ON THE NUMBER OF SIDES OF A PETRIE POLYGON

ROBERT STEINBERG

Let \(\{p, q, r\} \) be the regular 4-dimensional polytope for which each face is a \(\{p, q\} \) and each vertex figure is a \(\{q, r\} \), where \(\{p, q\} \), for example, is the regular polyhedron with \(p \)-gonal faces, \(q \) at each vertex. A Petrie polygon of \(\{p, q\} \) is a skew polygon made up of edges of \(\{p, q\} \) such that every two consecutive sides belong to the same face, but no three consecutive sides do. Then a Petrie polygon of \(\{p, q, r\} \) is defined by the property that every three consecutive sides belong to a Petrie polygon of a bounding \(\{p, q\} \), but no four do. Let \(h_{p,q,r} \) be the number of sides of such a polygon, and \(g_{p,q,r} \) the order of the group of symmetries of \(\{p, q, r\} \). Our purpose here is to prove the following formula:

\[
\frac{h_{p,q,r}}{g_{p,q,r}} = \frac{1}{64} \left(12 - p - 2q - r + \frac{4}{p} + \frac{4}{r} \right).
\]

We use the following result of Coxeter (1, p. 232; 2):

\[
\frac{h_{p,q,r}}{g_{p,q,r}} = \frac{1}{16} \left(\frac{6}{h_{p,q} + 2} + \frac{6}{h_{q,r} + 2} + \frac{1}{p} + \frac{1}{r} - 2 \right),
\]

where \(h_{p,q} \), for example, denotes the number of sides of a Petrie polygon of \(\{p, q\} \). Both proofs referred to depend on the fact that the number of hyperplanes of symmetry of \(\{p, q, r\} \) is \(2h_{p,q,r} \). This is proved in a more general form in (3). Clearly (1) is a consequence of (2) and the following result:

If \(h \) is the number of sides of a Petrie polygon of the polyhedron \(\{p, q\} \), then

\[
h + 2 = \frac{24}{10 - p - q}.
\]

Proof of (3). The planes of symmetry of \(\{p, q\} \) divide a concentric sphere into congruent spherical triangles each of which is a fundamental region for the group \(\mathbb{S} \) of symmetries of \(\{p, q\} \) (1, p. 81). The number of triangles is thus \(g \), the order of \(\mathbb{S} \). The vertices of one of these triangles can be labelled \(P, Q, R \) so that the corresponding angles are \(\pi/p, \pi/q, \pi/2 \). There are \(g/2p \) images of \(P \) under \(\mathbb{S} \), since the subgroup leaving \(P \) fixed has order \(2p \). At each of these points there are \(p(p - 1)/2 \) intersections of pairs of circles of symmetry. Counting intersections at the images of \(Q \) and \(R \) in a similar fashion, one gets for the total number of intersections of pairs of circles of symmetry the number

Received October 21, 1957.
$g(p + q - 1)/4$. However, the number of such circles is $3h/2$ (1, p. 68), and every two intersect in two points. Hence

$$g\left(\frac{p + q - 1}{4}\right) = \frac{3h}{2} \left(\frac{3h}{2} - 1\right).$$

Dividing (4) by the relation $g = h(h + 2)$ of Coxeter (1, p. 91), and solving for h, one obtains (3).

References

University of California