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A Specialisation of the Bump—Friedberg
L-function

Nadir Matringe

Abstract. We study the restriction of Bump-Friedberg integrals to affine lines {(s + &, 2s),s € C}.
It has simple theory, very close to that of the Asai L-function. It is an integral representation of
the product L(s + a, 7)L(2s, A%, 7), which we denote by L'" (s, 77, &) for this abstract, when 7 is a
cuspidal automorphic representation of GL(k, A) for A the adeles of a number field. When k is even,
we show that the partial L-function L™ (s, 77, &) has a pole at 1/2 if and only if 7 admits a (twisted)
global period. This gives a more direct proof of a theorem of Jacquet and Friedberg, asserting that
7 has a twisted global period if and only if L(« +1/2, ) # 0 and L(1, A%, ) = co. When k is odd,
the partial L-function is holmorphic in a neighbourhood of Re(s) > 1/2 when Re(«) is > 0.

1 Introduction

In this paper, we study the restriction of the integrals of two complex variables (s, s2)
defined in [5], and attached to global and local smooth complex representations of
GL(2n), to the line s, = 2(s; — ), for a € C. We actually study slightly more general
integrals. It turns out that these integrals have a theory very close to that of Asai
L-functions, whose Rankin-Selberg theory, initiated by Flicker, is quite complete now
(see [1,2,8,9,17,19-21]).

In [5], for 7 a cuspidal automorphic representation of GL(#n) of the adeles A of
a global field, the authors mainly define the global integrals as the integral of a cusp
form in 7 against an Eisenstein series, prove their functional equation, and show that
they unravel to the integral of the Whittaker function associated to the cusp form
against a function in the space of an induced representation. This allows them to
obtain an Euler factorisation; they then compute the local integrals at the unramified
places and thus obtain an integral representation of L(s, 1) L(s2, A%, 7). The location
of the possible poles is briefly discussed.

In the first paragraphs of Section 3, we define the L function L' (s, 77) for a generic
representation 7 of GL(n, F) for n even equal to 2m (Theorem 3.1), when F is a non-
archimedean local field, and show a nonvanishing result. A much more complete
study of this non archimedean L-function can be found in [22].

We compute the Rankin-Selberg integrals when 7 is unramified in Section 3.2.

In the archimedean case (Section 3.3), we prove results of convergence and non-
vanishing of the archimedean integrals that we use in the global situation.
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Section 4 is devoted to the global theory. We take 7 a smooth cuspidal automorphic
representation of GL(2m, A), for A the adele ring of a number field k. We first study
the integrals I(s, ¢, @) associated with a cusp form ¢ in the space of 7, a Schwartz
function ® on A™, and a (Hecke) character y of GL(m, A) x GL(m, A) trivial on the
diagonal embedding of GI(m, A), using mirabolic Eisenstein series similar to those in
[14], [15], or [8]; this seems to avoid the normalisation by the L-function of the central
character of 7 as in [5]. We thus obtain their meromorphicity, functional equation as
well as the location of their possible poles in Theorem 4.2. Then we prove the equal-
ity of these integrals (Theorem 4.4) with the Rankin-Selberg integrals ¥ (s, Wy, y, ®)
obtained by integrating the Whittaker functions associated with ¢, and thus get the
Euler factorisation in Section 4.2. The proof of this is similar to that of [5], but we use
successive partial Fourier expansions (Proposition 4.3), which makes the computa-
tions quicker.

In the last part, we define the partial L-function L™ (s, 7, x), and show that it is
meromorphic. Moreover, when the real part of the idele class character defining y is
non-negative, that it is holomorphic for Re(s) > 1/2, and that it has a pole at 1/2 if
and only if 7 has a twisted global period (Theorem 4.5). We deduce from this the the-
orem of Friedberg and Jacquet discussed in the abstract (Theorem 4.7). It seems that
the proof of the aforementioned theorem is not in [5] because the local L functions
were not really studied in [loc. cit.]. In particular, the nonvanishing results, which are
easy (especially in the nonarchimedean case), are absent in [5]. Studying the Bump-
Friedberg L-function through its restriction to complex lines of slope 2 (in particular
considering it as a function of one complex variable) simplifies the analysis.

In Section 5, we give the results for the odd case. The global Rankin-Selberg in-
tegrals are holomorphic this time, and we prove that the partial L-function is holo-
morphic in a neighbourhood of Re(s) > 1/2 with the same assumption on the idele
character defining y.

2 Preliminaries

Let n belong to N. We will use the notations G, for the algebraic group GL(#n), Z,, for
its center, P, for its mirabolic subgroup (the matrices in G, withlast row (0, ...,0,1)),
B, for the Borel subgroup of upper triangular matrices in G,, N, for its unipotent
radical. We will write U,, for the unipotent radical of P,, and u(x) will be the matrix
( I'b-‘ 1 ) in U,. Let M denote the set of k x k square matrices and M, ; the a x b
matrices. For n > 1, the map g ~ ( g 9) is an embedding of the group G, in G,. In
particular, one has P, = G, U,,.

Suppose n = 2m is even. Let w,, € G, be the permutation matrix for the permuta-
tion given by

1 2 .- m m+l m+2 -+ 2m
1 3 -+ 2m-1 2 4 - 2m)°

In this case, we denote by M, the standard Levi of G, associated with the parti-

tion (m, m) of n. Let H, = w, M,w"; we write h(g, g2) = w, diag(g1, g2)w;," for
diag(g1, g2) in M,.
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Suppose n = 2m +11is odd. In this case, we let w,, be the permutation matrix in G,
associated with the permutation

1 2 - m m+1 m+2 --- 2m 2m+1
1 3 -+ 2m-1 2 4 e 2m 2m+1)°

so that W, = Wam+1|G,,,» and we let Waps1 = Wams2|GLy,,, SO that wau,. is the per-
mutation matrix corresponding to

1 2 -+ m+1 | m+3 m+4 --- 2m+1
1 3 .-+ 2m+1 2 4 e 2m-=2)°

We let M,, denote the standard parabolic associated with the partition (m + 1, m) of
n and set H, = w, M,w," as in the even case. Again, we write

h(g1, §2) = wy diag(gi, £2)w,,’

for diag(g1, g2) in M,,. Note that the H,, are compatible in the sense that H, N G,,_; =
H,_.

For C c G, we write C? for Cn H,,. We will also need the matrix w/,, which is the
matrix of the permutation

1 2 .- m m+1l|m+2 m+3 - 2m
1 3 .-+ 2m-1| 2m 2 4 cee 2m-—2

when n = 2m is even, and of

1 2 -+ m m+1l | m+2 m+3 --- 2m+1
2 4 - 2m|2m+1 1 3 <o 2m—1

when #n = 2m +1is odd.

In the sequel, F will generally be a local field, whereas A will be the ring of adeles
of a number field k. When G is the points of an algebraic group defined over Z on
F or A, we denote by Sm(G) the category of smooth complex G-modules. Every
representation we will consider from now on will be smooth and complex.

We will denote by &y the positive character of Ng (H) such that if y is a right Haar
measure on H, and int is the action given by (int(n) f)(h) = f(n 'hn), of Ng(H)
smooth functions f with compact support on H, then y o int(n) = 85 (1) for n in
Ng(H).

IfG=G,(A), H=H,(A), nis a cuspidal representation of G with trivial central
character, and y is a smooth character of H trivial on H, (k)Z,(A), then we say that
7 has an (H, x)-period if there is a cusp form in the space of 7 such that the integral
(which is convergent by [3, Proposition 1])

h)y™(h)dh
fzn(mrrn(k)\m(m R ()

is nonzero.
For m € N-{0}, we will denote by S(F™) the Schwartz space of functions (smooth
and rapidly decreasing) on F™ when F is archimedean, and by C2° (F™) the Schwartz
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space of smooth functions with compact support on F™ when F is non-archimedean.
We denote by S(A™) the space of Schwartz functions on A™, which is by definition
the space of linear combinations of decomposable functions @ = [], ®,, with @, in
8(kJ') when v is an archimedean place, and in €2° (k') when v is non-archimedean,
with the extra condition that @, = 1y = for almost every non-archimedean place
v. On these spaces, there is a natural action of either G,,(F), or G,,(A). In every
case, if 0 is a nontrivial character of F or A/k, we will denote by ® or ® the Fourier
transform of a Schwartz function @, with respect to a 0-self-dual Haar measure.

If x is a character of the local field F of characteristic zero, with normalised abso-
lute value |- |r, we denote by Re(y) the real number r such that for all x in F*, one

has \/ x(x)x(x) = || If x is a character of A*/k*, for k a number field and A its

adele ring, we denote by Re(y) the real number such that for all x in A*, one has

x(x)x(x) = |x|" for | -| the norm of A*.
In the sequel, the equalities of two integrals, involving integration over quotients
or subgroups, are valid up to correct normalisation of Haar measures.

3 The Local Theory

We start with the non-archimedean case, which was studied in great detail in [22].
Here we just give the definition of the L-function, a non vanishing property needed
for the global case, as well as the unramified computation.

3.1 The Local Non-Archimedean L-function

We let O denote the ring of integers of F. Let 6 be a nonzero character of F. Let
7 be a generic representation of G,, let W belong to the Whittaker model W (r, 9),
and let @ be a function in C°(F™). We denote by y a character of H, of the form
h(hy, hy) — a(det(h;)/det(h;)), for a a character of F*, and by § the character
]’l(l’ll, ]’12) g |h1|/|h2| Oan(F)

Denoting by L,, the m-th row of a matrix, we formally define the integral

YW @)= [ WIOLn(h)IHf (RS (h) ™ dh.

This integral is convergent for Re(s) large, and defines an element of C(q~*).

Theorem 3.1  There is a real number 1, such that each integral ¥ (s, W, x, @) con-
verges for Re(s) > ry . Moreover, when W and ® vary in W(m, 8) and C°(F™),
respectively, they span a fractional ideal of C[q°, q~*] in C(q~*) generated by an Euler
factor, which we denote L“n(s, T, X)-

Proof The convergence for Re(s) greater than a real r, , is classical. It is a conse-
quence of the asymptotic expansion of the restriction of W to the torus A,, which
can be found in [12], for example. The fact that these integrals span a fractional ideal
of C[¢°, q~*] is a consequence of the observation that ¥ (s, W, y, @) is multiplied by
|h|~* x " (h)8Y2(h) when one replaces W and ® by their right translates under h.
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Denoting by ¢ the central character of 77, and by K, the points of H, on O, thanks
to Iwasawa decomposition we write the integral ¥(s, W, y, @) as

S o W00 (ot (0)en @)l apa.

As in [12], for any ¢ in C° (N, \Py, 0), there is a W such that W|p, is ¢. Such a ¢ is
right invariant under an open subgroup U of K,,, which also fixes y. We then choose
® to be the characteristic function of {L,,(h,), h, € U}; the integral then reduces to
a positive multiple of

Jrgrpe #ON ().

We now see that for ¢ well chosen, this last integral is 1, i.e., ¥(s, W, y, @) is 1. This
implies that the generator of the fractional ideal spanned by the ¥ (s, W, y, @) can be
chosen as an Euler factor. ]

Remark 3.2  There is a notational difference with [22]. What we are calling
L' (s, 7, x8Y/?) is called L' (s, 7, y) there.

We have the following corollary to the previous proof.

Corollary 3.3  There are W € W(m, 0), and ¢ the characteristic function of a neigh-
bourhood of (0,...,0,1) € F", such that ¥ (s, W, x, @) is equal to 1in C(q~*).

3.2 The Unramified Computation

Here we show that the local Rankin-Selberg integrals give the expected L-function at
the unramified places.

Let 7° be an unramified generic representation of GL(#, F), let W° be the nor-
malised spherical Whittaker function in W (7%, 8) (here 6 has conductor ©), and let
®° be the characteristic function of O”. We will use the notations of [8, Section 3].
We recall that 7° is a commuting product (in the sense of [4], i.e., corresponding to
normalised parabolic induction) x; x --- x y,, of unramified characters, and we de-
note x;(@) by z;. Then it is well known (see [23]) that if A is an element of Z", then
W(@") is zero unless A belongs to the set A* consisting of As satisfying A; > --- > A,,,
in which case W(@*) = 6}3/n2((0)‘)s,\ (z), where s, (z) = det(z?"M_J)/ det(z?_j).

In this case, using Iwasawa decomposition, denoting by A*™* the subset of A* with
An > 0, and writing a’ for (ay,as, ..., a,—1) and a” for (a,, as, ..., a,), one has the
identities

oW1 @) = [ W@)35, (0105 (4)x(0) 0" (a,) o (@)]al"0(a) V2 da
= [ W @x0(0)0° (0,)85." (@) a(det(@))a™ (det(a”)) af da

_ Z SA(z)q_5~tr/1a((D)Z?:l(AZi—l_A%): Z Sk(q—sz)a(@)cu),

AeA+t AeA+t
where c(A) = 37, (A2i-1 — A2;). We now refer to [18, Example 7, p. 78], which as-
serts that if x = (x,...,x,) is a vector with nonzero complex coordinates and ¢ is a
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complex number, then the sum 35+« 53 (%)t is equal to

IT(1 - tx;) Hk(l - XjXk).
i j<

In particular, with x; = z;q™* and t = a(@), we obtain that ¥(s, W, y, ®°) is equal
to

M1-a(@)ziq™*) TT(1-zjzeq ) = L(a ® n°,5)L(n°, A%, 25).
i j<k

We end with the archimedean theory.

3.3 Convergence and Non-vanishing of the Archimedean Integrals

Here F is archimedean, 0 is a unitary character of F, and 7 is a generic unitary rep-
resentation of G, as in [15, Section 2], to which we refer concerning this vocabulary.
We denote by W (7, 6) its smooth Whittaker model.

We denote by 8 the character h(hy, hy) — |h|/|h2| of H,(F), and by y the char-
acter h(hy, hy) — a(det(hy))/a((det(h,)), for « a character of F*.

We now formally define the following integral, for W in W(r, 8), and ® in 8(F"):

Yo Wy @) = W(h)®( Ly (h2)) x(H)|hI8(h) ™ V2dh.

N,NH,\H,

We first state a proposition concerning the convergence of this integral.

Proposition 3.4 For Re(a) > 0, there is a positive real € independent of W and ®,
such that the integral ¥ (s, W, x, @) is absolutely convergent for s > 1/2—e. In particular
it defines a holomorphic function on this half plane.

Proof Asa consequence of Iwasawa decomposition, it is enough to prove this state-
ment for the integral

[An_l W(a)|al*85. (a")d5! (a”)a(det(a’)) a™"(det(a”)) 8(a)*da,

where a’ = (ay,...,a,-1) and a” = (ay, ..., a,—»,1). However, we have the equality
85 (a")d5! (a")8(a)™? = 81;1/2(a) = 8;1{?(a)|a|’1/2. But according to [16, Section
4], writing ¢; for a;/a;; there is a finite set X consisting of functions that are prod-
ucts of polynomials in the logarithm of the |¢;|'s and a character y(a) = 175" xi(t;)
with Re(x;) > 0, such that |W(a)| is majorised by a sum of functions of the form
S(t,..., tn,l)(?gil (t)C, (), where S is a Schwartz function on F*~', and C, belongs
to X. Hence, we only need to consider the convergence of

fA C,(#(a)) S(t(a)) a( det(a’)/ det(a")) |al*/2da =

n n-1 .
fA Cy(1)S(1) Hla(tzj_l) ]'[l |ti"(5*1/2)dt.
n—1 j= ie

The statement follows, taking € = min(Re(;)) for C, in X. [ |
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Now we state our second result about the nonvanishing of our integrals at 1/2 for
good choices of W and ®. The proof of this proposition, as that of the previous one,
will be an easy adaptation of the techniques of [15], though we followed [9] even more
closely.

Proposition 3.5  Suppose that Re(a) > 0, and let s be a complex number with Re(s) >
1/2 — €. There is W in W(m,0), and @ in S(F"), such that ¥ (s, W, x, @) is nonzero.
Moreover, one can choose @ > 0, so that ®(0) > 0.

Proof If not, ¥(s, W, y, @) is zero for every W in W(m,0), and @ > 0 in S(F").
We are first going to prove that this implies that

h 0 s=1/2
w h)lh dh=0
. (0 1)x( )Ih|

for every W in W(, ). Indeed, one has
S WOO(Li () (W) B 5() 2
NG

- fN,\G,, W (R)®( Ly (h)) x(m) B s R

= fpz\cz( ng\P: W(Ph)X(Ph)|Ph|s_1/2dp)CD(Lm(hz))dfl

where |h;|dh is quasi-invariant on N;\Gy;, and dh is quasi-invariant on PS\GY.
But P;\G, =~ F" - {0} via h = L,(h;), and the Lebesgue measure on F" — {0}
corresponds to dh via this homeomorphism. Hence, setting

G(R) = [, W(ph)x(ph)lphl*dp,

n

one has that for every O,
f G(x)®(x)dx = 0.
Fr—{0}

In particular, G(0,...,0,1) = 0 (taking ® > 0 approximating the Dirac measure
supported at (0,...,0,1)), hence fy,\ pr W(p)x(p)|pl*?dp = 0.

Then, one checks (see [15, Section 2]), that for every @ € S(F"™"), the map Wy:g —
St W(gu®(x))®(x)dx, where u° is the natural isomorphism between F"*~' and
Uy, belongs to W (m, 0) again. But Wy( ") = W(" ) @(Lim(h)) for hin H,_y,
hence

fN:I\Hn_IW(h 1)6(Lm(h1))x(h)|h|f-1/2dh

is zero for every W and @, which in turn implies the equality

h 0 s—1/2
w h)|h dh=0
sz_z\HH (0 Iz)x( )|

for every W in W (r, 6). Continuing the process, we obtain W(I,,) = 0 for every W
in W(rm,0), a contradiction. We did not check the convergence of our integrals at
each step, but it follows from Fubini’s theorem. ]
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4 The Global Theory

4.1 The Eisenstein Series

In the global case, let 7 be a smooth automorphic cuspidal representation of G(A)
with trivial central character, ¢ a cusp form in the space of 7, and ® an element
of the Schwartz space S(A"). We denote by y a character of H,(A) of the form
h(hy, hy) — a(det(hy)/ det(h,)) for a a character of A*/k*, and by 8 again the char-
acter h(hy, hy) — |h|/|h2| of H, (A). Then we define

fo(sh) = (W82 (h) [ O(aLn(ha)lal"d"a

for h in H, s in the half plane Re(s) > 1/n, where the integral converges absolutely. It
is obvious that f, (s, h) is Z, (k)P (k)-invariant on the left.
Now we average f on H, (k) to obtain the following Eisenstein series:

E(s,h, y, @) = > fro(s,yh).
Y€Zu (k) Py (k)\Hn (k)

One can rewrite E(s, h, y, @) as
XS0 [ (e h)lald e,
k*\A*
where Of (a, h) = Y tekn—{0} ®(ath,).
According to [7, Lemmas 11.5 and 11.6], it is absolutely convergent for Re(s) > 1/2,
uniformly on compact subsets of H,(k)\H,(A), and of moderate growth with re-
spect to h.
Write @ (a, h) for @y (a, h) + ©(0); then the Poisson formula for ¢ gives
Oo(a,h) =|a|"|hy| @4 (a” ' hT).

This allows us to write, for ¢ a certain nonzero constant,

B @) =[5 2(h) [ @(a wlald’a

+ h|5_1/2)((h) L|>1 6%(a,th—l)|a|n(l—25)d*a + M(S)

with u(s) = —c®(0) || y(h)87Y2(h) /25 + c®(0) x(h)| k[ /(1 - 25).
We deduce from this, appealing again to [7, Lemma 11.5], the following proposi-
tion.

Proposition 4.1 E(s, h, y, ®) admits a meromorphic extension to C, has at most
simple poles at 0 and 1/2, and satisfies the functional equation

E(1/2-s'h7Y, y16Y2,®) = E(s, h, , ©).
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Then the following integral converges absolutely for Re(s) > 1/2:

(s, ¢, x, @) = E(s, h, x, ®)¢(h)dh.
(0 20P)= | oy £ 0 @R

Theorem 4.2 The integral I(s, ¢, x, @) extends meromorphically to C, with poles at
most simple at 0 and 1/2; moreover, a pole at 1/2 occurs if and only if the global y*-
period

h)¢(h)dh
fzn(A)Hn(k)\Hn(A) x(h)$ (k)

is not zero, and ®(0) # 0. The integral (s, ¢, y, D) also admits the following functional
equation:

11/2-5,8, X182, @) = I(s, ¢, x, D),
where §: g ~ $('g™").

Proof Itis clear that the residue of I(s, ¢, y, @) at1/2 is

3(0 mo(h)dh,
0 iy KPR

hence the result about periods follows. ]

4.2 The Euler Factorisation

Let 6 be a nontrivial character of A/k; we denote by Wy the Whittaker function on
G, (A) associated with ¢, and we let

‘P,W,,CD:[ W(R)D(nh)y ()62 (h)dh.
(o Wor @)= [ W) (WA )

This integral converges absolutely for Re(s) large by classical gauge estimates of [11,
Section 13], and is the product of the similar local integrals. We will need the following
expansion of cusp forms on the mirabolic subgroup, which can be found in [6, p. 5].

Proposition 4.3  Let ¢ be a cusp form on P;(A); then one has the following partial
Fourier expansion with uniform convergence for p in compact subsets of P;(A):

y O -1
L 860 (0 1)p)e <y>dy)

We now unravel the integral I(s, ¢, y, ©@), following the strategy in [5,16], which
is to unravel step by step.

6(p) - (
yeP;_1(k)\Gi_1 (k)

Theorem 4.4  One has the identity I1(s, ¢, x, @) = ¥V (s, Wy, x, D) for Re(s) large.
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Proof We suppose that s is large enough so that I(s, ¢, y, @) is absolutely conver-
gent. Denoting by y; the character y0~/2|-|* of H, (A), we start with

I(s,¢, 1, ®) = f E(s, h, 3, ©)$(h)dh
Zu(A)Hu(k)\Hq(A)
- [ feelsmehan
Zu(A)P7(k)\Hu(A)
- [ oWn(h))éh)xs(h)dh.
P (k)\H,(4)
We denote for the moment @ (L, (h,)) xs(h) by F(h), and for I between 0 and m -1,
we write
I =

F(h) f ¢(nh)9-1(n)dn)dh.
P;l(k)(UZI+1~--Un)u(A)\Hn(A) (UZI+1~--Un)(k)\(UZI+1-~~Un)(A)
In particular, Iy = W( Wy, @, s). We also write I,, = I(s, ¢, y, ).
To prove the theorem, we only need to prove that I; = I;,; for 0 < m — 1, which we
do now. We will see that the absolute convergence of I; (i.e., the fact that

F(h) / ¢(nh)9-1(n)dn)
(Uz141---Un) O\ (U2141--.Un ) (A)

is absolutely integrable over the quotient Py, (k)(Usis1 ... Uy)?(A)\H,(A)) implies
that of Ij,; during the process. We will tacitly use several times the fact that if G
is a unimodular locally compact group, K < H closed unimodular subgroups of G,
and A is a continuous integrable function on K\G, then B(x) = [ zA(hx)dh is
absolutely convergent for all x € G, integrable over H\G, and one has ) meB(h)dh =
/i K\G A(g)dg.

We thus suppose that I; is absolutely convergent, so one can write I; as the abso-
lutely convergent sum

=Y

Y g () (Uataro - Un)® (A\Ha (A)

21+

F(h) f ¢(nyh)el(n)dn)dh
(Uar41---Un) (K)\(Uz141...Un ) (A)

Pf () (Uari--.Un ) (A)\Hy (A)
F(h)( > / ¢(nyh)9‘1(n)dn)dh,

Y (Va1 Un) (O\(Ua1s1...Un ) ()
where the sum is over y € P, U5, (k)\Py,,, (k). Now, a system of representatives of
P (K)U3. (R)\P3,

5.1 (k) is given by the elements w5, (y), for y in P;(k)\G; (k).
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We now apply Proposition 4.3 at p = 1 to the cusp form
peP— / By a (Y1) (n)edn.
(Va2 Un) ()\(Uats2--.Un ) (A)
The sum being absolutely convergent by Proposition 4.3, we thus obtain the relation

¢<nw;l+l<y>h>e-l<n)dn) _

yepl(k)\Gl(k)((U21+1Uzl+2~~-Un)(k)\(UZl+1 U21+2-~~Un)(A)

¢(nuh)6_l(n)dn) du.
weUS, (NUZ, (8) €Utz Un) (N (Ustszon-Un ) (A)

Replacing in I;, with J; absolutely convergent, one obtains the equality
=] =
Pg) 1 (k) (Uatz... Un) o (A)\Hu (A)

F(h) f ¢(nh)e-1(n)dn)dh.
(U142 Un) (-)\(Uz142...Un ) (A)

Again, we have

Ji=),

Y Pg ., (k) (Ustsz.-Un)o (A)\Ha (A)
F(h) [ ¢(nyh)91(n)dn) dh,
(Uzl+2-~~Un)(k)\(UZHZ-nUn)(A)

where the sum is now over y € Py, (k)Uy,,,(k)\Py,,,(k), a system of representa-
tives of which is given by the elements w),, (), for y in P11 (k)\G;.1(k). Applying
Proposition 4.3 at p = 1 again, this time to the cusp form:

pePs— / B(mw1,2(p)R)6™! (n)dn,
(U243 Upn) (k)\(Ua143...Un ) (A)
one has

¢(nw;l+2<y>h)e-1<n)dn) _

vePLa (\Graa (k) (( Ua142Usi43---Un ) (k)\(U2142Ua143... Un ) (A)

¢(nuh)€_1(n)dn) du.
weUZ,  (DNUS, 5 (A) e(UstysnUn) (DN (Uatya.--Up) (4)
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Finally, replacing in J;, one obtains J; = I;,;, together with the absolute convergence
of I1,;. Notice that when I = m — 1, the last bit of the proof becomes

T = f F(h)( ¢(nh)91(n)dn)dh
Py (K)Ug (A)\Hx(A) Un (k)\Un (A)

- [ F(h) (
Py (kYU (A)\H, (A) yews (Pt (ONGu1(k)) Ay, (1) Vu,, (A)

- f F(h)( f ¢(nh)0—1(n)dn)dh
P (U5 (A)\Ha (4) Us (k)\ U3 (4)

_ f F(h)¢(h)dh = L. u
P7(k)(A)\Hn(A)

¢(nyh)91(n)dn) dh

As a corollary, we see that (s, Wy, x, @) extends to a meromorphic function
(namely I(s, ¢, x, @)). Writing 7 as the restricted tensor product ®, 7, for any
W =TI, W, in W(r, 0), any decomposable ® =[], @, in S(A"), one has

Y(s, W, x, @) =TTY(s, Wy, xv> Dy).

4.3 The Partial L-function

Let 7 = ®, 7, be a cuspidal automorphic representation of G,(A), and let S be the
finite set of places of k, such that for v in S, 7, is archimedean or ramified. Let o =
®, a, be a character of A*/k* (with &, unramified for v outside S), and let y be
the character h(hy, hy) — a(det(h;)/det(h,)) of H,(A). We define the partial L-
function LS (s, 71, y) to be the product

158 (s, 7, ) = I;ISL(S, a, ® m,)L(2s, A%, ),
v

where L(s, &, ® m,) and L(2s, A%, ,) are the corresponding L-functions of the Ga-
lois parameter of m,. Hence, if 8, has conductor O, at every unramified place v,
the function L™ (s, 7, y) is the product [T,¢s ¥ (s, W2, x> @) thanks to the un-
ramified computation. Because of this, we see that it is meromorphic (it is equal to
Y(s, W,®)/ 1 es ¥(s, W,, D,) for a well chosen ® an W). We now show that when
Re(a) > 0, the partial L function L'"™5(s, 77, y) has at most a simple pole at 1/2, and
that this happens if and only if 7 admits a y~!-period.

Theorem 4.5  Suppose that Re(«) > 0 and that the partial L-function L™ (s, 7, x)
is holomorphic for Re(s) > 1/2 and has a pole at 1/2 if and only if m has an
(Hn(A), x™1)-period. If it is the case, this pole is simple.

Proof Let Se, be the archimedean places of k, and let S be the set of finite places
in S. First, for v in Sy, thanks to Corollary 3.3, we take W, and ®, such that
Y(s, Wy, xv, @y) = 1foralls (and ©,(0) > 0 because D, is positive). For any so >1/2,
if v belongs to S, it is possible to take W, ;, and @, 5, with @, ., (0) > 0 such that
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W(s, Wis05 Xv> Pv.s,) 1s convergent for s > 1/2 — ¢, and # 0 for s = s¢ according to
Propositions 3.4 and 3.5. We write

Wso = H Wv,so H Wv H W‘?,

V€S oo vesf V¢S

notice that Wj, is equal to Wy for some cusp ¢ in the space of 7, thanks to the re-
stricted tensor product decomposition of 7, which by multiplicity 1 for local Whit-
taker functionals, implies the same decomposition of the global Whittaker model
W(m, 0). If we now write

CI)SO = H q)v,so H q)v H CDB)

V€S0 veSy v¢S

the theorem follows from the equality

H \P(S: WV,SO) Xva (I)v,so)Llin’s(S: T[) = \Ij(s) VVSO, X, CDSO))

ves

and Theorems 4.4 and 4.2, as ®(0) # 0 (it is positive). [ |

We then recall the following lemma.

Lemma 4.6 If the partial exterior square L-function LS (m, A%, ) has a pole at 1,
then m is self-dual.

Proof It is a consequence of the main theorem of [16] that if LS (7, A2, 7r) has a pole
at 1, then 7 has a non-vanishing Shalika period, hence all its non-archimedean com-
ponents admit a Shalika model. Then, by [13], all the non archimedean components
must be self-dual, hence 7 as well by strong multiplicity one. ]

We will use it in the following proof, to remove the assumption Re(a) > 0. We
reobtain a theorem of Friedberg and Jacquet ([10]), using the Bump-Friedberg L-
function directly.

Theorem 4.7  The cuspidal automorphic representation 7 of G, (A) admits a global
x"'-period if and only if LS (s, A, ) has a pole at 1 and L(1/2, & ® ) # 0.

Proof We first give the proof for « satisfying Re(«) > 0. We will deduce the general
case form this particular one. It is well known (see [7]) that L(s, «® ) is entire, hence
L5(s,« ® 7). Moreover, L(1/2,« ® ) = 0 if and only if L5(1/2,« ® 7) = 0. Indeed
L%(s,« ® m) is an entire multiple of L(s, & ® ), hence one implication. Using the
Rankin-Selberg convolution for G, (A) x A, then for any W in W (7, 8), denoting
[ue W(a,1,...,Da(a)lal"V2d*aby ¥(s, W, a),

. W(ty ..., Dy ()|t "D2d* e,

ves v

by ¥(s, Ws, as), and [T,es L(s, &y ® m,) by Ls(s, @ ® ), one has
(s, Ws,a5)L%(s,a @ 1) = [‘I’(s, Ws,as)/Ls(s,a ® n)]L(s, a®m).

But there is € > 0 such that ¥ (s, Ws, as) converges for Re(s) > 1/2 — € according to
the estimates for the W,’s retriction to A,_; given in [16, Proposition 3]. Hence, if
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L5(1/2,« ® ) = 0, then [¥(1/2, Ws, as)/Ls(1/2,a ® 7)]L(1/2, « ® 1) = 0, but one
can always choose W such that

[‘I’(l/z, Ws,as)/Ls(1/2,a ® 71)] #0 and Lgs(1/2,a®m)=0.

It is also proved in [16] that the partial exterior square L-function L5 (s, A%, ) can
have a pole at 1 that is at most simple. Now the theorem follows from the equality
LS (s, 7, x) = LS(s, « ® m)L5(2s, A%, ) and Theorem 4.5.

Now assume Re(a) < 0. If 7 admits a global y~'-period, then its dual representa-
tion 77 admits obviously a y-period. By the previous case, we know that L5 (s, A%, 7)
has a pole at 1, and L(1/2,a™ ® 7) # 0. But then, by Lemma 4.6, we have 7 = 7,
hence L5(s, A%, ) has a pole at 1, and we obtain that L(1/2, « ® ) # 0 thanks to the
functional equation of the Godement-Jacquet L-function. Conversely, if L5 (s, A2, 7r)
has a pole at 1, and L(1/2,« ® m) # 0, by Lemma 4.6 again, we know that 7 is equal
to 7, hence L% (s, A%, 77) has a pole at 1. Using the functional equation again, we also
obtain L(1/2,a™' ® 7) # 0, hence, as Re(a™") > 0, we deduce that 77 has a y-period,
i.e., that 7w has a y!-period. |

5 The Odd Case

In this section, we just state the results for the odd case, which is very similar to the
even case.

In the local non-archimedean case, for 7 a generic representation of G,, the inte-
grals we consider are the following for W in W(7, 8), and @ in C2°(F"):

YW p ®) = fN NH,\H

We have the following theorem.

) W(h)(l)( Lm+1(h1)) |h[* x(h)dh.

Theorem 5.1 There is a real number 1y, such that each integral ¥ (s, W, y, @) con-
verges for Re(s) > r,. Moreover, when W and ® vary in W (m, 8) and CZ° (EF") respec-
tively, they span a fractional ideal of C[gq°, q~*] in C(q™*), generated by an Euler factor
which we denote L' (s, 1, y).

Let 7° be a generic unramified representation of G,. Thanks to the relation
0p,(a) = 0p,(a’)dp,(a"), with a’ = (ay,4a3,...,a,) and a” = (ay,a4,...,a,), the
unramified computation gives again the equality

Y(s, W0, 0% = > a(w)?sp(q°z) = L(s, a0 n’)L(s, A%, 7°)
AeA+t

In the archimedean case, for 7 a generic representation of G,, and Re(«) > 0, the

integrals

YW@= W (B)®( Lyns1(h)) x(h) k[ dh

converge again for Re(s) > 1/2 — ¢ for a positive number € depending on 7. For any
such s, one can chose W and ® such that they do not vanish.
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In the global situation, for @ in S(A"), we define

Jro(s;h) =Rl x(h) /A* (D(aLerl(hl)) la|"™sd*a
for h in H,. Associated with this is the Eisenstein series

E(S, h,X,cD) = Z fx,d)(s)yh)’
y€Zy (k)P (k)\H, (k)

which converges absolutely for Re(s) > 1/2, extends meromorphically to C, with pos-
sible poles simple and located at 0 and 1/2. It satisfies the functional equation

E1/2-s'h7 y 102, @) = E(s, h, x, D).

Then if 7 is a cuspidal automorphic representation of G,,(A) and ¢ is a cusp form in
the space of 7, we define for Re(s) > 1/2 the integral

I(s, ¢, x, @) = E(s,h, , ®)¢p(h)dh,
(00 = [ o ®)d(h)

which satisfies the statement of the following theorem.

Theorem 5.2 The integral I(s, ¢, x, ©) extends to an entire function on C. The inte-
gral I(s, ¢, y, @) also admits the functional equation

1(1/2 -5, ¢, x 1612, ®) = I(s, ¢, x> D),
where §: g — ¢('g™).

The proof is the same up to the following extra argument. It is clear that the residue
of I(s, ¢, x, @) at1/2is

c®(0) /Zn(A)Hn(k)\Hn(A) x(h)éh)dh,

but these integrals are known to vanish according to [5, Proposition 2.1], hence there
is actually no pole at 1/2.
Again, we define

¥(s, Wy, x, @) = W (h)®( L1 (1)) |k x(h)dh,
(Wo @)= [ WeO( L) ()
and this integral converges for Re(s) large, and is in fact equal to I(s, ¢, y, D).

From this we deduce that the partial L-function L™S(s, 7, x) is meromorphic,
and, when Re(a) > 0, it is holomorphic for Re(s) > 1/2 — ¢, for some positive €
(corresponding to the € of the archimedean case).
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