a complex orthogonal space and L a 
skew-symmetric linear transformation. Then for the eigenspaces U\ ofL, i.e., 
the kernels of (L — \I)n, n = dim U, we have 

dim Ux = dim U-X, Ux ± U^ ifX + /x ¥= 0, 

and, if X ¥^ 0, the orthogonal structure restricted to U\ + U-\ is 
non-degenerate. 

Now fix u e F with <p(u, u) ^ 0. Put 
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G](^, u) = {S e G^): Su = u), 

H = A U T f ( ^ , <p) ~ SO (6, C), 

L = restriction of Lu to w^, 

H(L) = centralizer of L in H. 

Since ^ is non-degenerate, L has an eigenvalue A ^ 0 with dim £/\ = J, 
d = 1, 2 or 3. By Lemma (3.3), U\ + U-\ is an //(L)-invariant subspace 
of dimension 2d from which it follows that H(L) is a subgroup of 
0(2rf, C) X 0(6-2*/ , C). This gives d im c #(L) < 8 unless </ = 3. Since 
Gi(\py u) may be regarded as a subgroup of H(L) and dimcGjO//, w) ^ 8 we 
conclude that d = 3. Thus 

(L2 - A2/)3 = 0, 

but if L2 — X2I T^Owe again get dimc7/(L) < 8, a contradiction. Hence 
L2 = A2/. Using (3.1) and (3.2) we get 

-A 6 = det L = <p(«, w)3. 

The conclusion is L2 = — e<p(w, w)/w^, or 

(3.4) u X (u X v) = €(-<p(w, M)V + <p(u, v)u), e3 = 1. 

This identity is established for <p («, w) ^ 0 and e depending on w, but since 
u H-> € is continuous on the connected set (w e F: <p(w, wj ^ 0} we 
conclude that e is constant. Finally, (3.4) holds when <p(u: u) = 0 by 
continuity. 

We have already observed that one can replace cp by c~ \ where c9 = 1 
and leave \p fixed. The effect on (3.4) is to replace e by c3e. Thus we 
have 

(3.5) PROPOSITION. If xp is a complex maximal 3-form there is a 
quadratic form q>, unique up to multiplication by a cube root of unity, such 
that (2.2), (3.1), and (2.4), the Lagrange Identity (namely (3.4) with e = 1), 
hold 

From (3.2) we see that (det S)3 = 1 for S <E G(^). On the other hand, if 
e3 = 1 then el e G(^). This gives 

(3.6) PROPOSITION. G(\p) = G\(\p) X {el: e3 = 1}, direct product. 

Continuing the reasoning leading to (3.4), let us suppose cp is chosen as 
in (3.5) and <p(u. u) = — 1. From (2.6) we see that if v e U\ and w e U- \ 
then 
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v X w = — <p(v, w)u. 

Contracting \p A \pv A\pw = 68 with respect to u, v, and w gives 

The last two identities show that if v\ and v2 are linearly independent 
elements of U\ then v\ X v2^ O.The identity (2.5) shows that V\ X V2 ^ 
f/_i. It follows that there exists v3 <E JJ\ with ip(v], v2, v3) ¥^ 0. Hence i// 
restricted to U\ is a non-trivial 3-form. 

Previous reasoning shows that the restriction map gives an isomor­
phism 

H(L) -> AUT^iUx). 

Since $ is non-trivial, restriction gives a monomorphism 

G ^ , M) -> AUTf(C/0 ^ 5L(3, C). 

Since dimcGiO//, w) ^ 8 we conclude that G\(\p, u) ~ SX(3, C). It follows, 
since dimcG\(\p) i? 14 that the orbit GiO//)w is a submanifold of {t/ e W: 
<JP(W, w) = — 1} of complex dimension ^ 6. Putting these facts together we 
have 

(3.7) THEOREM. If -ty is a complex maximal 3-form then G\(\p) is a 
connected complex Lie group of complex dimension \4.Ifc ¥= 0 then G\(\p) 
acts transitively on [u e. V: <p(w, u) = c} with the stabilizer subgroups 
Gi(i//, u) isomorphic to SX(3,C). 

For <p(w, u) = — 1 we can choose a basis v1? v2, v3 for U such that 

*Kvb v2, V3) = 22. 

It follows that 

w\ = 2~1v2 X v3, w2 = 2_5v3 X v\, vv3 = 2_Ivj X v2 

is a basis for U-\ such that <p(vy, wk) = 8^. If we write 

z = -<pw, y = <pWj9 y = < .̂ 

then we get 

(3.8) xp = dz A (Jx1 A dy] + Jx2 A <fy2 + dx3 A rfy3) 
+ lW A <£t2 A dx3 + Tdyx A dy2 A dy\ 

(3.9) <p = - ( z ) 2 + 2{xxyx + x 2 / + x3y3). 

These explicit formulae give 
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(3.10) THEOREM. Put £l3(W)for the 35-dimensional vector space over C 
of complex alternating 3-forms on the 1 -dimensional complex vector space 
W. The maximal forms constitute a connected dense open subset ty(W) which 
is a single orbit of AUTC(W) for the induced action on Q3(W). If \p, i// e 
*(W) and G(\p) = G(\p') then y = c\p, c e C \ {0}. For each ^ e ¥(W) 
there exists a complex conjugation 6 which is hermitean for a unique bilinear 
form <p satisfying (2.2) and (3.1) so that one obtains a vector product structure 
(W, <JP, \p); ALG(F, <JP, xp) is the complexified Cay ley numbers. The identity 
component G\(\p) is the complexification of the compact group G (\p), the 
centralizer of 6 in g(\p), treated in Section 2. 

Proof Since W has a basis over C in which a given »(/ G t has the form 
(3.8) we conclude that ^ is a single orbit of AUTC(W) from which it 
follows that ^ is connected and open since 

d i m c * = dimcAUTc(H^) - dimcG(^/) = 49 - 14 = 35 -
dimcQ,3(W). 

Let 8 be a fixed non-trivial complex 7-form on W. For any xp G. 23 ( W) 
there is a unique quadratic form $ defined by 

xp A xpu A xpv = 6<p(w, v)8. 

We have 
?«, A • • • A $w? = p(xP)80(uh • • u7)8 

p 
where Qi(W) -» C is a polynomial function. To say that xp is maximal is 
to say/?(;//) T̂  0. Hence 

d i m c ( Œ 3 ( ^ ) \ * ) = 34. 

If in the basis given for (3.8) one defines 0 <= AUTR(W) by 

zoQ = - z, A 0 = / , / 0 = xk 

then 6<p = <p and <p(% #•) is hermitean positive definite where <p is given by 
(3.9). It follows that xp restricted to W is a maximal alternating 3-form in 
the real sense. Thus Ge(xp) is as described in Section 2. Since G\(xp) is 
connected, it is generated by the exponentials of the Lie algebra $(xp) 
which is the complexification of Q0(xp). One concludes that G\(\p) is the 
complexification of Ge(xp). 

Finally, if ^ e Sl3(W) is any 3-form and Y e END (W) is any 
endomorphism we obtain a new 3-form 

3(7)^ = - * ( y . , -, •) - # , Y -, •) - # . , -, y •)• 
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For \p G ^(W) dimension-counting shows that every element of Qi(W) 
can be written in the form d(Y)\p for some Y. A 3-form in ^(W) is fixed 
under the action of G(\p) if and only if it is annihilated by all derivatives 
d(X) with X G Q(XP). Since 

d(X)d(Y)^ = 3( [X, Y] W for X G Ô ( ^ ) , 

it follows that d(Y)\p is fixed if and only if Y normalizes g(^) in the Lie 
algebra END (W). This can only occur when Y G CJ + g(i//). Thus the 
only elements of 23(W) left fixed by G(^) are of the form c\p, c G C. 

Finally, we record 

(3.11) THEOREM. For \p a complex maximal 3-form, the Killing form of 
the real Lie algebra Q(\p) is 

KILL(X Y) = 4 Re tr X Y. 

4. Split Cayley products. Let \p be a real alternating 3-form on a 
7-dimensional real vector space V. Then the identity (2.2) holds with <p a 
symmetric bilinear form. We say that \p is pseudo-maximal if <p is 
non-degenerate and indefinite. The normalization (3.1) fixes <p uniquely. 

Put W = C ®#F, and let y be the complex conjugation with 
Wy = K 

Extending ^ by complex linearity gives a complex maximal 3-form on 
W, and the results of Section 3 apply, the subgroup of AUTR( V) leaving \p 
fixed is the centralizer Gy(xp) of y in G(\p). 

(4.1) THEOREM. Suppose \p is a pseudo-maximal 3-form on V. Then 
Qy(\p) is a normal real form of the complex simple Lie algebra $(\p) and 

ad 
Gy(y) -» INT(^OP)) 

is an isomorphism of Gy(\p) with the adjoint group of Qy(^) where 

&d(S)X = SXS~X for S G Gy(^\ X G g ^ ) . 

The quadratic form <p is of type ( + 3, —4), and there exists an involution o G 
Gy(ip) such that <p(v, ov) > 0/or «// v G F \ {0}. 

Proof Since <p is indefinite, there exists u G V with <p(w, w) = — 1. 
Previous reasoning gives an R-basis for V such that xp has the form (3.8) 
and qp the form (3.9). This shows that <p is of type ( + 3, —4), and if we take 
0 the hermitean complex conjugation for (W, <p, \p) constructed in the proof 
of (3.10), then a = yO meets the requirements of the statement. Given 
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l j , A 2 , A 3
 e C with Xi + À2 + A3 = 0 we get an element H(X\, A2, A3) e 

g(i/>) defined by 

//w = 0, HVJ = XjVj, Hwj = —XjWj 

in the notation of the proof of (3.8). These elements form a Cartan 
subalgebra rj of g(^). If Xh A2, A3

 G R then / /(Ab A2, A3) e gy(i//). Hence, 
ï) = C OR!)7 with ï)Y diagonalizable over R; this proves that Qy(\p) is a 
normal real form of $(\p). In view of (3.6), G7^) = G{(t//) and ad is a 
monomorphism of Gx (1//). Moreover, for X e= qty), 

ad exp X = exp ad Jf, 

from which it follows that there is a monomorphism of INT(gy(^)) into 
Gy(\p). The isomorphism of Gy(\p) and INT(gy(^)) follows from the fact that 
Gy(^) is connected. This is not hard to prove directly, but it is also a 
consequence of the fact that AUT(gy(^)), the group of all R-Lie algebra 
automorphisms of gy(ip), is connected. A classical proof in the spirit of 
Cartan [4] is given below (4.8). 

Reinterpretation of Theorem (3.7) and Proposition (2.7) give 

(4.2) PROPOSITION. Ifu <E V and y(u, u) < 0 then restriction to U\, the 
-f 1-eigenspace of Lw gives an isomorphism of the stabilizer subgroup 

Gy(^, u) -> AUTR([ /b $) ~ SX(3, R). 

If<p(u, u) > 0 then Lu is a complex structure for u and the hermitean form 
on u 

<v, w> = <p(v, w) — i\p(u, v, w) 

is of type ( + 1 , —2). Thus, following (2.7), z7ze restriction homomorphism to 
u gives an isomorphism of G7^, w) w/z7z # version of SU (I, 2). 

The determination of G7^, v) where v e F \ {0} and <p(v, v) = 0 is 
given in (5.23) below. 

We next find the maximal compact subgroups of Gy(\p). 

(4.3) TERMINOLOGY. If \p is a pseudo-maximal 3-form on V7, an 
involution o e Gy(\p) such that <p(v, ov) > 0 for all v e Vy\ {0} is called a 
Cartan involution. 

Theorem (4.1) guarantees the existence of Cartan involutions. 

(4.4) PROPOSITION. Let o be a Cartan involution ofGy(\p). Put Gy,a(\p)for 
its centralizer in Gy(\p) and V~a for its — \-eigenspace in V7. Then restriction 
to V~a gives an isomorphism 
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G^OJ/) -> AUT+(K~a, v) ~ SO(4). 

Proof. The element 6 = yo G A U T R ( W ) is an hermitean complex 
conjugation for (W, <p, \p); so G ^ ) is one of the groups described in 
Section 2. Moreover 

tf/0,-a = F-a a n d ^,aw = £Y^). 

Theorem (2.14) now gives the result. 

We denote by HYPER(K, - v ) the submanifold of GRASS(4, V) 
consisting of the 4-dimensional subspaces 77 of F on which — <p is positive 
definite. Each such subspace 77 is of the form 77 = V~° where a is a 
«^-orthogonal involution of V such that <p(v, ov) > 0 for all v e V\ {0}. 
The space HYPER(Ky, — <p) is the symmetric space corresponding to the 
simple Lie algebra ANT1(F, <p) of <p-skew-symmetric R-linear transfor­
mations of V1'. The group of isometrics is the disconnected group 
AUT + (F , v) ~ SO(4, 3). 

(4.5) THEOREM. Given a pseudo-maximal 3-form \p on V1 put ^y(\p)for 
the subset o/HYPER(F, <p) constituted by the -^-isotropic 4-planes TT on which 
-<p is positive-definite. Then 27(^) is a regularly imbedded submanifold 
diffeomorphic to R . For the Riemannian structure inherited from HYP­
E R ^ , — <p) the group of isometries is Gy(i//), and 2y(i//) is the subsymmetric 
space o/HYPER(F, — <p) constituted by the 77 = V~° where o is a Cartan 
involution as defined in (4.3). G7^) acts transitively on 2 
y(^), and the stability subgroup of the point m = V~a is the maximal compact 
subgroup Gy,CT(i//). 

Proof. Suppose 77 e 27W0- Given e G 77\{0}, the multiplication 
operator Le is, by the Lagrange Identity, an invertible linear transforma­
tion of e1- which has the cp-orthogonal direct sum decomposition 

e 1 - (77 n e1) + 77x. 

To say that 77 is ^-isotropic is to say that Lem c 77̂  . Therefore Le gives an 
isomorphism of TT C\ e^ with IT-1 . 

We conclude that, for the vector product, one has 

77 X .77 = 77 , 77 X 77 = 77. 

I f / G 77-1 and v ( / , / ) = 1 then LJ = Id on fA . It follows by anti­
symmetry that since Lfir = 77 then LfnL = 77x n / x . Therefore, we also 
have 

77^ X 77 1 = 7T±. 
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Let a be the «p-orthogonal involution such that m = V~a and IT-1 = V°\ we 
see that a is an automorphism of the vector product structure. Therefore o 
is a Cartan involution in the sense of (4.3). On the other hand, since a e 
G7^), X H-> aXa is a Lie algebra involution of g7(^). From (3.11) we have 
for the Killing form 

KILL(X, 0X0) = 4 tr XaXa = - 4 tr XX* 

where X* is the transposed of X with respect to the positive-definite 
quadratic form <p(*, a*); for all X e E N D R ( F ) one has X* = aX # a, and 
X# = - I f o r l G ÔYW- Thus a is a Cartan involution in the ordinary 
sense for the Lie algebra a>y(\p). Since all Cartan involutions of a 
non-compact, real, simple Lie algebra are conjugate under the adjoint 
group, it follows that (4.3) describes all Cartan involutions of a>y(\p). The 
rest of the theorem is a matter of identifying the symmetric space of a Lie 
algebra with the Cartan involutions; see [7] for the Riemannian structures 
(one uses the fact that the restriction of the Killing form of ANT1(F, <p) to 
Qy(\p) is a multiple of the Killing form of g70/>)). F ° r t n e full group of 
isometries see (4.8) below. 

It is useful to write the isomorphism of Proposition (4.4) explicitly. 

(4.6) PROPOSITION. The inverse of the restriction isomorphism 

G^'ff0//)-> AUT + (F~ a , v) 

of Proposition (4.4) is 

D 

AUT + (F~ a , <p) -> G^°(xP) where 
R(S)u = Su ifu e V~°' 
R(S)v = Se X S(e X v) if v e V°, 

e being any element of V~a such that <p(e, e) = — 1. 

From this one obtains Cartan's results [4, p. 494]. 

(4.7) PROPOSITION. Under the adjoint action of G7^) on Qy(\p), the 
maximal compact subgroup Gy,a(y^) acts on g7, a(\p) according to the adjoint 
action of S0(4) and on Qy,~a(\^) according to an irreducible ^-dimensional 
representation p of S0(4). 

Proof The first statement is obvious. For the second we note that 
Qy'~a(\p) is spanned by the D(u,v) with u e V~°, V <E V° and the action of 
AUT + (F~ a , <p) is 

p(S)D(u, v) = R(S)D(u, v)R~l(S) = D(R(S)u, R(S)v) 
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which is an 8-dimensional irreducible representation. 

(4.8) COROLLARY. AUT(g7(ifO) = INT(gy0//)). 

Proof. Each class of AUT/INT is represented by an automorphism 
leaving gY,a(v/0 and gy,~a(i//) invariant. Let T be such an automorphism and 
suppose it is the outer automorphism class of g7,0f(^). Then r corresponds 
to the automorphism r(S) = TST~] of A U T + ( F " a , <p) given by an 
element 7 e AUT(F~a , <p) of determinant —1. One calculates that p o T 
and p are inequivalent which is a contradiction. In terms of the Lie algebra 
§o(4) with primitive roots /x and v, r corresponds to an interchange of /x 
and v. The highest weight of the adjoint representation is /x + v\ that of p 
is \ \i -h \ v. 

There is an almost exact analogue of (2.9). 

(4.9) THEOREM. The pseudo-maximal forms on the real 1-dimensional 
vector space V constitute a subset ^\V) U — ^\V) of £2 3(F) which is a 
single orbit o/AUTR(F). The subset ^\V) is open and connected. Given a 
quadratic form <p of type ( + 3, — 4) on V, the set ofxp e ^\V) which yield <p 
in (2.2) form a disconnected set ^'(V, <p) which is a single orbit for the action 
o/AUT+ (K, <p) ~ 50(3 , 4). Each of the two components of^\V, <p) is a 
1-dimensional regular submanifold of^\V). 

Proof. The fact that V has a basis in which ^ has the form (3.8) is 
equivalent to the statement that the pseudo-maximal 3-forms give a single 
orbit for AUT+(R). The rest follows routinely from (3.10). 

(4.10) COROLLARY. The groups Gy(\p)for ^ a pseudo-maximal 3-form are 
conjugate in AUT?(K) ~ SLÇJ, R). The groups GT(i//) with xp e V ( F , <p) 
form 2 distinct conjugacy classes in the identity component of AUT + 

(K<P). 

5. The boundaries of G 7^) . Let 1// be a pseudo-maximal 3-form on a 
7-dimensional real vector space V. The quadratic form <p and the group 
Gy(\p) are as in Section 2. The boundaries of the group G 7^) , the adjoint 
group of the simple Lie algebra gY(^), are written Bp, Ba, and B. 

(5.1) Notation. The differentiable manifold Bp is the manifold of 
1-dimensional «jp-isotropic subspaces / of V. 

(5.2) Remark. Bp has a simply-connected double-covering Bp given by 
the manifold of oriented ^-isotropic lines / + through the origin of V. There 
is a diffeomorphism Bp ~ S3 X S2, so for the fundamental group one 
has 
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ir\(Bp) ~ Z2. 

(5.3) Remark. Bp is defined independently of the split Cayley product 
in V. It is also a boundary for the group AUT0(K, <p), the connected 
component of the identity in AUT(F, <p) which is a version of SOQ($, 4). It 
is the unique minimal (5-dimensional) boundary of AUT0(F, cp). 

When one considers only the orthogonal structure (K, <p) one obtains a 
flag for each / e Bp given by 

F,(/) = /, V6(l) = ^ . 

The vector-product structure provides a refinement: 

y^l) = {v ^ V: v X I = 0} 
V4(l) = F3( /)- . 

One has 

(5.4) PROPOSITION. The manifold Bp is a compact 5-dimensional 
homogeneous space of Gy(^). The stability subgroup of a point l e Bp is the 
maximal parabolic subgroup 

(5.5) P(l) = {S e G?W): SK*(/) c F*(/), Ar = 1, 3, 4, 6}. 

For etfc/z Cartan involution o, the maximal compact subgroup Gy,°(\p) 
operates transitively on Bp and B p. 

The statement will be proved in the sequel. 

(5.6) Notation. The differentiable manifold Ba is the manifold of 
2-dimensional ^-isotropic subspaces p of V. Thus /? G 5 a if v X w = 0 
whenever v, w e p. 

(5.7) Remark. Ba has a simply-connected double covering Ba given by 
the manifold of oriented ^-isotropic planes/?"^ through the origin in V. Ba 

is diffeomorphic to Bp. (See Theorem (6.4) below.) 

(5.8) Remark. A ^-isotropic 2-dimensional subspace p of V is also 
^-isotropic. The ^-isotropic planes through the origin of V constitute a 
7-dimensional boundary of the group AUT0(F, <p) in which Ba is a 
regularly imbedded 5-dimensional sub-manifold. 

The flag associated with p e Ba is 

V2{p)=p, V^p)^pL. 

(5.9) PROPOSITION. The manifold Ba is a compact 5-dimensional 
homogeneous space of Gy(\p). The stability group oj a point p e Ba is the 
maximal parabolic subgroup 
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(5.10) P(p) = {S G (?W): SVk(j>) c Vk(p): k = 2, 5}. 

For eac/j Cartan involution a, *7ie maximal compact subgroup G1'0^) 
operates transitively on Ba and Ba. 

Again the proof is contained below. 
The maximal boundary occurs next. 

(5.11) Notation. The differentiable manifold B is the manifold of 
ordered pairs b = {Up) wherep is a 2-dimensional ^-isotropic subspace of 
V and / is a 1-dimensional subspace with lap. 

(5.12) Remark. B has a 4-group covering space B+ whose points are 
b+ = (/+,/? + ) determined by the respective oriented subspaces. The space 
B+ is doubly connected, and 

77](B) = quaternion group. 

(5.13) Remark. The pairs (/,/?) of «^-isotropic subspaces of F with / c 
/?, dim / = 1, dim p = 2, constitute an 8-dimensional boundary of the 
group AUT0(F, <p) in which B is a regularly imbedded 6-dimensional 
submanifold. 

The stability subgroup for the action of Gy(\p) on B is clearly 

(5.14) P(b) = P(l) n P(pi b = (/,/>). 

There is a very concrete description of B+ (and hence of 5 ) . 

(5.15) THEOREM. Let o be a Cartan involution of Gy(\^). Put W = C 
0 R K tfftd /ef 6 be the complex conjugation 0 = yo. Put Te($) for the Zorn 
manifold, see (2.12), associated with the maximal 3 form \p on W. Define 

K(o) = {P G T0W): oP = -P). 

Then for each P e K(o) the map S H* SP is a diffeomorphism ofG1'0^) with 
K(o), and there exists a G^^^-equivariant diffeomorphism B+ —> K(a). 

Proof. Fix the Cartan involution a. Given b+ = (/+,/? + ) <E i?+ there 
are uniquely determined vectors v e / + , w ^ p+ such that 

<p(v, av) = 1, cp(w, ow) = 1, <p(v, aw) = 0. 

Define points Ph P2, P3 <E W by 

Pi = - / 2 ~ V v - a v ) , 
— ! 

P2 = i2 2(w — aw), 
P3 = —/v X av. 
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Then P = (Ph P2, ^3) ^ W0 and Ph P2, P3 is an orthonormal triad. Since 
oP = -P and o <= G(i//) we have i/<Pi, P2, ^3) = 0- Hence P G A'(a). The 
map Z?+ H~> P is invertible because 

v = 2~\iPx + P3 X P,), 

w = 2"\-iP2 + P3 X P2). 

The map is G y,a (*//) = G^'aO//)-equivariant since it is defined in terms of \p, 
<P, and a. In view of Theorem (2.13), the map S H-> SP is a diffeomorphism 
of G^(^) with K(p). 

(5.16) COROLLARY. TTze manifold 2?+ is diffeomorphic to SO(4), and the 
manifold B is diffeomorphic to S X S modulo the action of the quaternion 
group where S3 is identified with the unit quaternions and the action of the 
quaternion group is (left) multiplication of each factor. 

Note that the transitivity of the action of Gy'°(\p) on B, B@, and Ba result 
from (5.15). 

It remains to give the explicit determination of the parabolic subgroups. 
For their description we shall make extensive use of the elements of gY(t/>) 
given by (1.23), namely 

D(u, v) = [LM, Lv] + Lu x v. 

(5.17) PROPOSITION. Given I e Bp there is a unique vector-space 
monomorphism 

HOMR(K/K6(/), V4(l)/Vx(l)) -> fiW 

such that 

Dt(h)v -f Vx = h(v + K6). 

7/ie image, 91Q(1), is an abelian Lie algebra. Moreover 

no(l)Vk(l) c r*_3(/) / " * = 3, 4, 6, 7. 

Prtw/ The defining property gives that the elements of HQ(/) map V1 —> 
F4, and so, by orthogonality, K3 —» 0. Let wx be a generator for V/V6(l). 
Then there is a unique vj e Fj(/) such that <p(vj, wi) = 1. The element 
D/(h)w\ is uniquely specified by the defining condition and the 
orthogonality condition 

<p(Di(h)w\9 w\) = 0. 

Since 

V = Rw! + V3 + w} X K3, 
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Dh(h) is completely determined as a derivation of the vector product 
(V, <p, ̂ ) . Existence is given by the explicit formula 

Di(h) = D(vh hwx) 

which is well-defined, since D(vh v\) = 0, and independent of the choice 
Of W\. 

(5.18) THEOREM. Given b = (/, p) e B there is a complete flag for V 
given by 

Vk(b) = Vk(l) for k = 1, 3, 4, 6; Vk(b) = Vk(p) 

for k = 2, 5 

with Vk c Vk + h dim Vk = k. Put n(b) for the subalgebra of fly(i//) 
determined by the conditions 

n(b)Vk(b) c Vk-X(b). 

Let 

n(*)^END(K 4 ( / ) /K 1 ( / ) ) 

be the restriction homomorphism. Then r is an epimorphism onto ut(b), the 
Lie algebra of upper triangular matrices for the induced flag on V$IV\\ the 
kernel of 7 is XXQ(1) described in (5.17) and there is a natural isomorphism 

ut(6) X HOMR(P7F6(/), VA(l)/Vx(l))-^n(b). 

Thus n(b) is a 6-dimensional unipotent subalgebra of Qy(ip) whose centralize)' 
P(b) in Gy(\j/) is the subgroup determined by P{b)V^(b) c Vk{b). The image 
of the homomorphism 

7 

P(b)~> I t AUT(F,/F,_0 
k = \ 

is 

{(Xh X2 > X3 , 1, X3» X2, Xi ): X1X2X3 = U-

Hence P(b) is a minimal parabolic subgroup with Langlands decomposition 
MAN(b); M a 4-group, A ~ R2, N(b) = Exp n(6). 

(5.19) Remark. For A one has \j = e xP Ay, Ay
 G R with Aj + A2 + A3 = 

0. The ordered system of positive roots associated with n(b) is 

(5.20) a = -A 3 , /3 = A3-À2, a + p = -A 2 ; 
2a + £ = + Ab 3a + j8 = X1-A3, 3a + 2/3 - Ai-A2-
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The first three associated with ut(è) and the last three with no(/). 

(5.21) THEOREM. Given p e Ba the corresponding maximal parabolic 
subgroup is the semi-direct product 

P(p) = AUT(p) X Exp(n(p)) 

where n(p) is the 5-dimensional Heisenberg Lie algebra composed of the 
elements 

D(u, v), u G. p \ v e p 

with centre made up of those elements with u e p and the Lie bracket given 
by 

[D(u, v), D(u\ v')] = (4/3)v(u, u')D(y, v'). 

The epimorphism P(p) —> AUT(/?) is the restriction map while the action on 
p±/p is given by an epimorphism A\JT(p) —» A\JT{p±/p, <p) which is a 
version of the adjoint epimorphism GL(2, R) —» SO(\, 2). 

(5.22) THEOREM. Given I e Bp the corresponding maximal parabolic 
subgroup is the semi-direct product 

P(l) = AUT(F3(/)/F,(/)) X Exp(n(l)) 

where rt(/) is the 5-dimensional nilpotent Lie algebra composed of the 
elements 

D(V, W ) , V G / , W G l1-

with centre g(/) consisting of those elements such that v X w = 0 and Lie 
bracket given by 

[D(v, w), D(v, w')] = D(v, v X (w X w')). 

The quotient n(/)/s(/) is the ^-dimensional Heisenberg Lie algebra with 
centre rto(/)/s(/). The restriction homomorphism 

/ > ( / ) £ AUT(K3I/)/K,(/)) 

is an epimorphism, and for S e P(l), v ^ I we have 

Sv = (det p(S))v. 

(5.23) COROLLARY. If v e F \ { 0 } ««J <p(v, v) = 0 then the stability 
subgroup is isomorphic to a semi-direct product, 

Gy(^ v) ~ SL(2, R) X N 

where N = Exp n(/), / = Rv, is a 5-dimensional unipotent group. 
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6. Historical remarks. In the late 19th century, the theory of Lie groups 
is essentially the theory of Lie algebras, and the theorems about groups are 
proved for local Lie groups. The first presentation of the complex simple 
Lie algebra of type Gi, &(ip) in our notation, were given by Engel [5] and 
Cartan [1] in 1893. A fuller description can be found on pp. 146-151 of 
Cartan\s thesis [2]. With suitable interpretations these results all have 
global versions. 

The quadric Bp defined by (5.1) has tangent bundle T(Bp) with a 
canonical identification 

Ti(Bp)^ K6(/)/K,(/), 

and the restriction of the quadratic form <p to this space gives a 
pseudo-riemannian structure to Bp. In each Ti(Bp) we may consider the 
manifold of isotropic 2-dimensional subspaces. This gives rise to a 
bundle 

(6.1) Notation. I I is the bundle of «p-isotropic tangent 2-planes to the 
quadric Bp. 

Observe that I I is an 8-dimensional boundary of the group AUT0(F, <p) 
whose points may be written as ordered pairs (/, /) where / is a. 
3-dimensional <p-isotropic subspace of F and / is a 1-dimensional subspace 
/ c t. The pseudo-maximal 3-form gives rise to a section of I I —» Bp which 
we call a Cartan-Engel section. This is the section s defined by 

s(l) = (/, t), t - F3(7), i.e.. / X r = 0. 

Engel and Cartan gave a definition of the complex Lie algebra q(\p) in 
terms of such a section. In modern language, with a description of the 
group rather than the Lie algebra, one has 

(6.2) THEOREM. The group Gy(%p) is the group of ^-orthogonal transforma­
tions of V acting on Bp in such a way that the induced action on the bundle II 
preserves the Cartan-Engel section determined by \p. 

(In Cartan's notation the group of such transformations of Bp is 
denoted G .̂) 

The description of the group in terms of Ba is more complicated. The 
result is (see (5.7)) 

(6.3) THEOREM. Given a Cartan involution o there is a \form Xa on Ba 

such that (Ba, ka) is an exact contact manifold and Gy(\^) is a group of 
contact transformations. The subgroup of Gy(\p) formed by the special contact 
transformations is Gy'°(\p). 
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Proof. Given p + <E Ba choose a <p(-, a-)-orthonormal oriented frame 
(v, w) and put Za(p*) = D(v, w). This element of g7(^) depends only on 
p^ and o. Each X e a,y(\p) gives rise to an infinitesimal transformation 
of Ba denoted AX- Then 

K(4x) = trace XZa(p + ) 

defines a 1-form on i?a. One verifies that Xa gives a contact structure. 
Given S e G7^) let TYS) be the induced map of the tangent bundle 
T(Ba). Then 

\aoT(S)\p + = r(S,/> + )XJV-

where c(S') is determined by 

szjiP+)s-x = c(s9p+)za(Sp+y, 

and so e ( £ , / 0 - 1 for all p+ e £ a if 5 e G 7 -^ ) . 

The above is the first form of Gy(\p) given by Engel and Cartan (the 
group Ga in Cartan's notation)» Since (Ba, Xa) is an exact contact manifold, 
the Lie algebra aYW c a n he described in terms of a vector space of 
functions on Ba and Poisson brackets. 

The manifolds Ba and Bp are distinct as GY(^)-manifolds because the 
stability groups are not isomorphic. They are also distinct GY,0(^)-
manifolds for in Bp the stabilizer subgroups have the appearance 

(J J) . ** SOO) 

while for Ba they are of the form 

(R 0 \ 
U R2) 

and these subgroups are not conjugate via an automorphism of S0(4). 
Nevertheless, Ba and Ba are diffeomorphic as are Ba and Bp with the first 
a covering diffeomorphism of the second, To see this let 0\ be the group of 
unit quaternions and T the subgroup consisting of the elements cos x -f 
/ sin x. We can view B p as a homogeneous space of Q\ X 0\ with stability 
group of some point given by 

Kp ~ {(z, z): z e T}. 

Similarly Ba ~ (Q} X Qx)/Ka where 

À'a = {(z\z):z G T}. 
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The group SO(4) is identified with Qx X Qx modulo the centre which is 
generated by (—1, —1). Denote by Ka and Kp the respective images in 
SO(4). Both have unique coset representatives of the form 

zb (JC, j ) , j c £ g 1 j = fl + bj + ck with a2 + b2 + c2 = 1. 

Thus #f t and 5 ^ have coincident sections in Gy,a(\p) ^ SO (4). Moreover 
the covering transformations over Ba and Bp are diffeomorphic. In 
summary, we have 

(6.4) THEOREM. B is a regular submanifold of Ba X Bp in such a way that 
the projections B —> Ba, B —» Bp give circle bundles. There are smooth 

a b 
sections Ba —» B and Bp —> B such that a(Ba) = b(Bp). 

I take this theorem to be a global interpretation of the statement at the 
top of page 151 in [2]. 

Added in proof. Much of the essential content of Theorem 3.10 was 
previously found by J. A. Schouten, in Klassifizierung der alter nier enden 
Grôssen dritten Grades in 1 Dimenionen, Rendiconti del Circolo Matemati-
co di Palermo 55 (1931), 137-156. 
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