ATOMLESS LATTICE-ORDERED GROUPS

In Memoriam—C. S. Milloy

A. M. W. GLASS

ABSTRACT. We show the existence of atomless lattice-ordered groups which have doubly transitive representations. In so doing, we answer a question of M. Giraudet from 1981 [4].

Let G be a lattice-ordered group with identity e. A strictly positive element of G is called an atom if it cannot be written as the join of two disjoint strictly positive elements of G. Note that every strictly positive element of any linearly ordered group is an atom.

If (Ω, \leq) is an infinite chain (linearly ordered set), we write $A(\Omega)$ for $\text{Aut}(\Omega, \leq)$. $A(\Omega)$ is a group under composition and a lattice under the pointwise ordering. An important sublattice subgroup of this lattice-ordered group is $B(\Omega)$, the subset of all elements of $A(\Omega)$ whose support is bounded both above and below ($\text{supp}(g) = \{ \alpha \in \Omega : \alpha g \neq \alpha \}$).

A subgroup G of $A(\Omega)$ is said to be doubly transitive on Ω if for all $\alpha_1 < \alpha_2$ and $\beta_1 < \beta_2$ in (Ω, \leq), there is a $g \in G$ such that $\alpha_j g = \beta_j (j = 1, 2)$. (Sublattice subgroups of $A(\Omega)$ that are doubly transitive are m-transitive for all positive integers m—see [2, Lemma 1.10.1]).

In 1981, M. Giraudet [4] asked (Problem 10.16) if for some infinite chain (Ω, \leq), there is an atomless doubly transitive sublattice subgroup H of $B(\Omega)$; the other question of [4], Problem 10.15, was referred to and partially answered in [1]. The purpose of this short note is to observe that a construction due to Keith R. Pierce (see [5] or [2, Chapter 10]) provides a positive answer. Indeed

THEOREM. For every lattice-ordered group G, there is a lattice-ordered group H containing G as a sublattice subgroup and such that every pair of strictly positive elements of H are conjugate in H. Moreover, we can find such an H that is a doubly transitive sublattice subgroup of $B(\Omega)$ for some infinite chain (Ω, \leq).

The proof we give assumes the Generalized Continuum Hypothesis; this dependence can be avoided, see [2, p. 205].

PROOF. All but the last sentence of the theorem is established in Theorem 10.8 of [2]. Indeed, by [2, Corollary 2L], it suffices to prove the theorem for $G \subseteq B(T)$, G doubly transitive on T and $|T| = |G|$, a regular uncountable cardinal. Now the proof of...
[2, Lemma 10.9] shows that if F is a sublattice subgroup of $B(T)$, then $F \psi \subseteq B(T_\psi)$. Similarly, the proof of [2, Lemma 10.10] establishes that $F \subseteq B(T_\psi)$ for such F. Hence, as noted in [2], for the chain (Ω_1, \leq) obtained on p. 203 of [2], $G \subseteq B(\Omega_1)$. Moreover, any two strictly positive elements of G are conjugate in $B(\Omega_1)$. The construction ensures that $|\Omega_1| = |G|$ and that $B(\Omega_1)$ is doubly transitive (since Ω_1 is an α-set—see [2, pp. 203 and 187]). For each pair of strictly positive elements of the image of G, choose an element of $B(\Omega_1)$ conjugating the first to the second. Also for each pair of strictly increasing pairs of elements of Ω_1, choose an element of $B(\Omega_1)$ mapping the former to the latter. Let G^\dagger be the sublattice subgroup of $B(\Omega_1)$ generated by the image of G and these $|G| + |G|$ elements of $B(\Omega_1)$. Then $|G^\dagger| = |G|$, $G^\dagger \subseteq B(\Omega_1)$ and G^\dagger is doubly transitive on Ω_1.

We can therefore proceed by induction: $G_0 = G$, $G_{m+1} = (G_m)^\dagger$, for each natural number m, to obtain $G_{m+1} \subseteq B(\Omega_{m+1})$, a sublattice subgroup acting doubly transitively on Ω_{m+1}, $|G_{m+1}| = |G|$ and G_{m+1} containing an image of G_m. Consequently, $H = \bigcup_{m=0}^\infty G_m$ acts doubly transitively on $\Omega = T \cup \bigcup_{m=1}^\infty \Omega_m$ and satisfies the conclusion of the theorem.

COROLLARY 1. Every lattice-ordered group G can be embedded in an atomless lattice-ordered group H. Moreover, H can be chosen to be a doubly transitive sublattice subgroup of $B(\Omega)$ for some suitable infinite chain (Ω, \leq).

PROOF. Let H be as in the theorem. Let $h_1 \in H$ be strictly positive. Let $\alpha, \beta \in \Omega$ with $\alpha < \text{supp}(h_1) < \beta$. Since H is transitive on Ω (indeed, doubly transitive), there is $b \in H$ such that $\alpha b = \beta$. Let $h_2 = b^{-1}h_1b \in H$. Then $h_1 \wedge h_2 = e$ and $h_1, h_2 \neq e$. Hence $h = h_1 \vee h_2$ is not an atom. If $f \in H$ is strictly positive, then for some $a \in H$, $f = a^{-1}ha$. Now f is the join of the disjoint strictly positive elements $a^{-1}h_1a$ and $a^{-1}h_2a$, and so is not an atom.

As noted in [2, Theorem 12E], some algebraically closed lattice-ordered groups are doubly transitive. By [3, Proposition 0.2.3], they are not completely distributive; so any doubly transitive algebraically closed lattice-ordered group is not contained in the set of elements of bounded support of that chain [2, Theorems 8D and 8.2.1]. However, by Corollary 1, we immediately obtain another rich non-trivial class of atomless lattice-ordered groups.

COROLLARY 2. Every algebraically closed lattice-ordered group is atomless.

REFERENCES

Department of Mathematics and Statistics
Bowling Green State University
Bowling Green, Ohio 43403-0221
U.S.A.