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A Note on Planarity Stratification of
Hurwitz Spaces

Jared Ongaro and Boris Shapiro

Abstract. One can easily show that any meromorphic function on a complex closed Riemann sur-
face can be represented as a composition of a birational map of this surface to CP2 and a projection
of the image curve from an appropriate point p ∈ CP2 to the pencil of lines through p. We introduce
a natural stratiûcation of Hurwitz spaces according to the minimal degree of a plane curve such that
a given meromorphic function can be represented in the above way and calculate the dimensions of
these strata. We observe that they are closely related to a family of Severi varieties studied earlier by
J. Harris, Z. Ran, and I. Tyomkin.

1 Basic Definitions and Facts

In what follows we will always work over the ûeld C of complex numbers, and by a
genus pg(C) of a (singular) curve Cwemean its geometric genus, i.e., the genus of its
normalization. We start with the following statement.

Proposition 1.1 Anymeromorphic function f ∶C→ CP1 on a complex closed Riemann
surface C can be represented as f = πp ○ ν where ν∶C → CP2 is a birational mapping
of C to its image and πp ∶ ν(C) → CP1 is the projection of the image curve ν(C) from a
point p ∈ CP2 to the pencil of lines through p.

Proof Let C(C) be the ûeld of meromorphic functions on C. Consider its subûeld
C( f ) ⊂ C(C) generated by f (i.e., the set of all rational functions of f ). SinceC is one-
dimensional, the ûeld extensionC(C) ∶ C( f ) is ûnite. Assume thatC(C) /= C( f ) and
choose any meromorphic function g∶C → CP1 generating this extension. Removing
a point from CP1 and its inverse images under f and g, we get a birational mapping
C ∖ {ûnite set} → C2 given by the pair ( f , g). Its compactiûcation gives a birational
mapping ν∶C → CP2. Projection “along the second coordinate" gives a presentation
of the original meromorphic function f ∶C → CP1 as f = πp ○ ν. Finally observe that
C(C) = C( f ) only if C has genus 0 and deg f = 1, the latter case being trivial.

Obviously, if ν maps C birationally on its image and f = πp ○ ν for some point
p ∈ CP2, then deg(ν(C)) = deg f if and only if p ∉ ν(C) and deg(ν(C)) > deg f if
p ∈ ν(C).
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Deûnition 1.2 _e planarity defect pdef( f ) of ameromorphic function f ∶C→ CP1

equals
pdef( f ) ∶= min

ν
(deg(ν(C)) − deg( f )

such that f = πp ○ ν, as above.

We start with the following simple observation.

Lemma 1.3 Given f ∶C → CP1, pdef( f ) = 0 if and only if h0( f ⋆(O1)) ≥ 3, and for
almost any point p ∈ C and any other point q /= p,

h0( f ⋆(O(1)) − p − q) = h0( f ⋆(O(1))) − 2.

Proof Indeed, observe that f determines a 1-dimensional linear subsystem in the
complete linear system f ⋆(O(1)). (We count dimensions of linear systems projec-
tively.) Moreover, if r f = h0( f ⋆(O(1))) ≥ 3, then the system f ⋆(O(1)) deûnes a map
ϕ f ∶C → CPr f−1 with r f − 1 ≥ 2. If additionally, sections of f ⋆(O(1)) separate each
generic point on C from all other points, then ϕ f is birational on the image. _e latter
condition is made explicit above. Choosing an appropriate 3-dimensional subsystem
of f ⋆(O(1)) including f , we get the required statement.

Unfortunately, the second condition is not easy to check in concrete situations, see
Remark 1.5. We say that a linear system L on a curve C is birationally very ample if
the image of C in the projectivized space of its sections is birationally equivalent to C;
compare [17].

_e following suõcient condition of the birational very ampleness of f ⋆(O(1)) is
valid. Recall that a point z ∈ CP1 is called a simple branching point (resp. complicated
branching point) of a meromorphic function f ∶C→ CP1 of degree d if the number of
its geometrically distinct preimages in f −1(p) equals d− 1 (resp. is smaller than d− 1).

Lemma 1.4 If f ∶C → CP1 has at most one complicated branching point, then
pdef( f ) = 0 if and only if h0( f ⋆(O(1))) ≥ 3. In particular, under the above assump-
tions, if deg( f ) = d ≥ g + 2, where g is the genus of C, then pdef( f ) = 0.

Proof As in Lemma 1.3, the necessary condition for pdef( f ) = 0 is

r f ∶= h0( f ⋆(O(1))) ≥ 3.

By the Riemann–Roch formula

(1.1) r f ∶= h0( f ⋆(O(1))) = d − g + 1 + h0(K ∖ ( f )∞),
where ( f )∞ is the pole divisor of f . _e linear system f ⋆(O(1)) determines themap-
ping ϕ f ∶C → CPr f−1. Moreover, if r f ≥ 3 and f has at most one complicated branch-
ing point, then ϕ f deûnes a birational mapping ofC on its image ϕ f (C). Indeed, since
r f ≥ 3, the only thing that we have to exclude is that ϕ f ∶C → ϕ f (C) is a non-trivial
covering. Assume that ϕ f ∶C→ ϕ f (C) is a non-trivial covering. Notice that indepen-
dently of the fact whether ϕ f is birational on the image or not, f = πp ○ ϕ f , where
πp is a projection of CP2 ∖ p → CP1 from some point p ∈ CP2. Also the map f can
be li�ed in the standard way to f = π̃p ○ ϕ̃ f where ϕ̃ f ∶C → ϕ̃ f (C) is the standard li�
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of ϕ f to the normalization ϕ̃ f (C) of the image ϕ f (C), and π̃p is the composition of
the standard map from the normalization ϕ̃ f (C) to the image curve ϕ f (C) with the
projection πp . Branching points of f are either the images under π̃p of the branching
points of ϕ̃ f or the branching points of π̃p itself. But each branching point of π̃p is a
non-simple branching point of f . _erefore, in the case of a non-trivial covering we
get at least two non-simple branching points of f , which contradicts our assumptions.
_e case when ϕ f (C) is a line in CP2 is obviously impossible due to the dimension
of the linear system f ⋆(O(1)). Finally observe that if d ≥ g + 2, then r f is at least 3 by
the Riemann–Roch formula (1.1).

Remark 1.5 Observe that for d ≥ g + 1, any curve C of genus g admits a mero-
morphic function of degree d with all simple branching points, i.e., the natural map
Hg ,d → Mg where Mg is the moduli space of curves of genus g is surjective; see
[20]. Also for d ≥ 2g + 1, no genericity assumptions whatsoever on f are required
for birational ampleness, since f ⋆(O(1)) becomes very ample and deûnes an embed-
ding C → CPr f−1. However, in the interval g + 2 ≤ d ≤ 2g this linear system might
deûne a non-trivial covering on the image as shown by the next classical example;
see [11, Proposition 5.3]. _is circumstance shows that one needs some additional
assumption on the branching points to avoid such coverings.

Example Let C be a hyperelliptic curve of genus g > 2 and let ∣L∣∶C → CP1 be the
hyperelliptic map. Let s0 and s1 be a basis for H0(L). _e Riemann–Roch formula
gives that h0(gL) = g + 1 < 2g. Note that there are precisely (d+n−1

n−1 ) monomials of
degree d in n variables. _erefore, there are precisely d + 1 monomials of degree d in
s0 and s1. _e map ∣L∣∶C→ CP1 is given by

C ∋ p z→ [ s0(p)∶ s1(p)] ∈ CP1 ,

while the map ∣mL∣∶C→ CPg is given by

P z→ [ s0(p)g ∶ s0(p)g−1s1(p)∶ ⋅ ⋅ ⋅ ∶ s1(p)g] .

But it is now clear that ∣mL∣∶C→ CPg can be factored as ∣L∣∶C→ CP1 followed by the
Veronese embedding V ∶CP1 → CPg . Hence, the image of C under the map ∣mL∣ is a
rational normal curve. Now suppose that m > g. _en the Riemann–Roch formula
gives h0(mL) = 2mg + 1 > m+ 1. _us, s0 and s1 only generate a subspace of H0(mL)
and the above argument no longer works (which is good, since ∣mL∣ determines a
closed embedding).

We now characterize the vanishing of the planarity defect in diòerent terms. Con-
sider the push-forward sheaf f⋆(OC) on CP1. Since f is a ûnite map of compact
curves, f⋆(OC) is a vector bundle on CP1 whose dimension equals deg( f ). By the
well-known result of Grothendieck, f⋆(OC) = O ⊕∑i O(a i), where a i are integers;
see e.g., [12]. Observe that all a i must be negative, since h0(OC) = h0( f⋆(OC)) = 1.

Proposition 1.6 For any meromorphic function f ∶C → CP1 with at most one com-
plicated branching point, its planarity defect pdef( f ) vanishes if and only if amax = −1,
where amax is the maximal of all a i ’s in the above notation.
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Proof Let us show that under our assumptions pdef( f ) = 0 ↔ amax = −1. We
need to check that h0( f ⋆(O(1)) ≥ 3 if and only if amax = −1. Consider f⋆( f ⋆(O(1)).
Observe that, h0( f⋆( f ⋆(O(1))) = h0( f ⋆(O(1))), since f is a ûnite map of compact
algebraic curves. Now by projection formula, see [11, Ex. 8.3]

f⋆( f ⋆(O(1)) = O(1) ⊗ f⋆(OC) = O(1) ⊕∑
i
O(a i + 1).

Since amax = −1, at least one of the terms O(a i + 1) equals O. _erefore

h0( f⋆( f ⋆(O(1))) = h0(O(1)) +∑
i

h0(O(a i + 1)) ≥ 2 + 1.

In fact, h0( f⋆( f ⋆(O(1))) = 2 + the number of indices i such that a i = −1.

Proposition 1.6 shows that there is a connection of the planarity defect with the
slope invariants of meromorphic functions and with the Maroni strata (cf. [6, 18]). In
fact, the following statement is true.

Proposition 1.7 Given a meromorphic function f ∶C→ CP1 of degree d, its planarity
defect pdef( f ) equals d′−d where d′ is theminimal degree of a linear systemL such that
(a) L is birationally very ample and (b) the (eòective) divisor of f ⋆(O(1)) is contained
in the (eòective) divisor of L.

Proof If f ⋆(O(1)) can serve asL, then there is nothing to prove. Otherwise the divi-
sor ofLmust be strictly larger than that of f ⋆(O(1)). In the latter case one can choose
a 1-dimensional linear subsystem of L deûning a meromorphic function g∶C → CP1

that is not proportional to f . Considering the map ψ∶C → C2 given by ( f , g) and
extending it to the map ψ̃∶C→ CP2, we get the required planarity defect.

1.1 Planarity Stratification of Small Hurwitz Spaces

_e small Hurwitz space of degree d functions of genus g curves is deûned as:

Hg ,d = { f ∶C→ CP1 ∣ f has only simple branched points,

deg f = d ≥ 2, gen(C) = g ≥ 0} .

Recall that dimHg ,d equals the number of (simple) branching points of a function
from Hg ,d and is given by the formula

dimHg ,d = 2d + 2g − 2.

Small Hurwitz spaces were introduced and studied in substantial details by Clebsch
[5] and Hurwitz [13] at the end of the 19-th century as a tool for investigation of the
moduli spaceMg of genus g curves.

Proposition 1.1 allows us to introduce the planarity stratiûcation ofHg ,d :

(1.2) H
m(g ,d)
g ,d ⊂H

m(g ,d)+1
g ,d ⊂ ⋅ ⋅ ⋅ ⊂H

M(g ,d)
g ,d =Hg ,d ,

where H l
g ,d consists of all meromorphic functions in Hg ,d whose planarity defect

does not exceed l . Herem(g , d) (resp. M(g , d)) is theminimal (resp. maximal) value
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of the planarity defect for degree d meromorphic functions with all simple branching
points on curves of genus g.

We present some information about this stratiûcation.

Proposition 1.8 For any pair (g , d) where g ≥ 0 and d ≥ 2,

(1.3) m(g , d) = min
l≥0

(d + l − 1
2

) − ( l
2
) ≥ g ,

which gives

(1.4) m(g , d) = max (0, ⌈
g − (d−1

2 )
d − 1

⌉) .

Moreover, the following result holds.

_eorem 1.9 In the above notation, given g , d, and l ≥ m(g , d), the stratumH l
g ,d is

irreducible and its dimension is given by

(1.5) dimH l
g ,d = min (3d + g + 2l − 4, 2d + 2g − 2).

_e substantial part of the proof of _eorem 1.9 consists of the following general-
ization of the famous result by J. Harris [11] showing that the space of plane curves
of genus g and degree d where g ≤ (d−1

2 ) is an irreducible variety whose dense sub-
set consists of nodal curves of genus g (irreducibility of the Severi varieties). Fixing
as above a point p ∈ CP2, denote by Sg ,d , l the variety of reduced irreducible plane
curves of degree d having genus g and order l at p, where g ≤ (d+l−1

2 ) − ( l
2). (_e

order of a plane curve at a given point is the multiplicity of its local intersection at p
with a generic line passing through p.) Denote byWg ,d , l ⊂ Sg ,d , l its subset consisting
of curves having an ordinary singularity of order l at p (i.e., transversal intersection
of l smooth local branches) and only usual nodes outside p.

_eorem 1.10 (i) Wg ,d , l is a smooth manifold of dimension 3d + g + 2l − 1.
(ii) Wg ,d , l is dense in Sg ,d , l .
(iii) Sg ,d , l is irreducible.

_e main result of [11] is the proof of the same statement in the basic case l = 0.
_eorem 1.10 follows from already known results of Z. Ran [19] and I. Tyomkin [21].
We ûrst prove Proposition 1.8 and_eorem 1.10 followed by _eorem 1.9.

Lemma 1.11 _e genus of a plane curve decreases by at least ( l
2) by a singularity of

order l . Moreover the ordinary singularity of order l decreases the genus by exactly ( l
2).

Proof _e following algorithm describes by which number the genus of a plane
curve of degree d is decreased due to a singularity of order l .
Step 1 Subtract ( l

2) from (d−1
2 ).

Step 2 Blow up the singularity in the plane. _e strict transform of the curve will
intersect the exceptional divisor at l points (counting multiplicities). If each
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of these (geometrically distinct) points is smooth on the strict transform, then
the genus drops by exactly ( l

2).
Step 3 If among these points there exist singular points, we have to repeat the previous

step, i.e., if the order of singularity is s, then we decrease the genus by (s
2), then

we blow up this point etc.
A�er ûnitely many such steps the curve becomes smooth. (Further blow-ups will

not change the genus.) _us the minimal decrease of genus equals ( l
2).

Proof of Proposition 1.8 _e necessity of (1.3) is obvious. Indeed, we need to con-
struct a plane curve of degree d + l such that it has a singularity of order l at p (so
that its projection from p will be a covering of degree d) and has a genus of normal-
ization equal to g. Having a singularity of order l at p decreases the genus by at least
( l
2) compared to (d+l−1

2 ), which is the genus of a smooth curve of degree d + l ; see
Lemma 1.11. _us, inequality (1.3) must be satisûed. To show that the least value of l
satisfying (1.3) is enough, consider ûrst a conûguration of l generic lines through p
and additionally d lines in CP2 in general position. _is curve has genus 0. A slight
deformation of this curve by a polynomial vanishing up to order l + 1 at p will resolve
all nodes outside p and given g = minl≥0 (d+l−1

2 ) − ( l
2). A more careful deformation

will resolve any number of nodes between 0 and (d2); see the proof of _eorem 1.10.
_e classical case g ≤ (d−1

2 ) is well presented in [10, Appendix E] and the general case
in [19].

We will need some information about the Hirzebruch surfaces and the Severi vari-
eties on them. For a given non-negative integer n, let Σn = Proj(OCP1 ⊕OCP1(n)) be
the Hirzebruch surface and let κ∶Σn → CP1 be the natural projection. Consider two
non-zero sections (1, 0), (0, σ) ∈ H0(CP1 ,OCP1 ⊕OCP1(n)). _ey deûne the maps

CP1 ∖ Z(σ) → Σn ,

whereZ(σ) is the zero locus of σ . We denote the closures of the images of these maps
by L0 and L∞, respectively. (It is clear that the homological class of L∞ is independent
of the choice of σ .) _e following facts are standard.

Proposition 1.12 (i) _e Picard group Pic(Σn) is a free abelian group generated
by the classes F and L∞, where F denotes the ûber of projection κ. (Observe that
L0 = nF + L∞.)

(ii) _e intersection form on Pic(Σn) is given by F2 = 0, L2
∞
= −n, and F ⋅ L∞ = 1.

(iii) Any eòective divisor M ∈ Div(Σn) is linearly equivalent to a linear combination
of F and L∞ with non-negative coeõcients. Moreover, if M does not contain L∞,
then it is linearly equivalent to a combination of F and L0 with non-negative co-
eõcients.

(iv) _e canonical class is given by

KΣn = −(2L∞ + (2 + n)F) = −(L0 + L∞ + 2F).

(v) Any smooth curve C with the class dL0 + kF has genus g(C) = (d−1)(dn+2k−2)
2 .
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Let g , d , k be non-negative integers. We deûne the Severi variety

Vg ,d ,k ⊆ ∣OΣn(sL0 + kF)∣
to be the closure of the locus of reduced nodal curves of genus g that do not contain
L∞, and we deûne V irr

g ,d ,k ⊂ Vg ,d ,k to be the union of the irreducible components
whose generic points correspond to irreducible curves.

_e main result of [21, _eorem 3.1] is as follows.

_eorem 1.13 For any triple g , k, d of non-negative integers, the variety V irr
g ,d ,k ⊂

Vg ,d ,k (if non-empty) is irreducible and of expected dimension.

Proof of_eorem 1.10 Let us ûrst naively count the expected dimension of Sg ,d , l .
Indeed, the dimension of the space Sg ,d , l of plane curves of degree d + l with a singu-
larity at p of order l equals (d+l)(d+l+3)

2 −(l+1
2 ). _e number of nodes on such a curve

under the assumptions that it has genus g equals

(1.6) ♯nodes = (d+l−1
2 ) − ( l

2) − g .
Assuming that each node decreases the dimension by 1, we get

expdim Sg ,d , l = 3d + g + 2l − 1.

We ûnish our proof with a reference to _eorem 1.13. Indeed, if one blows up
the point p ∈ CP2, then one gets the ûrst Hirzebruch surface Σ1. Observe that plane
curves of degree d+ l having a singularity of order l at pwill a�er the blow-up lie in the
class (d + l)L0 − lL∞ = dL0 + lF. _erefore, the above set Wg ,d , l of irreducible plane
curves having the singularity of order l at the point p a�er this blow-upwill transform
into the space V irr

g ,d , l in the above notation. (We consider only the strict transform
of each curve disregarding the exceptional divisor.) _us, by the latter theorem, the
variety Sg ,d , l is irreducible and of expected dimension. Another proof of essentially
the same result directly in the planeCP2 can be found in [19, Irreducibility_eorem,
p. 122].

Observe that, ûxing a point p ∈ CP2, there exists a three-dimensional group Gp ⊂
PGL3 of projective transformations preserving p as well as the pencil of lines through
p. In other words, each line through p will be mapped to itself. Obviously Gp acts on
plane curves and curves from the same orbit deûne equivalent branched coverings of
CP1 obtained by projection from p.

Proof of_eorem 1.9 To settle this theoremweneed to prove that curves from Sg ,d , l

that give equivalent branched coverings ofCP1 when projecting from p do not appear
in families of Gp-orbits. If this is true, then dimH l

g ,d = dim Sg ,d , l − 3.
Let (as above) Sg ,d , l be the Severi variety of all plane curves of degree d + l , genus

g and ordinary singularity of order l at point p. Let H(g , d) be the Hurwitz space of
all branched coverings of degree d and genus g. (Observe that, in general, H(g , d)
is diòerent from Hg ,d , which only includes branching coverings with only simple
branching points.) Let B∶ Sg ,d , l → H(g , d) be the map sending each plane curve
Γ ∈ Sg ,d , l to the branched covering of CP1 whose source is the normalization N of Γ
and which is obtained by projecting Γ from the point p.
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Proposition 1.14 _e dimension of the ûber of the above map over a branched cov-
ering f ∶N → CP1, where N is the normalization of a generic curve Γ ∈ Sg ,d , l equals
h0(N ,ON(E)). Here E is the divisor of degree d + 2l on N obtained as the pull-back of
p together with the pull-back of the intersection of Γ with a general line inCP2. (For an
arbitrary curve Γ ∈ Sg ,d , l , the dimension of the ûber is at most h0(N ,ON(E)).)

(Observe that since B∶ Sg ,d , l → H(g , d) is a smooth map at a generic curve Γ ∈
Sg ,d , l , the dimension of a generic ûber is well deûned.)

Proof Let π∶Σ1 → CP2 be the standard projection of the ûrst Hirzebruch surface Σ1
obtained by the blow-up of the point p to CP2. We have natural maps

N
ϕ
//

f

  

Σ1

��

CP1

and exact sequences

(1.7) 0 // TN // ϕ⋆TΣ1
//

��

Nϕ //

��

0

0 // TN // f ⋆TCP1 // N f // 0,

whereN f (resp.Nϕ) is the normal sheaf of f (resp. ϕ), i.e.,N f = Coker(TN → f ∗TCP1)
(resp. Nϕ = Coker(TN → ϕ∗TΣ1 ). It is known that

Def 1(N , ϕ) = H0(N ,Nϕ) and Def 1(N , f ) = H0(N ,N f )

are the tangent spaces to the space of deformations of the pairs (N , ϕ) and (N , f ) re-
spectively. _e ûrst one is the tangent space to the Severi variety if ϕ is an immersion;
the second one is the tangent space to the Hurwitz space. Sequence (1.7) implies that
the kernels α∶ ϕ⋆TΣ1 → f ⋆TCP1 and Nϕ → N f coincide, since ϕ⋆TΣ1 ↠ f ⋆TCP1 . Since
the CP1-bundle Σ1 → CP1 admits two non-intersecting sections (the line L and the
inverse image of p in Σ1), Ker α = ϕ⋆OΣ1(L + π−1(p)).

For a small number of nodes compared to the degree of the irreducible plane curve,
_eorem 1.9 is immediate from the following fact; see [2, Exercise 20(iii), § 1, Appen-
dix A, Ch. 1]. (Moreover a stronger statement is valid.) It claims that if the number δ
of nodes of an irreducible plane nodal curve Γ ⊂ CP2 of degree d satisûes the inequal-
ity δ < d − 3, then the linear system g2

d cut out on Γ by lines is complete and unique
on the normalization N of Γ. _is fact immediately implies that under the above as-
sumptions two plane curves whose normalizations are isomorphic will be projectively
equivalent. _en for degree at least 4 it will be straightforward that if the isomorphism
of their normalizations is induced by the equivalence of the meromorphic functions
obtained by projection from the same point p, then the projective transformation re-
alizing this equivalence belongs toGp , see the proof of Proposition 2.1. In general, one
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should show that for a generic curve Γ ∈ Sg ,d , l , one has h0(N ,ON(E)) = 3. _is fact
is also valid and will appear in a forthcoming publication by the second author.

Corollary 1.15 Given g , d as above,

(1.8) M(g , d) = max (0, ⌈ g − d + 2
2

⌉) .

In particular, m(g , d) = M(g , d) = 0 if and only if d ≥ g + 2.

Proof _eorem 1.9 implies that M(g , d) equals the minimal non-negative integer l
for which

3d + g + 2l − 4 ≥ 2d + 2g − 2 ⇐⇒ 2l ≥ g − d + 2.

_e latter inequality implies that M(g , d) = max (0, ⌈ g−d+2
2 ⌉). _is formula shows

that M(g , d) = 0 if and only if d ≥ g + 2.

Corollary 1.16 _e planarity stratiûcation ofHg ,d consists of one term in the follow-
ing two cases. Either d ≥ g + 2 in which case the planarity defect vanishes, or d = 3, in
which case the planarity defect equals ⌈ g−1

2 ⌉.

Proof We have that Hg ,d consists of one term if and only if m(g , d) = M(g , d). By
Proposition 1.8 and_eorem 1.9 (unless M(g , d) vanishes, which happens if and only
if d ≥ g + 2) this corresponds to the case when

⎡⎢⎢⎢⎢⎢

g − (d−1
2 )

d − 1

⎤⎥⎥⎥⎥⎥
= ⌈ g − d + 2

2
⌉ .

If d > 3, then the denominator of the le�-hand side is smaller than that of the right-
hand side, and the numerator of the le�-hand side is bigger than that of the right-hand
side, which means that the equality never holds. For d = 3 the le�-hand side and the
right-hand side coincide giving the planarity defect equal to ⌈ g−1

2 ⌉.

1.2 Stratification of Hurwitz Spaces with One Complicated Branching Point

Analogously to the above, given a partition µ = (µ1 ≥ µ2 ≥ ⋅ ⋅ ⋅ ≥ µn) ⊢ d of a positive
integer d , let

Hg ,µ = { f ∶C→ CP1∣ f has all simple branched points except at∞

whose proûle is given by µ, deg f = d ≥ 2, gen(C) = g ≥ 0}
the Hurwitz space of all degree d functions on genus g curves with one complicated
branching point at∞having a given proûle µ. Recall that dimHg ,µ equals the number
of simple branching points of a function from Hg ,µ and is given by the formula

dimHg ,µ = 2d + 2g − 2 −
n
∑
i=1

(µ i − 1).

Proposition 1.1 allows us to introduce the planarity stratiûcation ofHg ,µ :

(1.9) H
m(g ,µ)
g ,µ ⊂H

m(g ,µ)+1
g ,µ ⊂ ⋅ ⋅ ⋅ ⊂H

M(g ,µ)
g ,µ =Hg ,µ .
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HereH l
g ,µ consists of all meromorphic functions in Hg ,µ whose defect does not ex-

ceed l . Observe that by Lemma 1.4, M(g , µ) ≤ d + 2.

Proposition 1.17 For any pair (g , µ ⊢ d), where g ≥ 0 and d ≥ 2,

(1.10) m(g , µ) = min
l≥0

(d + l − 1
2

) − ( l
2
) ≥ g ,

which gives

m(g , µ) = ⌈
g − (d−1

2 )
d − 1

⌉ .

(Observe that m(g , µ) = m(g , d), given by (1.3).)

Proof By deûnition the stratum H
m(g ,µ)
g , u should lie in at least Hm(g ,d)

g ,d or, possibly
in the higher strata of the planarity stratiûcation ofHg ,d . _erefore,m(g , µ) is at least
equal to the minimal l given by the right-hand side of (1.10). _e fact that m(g , µ) is
exactly equal to the minimal l satisfying the latter condition is explained in the proof
of _eorem 1.18.

We have the following result above the dimensions of the strata of (1.9).

_eorem 1.18 In the above notation, given g , d, and l ≥ m(g , µ), the stratum H l
g ,µ

is equidimensional and its dimension is given by:

dimH l
g ,µ = min (3d + g + 2l − 4 −

n
∑
i=1

(µ i − 1), 2d + 2g − 2 −
n
∑
i=1

(µ i − 1)) .

Proof _eorem 1.18 follows directly from Lemmas 1.19 and 1.20.

Fix a �ag p ∈ L0 ⊂ CP2, positive integers g , d , l , and a partition µ ⊢ d. Consider
the locus V ⊂ ∣O2

CP(d + l)∣ of plane curves C such that: (1) degC = d + l ; (2) C is
reduced and irreducible; (3) multpC = l ; (4) pg(C) = g; (5) κ−1L0 = ∑i µ iq i where
κ∶N → C is the normalization map.
Again, let Σ1 = BlpCP2 be the ûrst Hirzebruch surface obtained by the blow-up

of CP2 at p. Let F0 ⊂ Σ1 be the strict transform of L0, and let F be the class of F0.
Denote by L ⊂ Σ1 the class of the preimage of a general line in CP2, and denote by
E ⊂ Σ1 the exceptional divisor. _en V can be identiûed with the locus of curves
C ∈ ∣OΣ1((d + l)L − lE)∣ = ∣OΣ1(dL + lF)∣ such that (i) C is reduced and irreducible;
(ii) pg(C) = g; (iii) κ−1F0 = ∑i µ iq i . (Here pg(C) is the geometric genus.)

Let V1 ⊂ V be an irreducible component of V .

Lemma 1.19 dimV1 ≥ expdimV1 ∶= −KΣ1 ⋅ C + g − 1 −∑n
i=1(µ i − 1).

Proof Let o ∈ V1 be a general point and let Co be the corresponding curve. By
[14, Lemma A.3] there exists a neighborhood W of o ∈ V1 over which the family
CW → W is equinormalizable, i.e., if NW → CW is the normalization, then for
all a ∈ W , (NW)a → (CW)a = Ca is the normalization. _us dimV1 is equal to
the dimension of (a component of) the deformation space of f ∶N0 → Σ1 satisfy-
ing condition (iii). Notice that condition (iii) has codimension less than or equal to
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∑n
i=1(µ i − 1) in the space of all deformations of the pair (N0 , f0). _us, it suõces to

show that (any component of) Def(N0 , f0) has dimension at least −KΣ1 ⋅ C + g − 1.
By the standard deformation theory, any component of the latter space has dimen-
sion ≥ dimDef ′(N0 , f0) − dimOb(N0 , f0). In our case Def ′(N0 , f0) = H0(N0 ,N f0)
and Ob(N0 , f0) = H1(N0 ,N f0) where N f0 is the normal sheaf of f0, i.e., N f0 =
Coker(TN0 → f ∗0 TΣ1). _is implies the statement, since h0(N0 ,N f0)− h1(N0 ,N f0) =
χ(N0 ,N f0) = −KΣ1 ⋅ C + g − 1 by the Riemann–Roch theorem.

Lemma 1.20 dimV1 ≤ expdimV1.

Proof If dimV1 > expdimV1, then there exists a conûguration of n points on F0
such that {C ∈ V1∣C ∩ F0 = given conûguration} has dimension greater than −KΣ1 ⋅
C + g − 1 −∑n

i=1(µ i − 1) − n = −KΣ1 ⋅ C + g − 1 − F0 ⋅ C, which is a contradiction with
[21, Lemma 2.9].

Corollary 1.21 Given g , µ as above,

Mg ,µ = max (0, ⌈ g − d + 2
2

⌉) .

In particular, mg ,µ = Mg ,µ = 0 if and only if d = ∑i=1 µ i ≥ g + 2.

Proof See the proof of Corollary 1.15.

Stratiûcation (1.2) is (almost) the special case of (1.9), the diòerence being that one
simple branching point is placed at∞.

Remark 1.22 According to the information the second author obtained from I. Ty-
omkin, he can prove that each stratumH l

g ,µ is irreducible for g = 0 and g = 1, and he
has an idea of the proof for other genera if µ ⊢ d is not very complicated. Whether
H l

g ,µ could be irreducible for an arbitrary partition µ is unclear at present and might
be a diõcult problem.

2 Hurwitz Numbers of the Planarity Stratification and Zeuten-type
Problems

Due to irreducibility of strata of (1.2) and equidimensionality of strata of (1.9) we can
introduce the correspoding notion of Hurwitz numbers related to these strata. Recall
that the branching morphism

δg ,d ∶Hg ,d Ð→ CP2d+2g−2 ∖ ∆

is, by deûnition, the map sending a meromorphic function f to the unordered set of
its branching points (which are distinct by deûniton). Here, ∆ ⊂ CP2d+2g−2 is the
hypersurface of unordered (2d + 2g − 2)-tuples of points in CP1, where not all of
them are pairwise distinct. It is well known that δg ,d is a ûnite covering and its degree
hg ,d is called the (small) Hurwitz number. In particular, for g = 0 the corresponding
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Hurwitz number h0,d equals (2d − 2)!dd−3. In general, however, closed formulas for
hg ,d (as well as for many other Hurwitz numbers) are unknown.
Analogously, the branching morphism

δg ,µ ∶Hg ,µ → Cwµ ∖ ∆

is, by deûnition, the map sending ameromorphic function f ∈Hg ,µ to the unordered
set of its simple branching points (which are distinct by deûniton). Here, ∆ ⊂ Cwµ is
the hypersurface of unordered wµ-tuples of points in C where not all of them are
pairwise distinct and wµ = 2d + 2g − 2 −∑n

i=1(µ i − 1). It is well known that δg ,µ is a
ûnite covering and its degree hg ,µ is called the single Hurwitz number. In particular,
for g = 0 the corresponding Hurwitz number h0,µ equals

(d + n − 2)!
n
∏
i=1

µµ i
i

µ i !
dn−3 .

Stratiûcations (1.2)–(1.9) allow us to introduce Hurwitz numbers that take into ac-
count these ûltrations. Before we introduce this notion in general, let us start with a
motivating example.

Example Recall that, ûxing a point p ∈ CP2, we have a three-dimensional group
Gp ⊂ PGL3 of projective transformations preserving p as well as the pencil of lines
through p. Obviously, for d > 1,Gp acts (locally) freely on the space Sd ,p of all smooth
plane curves of degree d not passing through p. _e following simple statement holds.
As usual, two meromorphic functions f1∶C1 → CP1 and f2∶C2 → CP1 are called

equivalent if there exists an isomorphism is∶C1 → C2 such that f2 ○ is = f1.

Proposition 2.1 Suppose that C1 ,C2 ⊂ CP2 are smooth projective curves of degree
at least 4 not passing through p. _en the meromorphic functions πpC1 and πpC2 are
equivalent if and only if there exists an isomorphism is ∈ Gp such that is(C1) = C2.

Proof _e “if ” part being obvious, suppose that πpC1 and πpC2 are equivalent and
that this equivalence is performed by the isomorphism is∶C1 → C2. For each line ℓ ∋ p,
the isomorphism is maps C1 ∩ ℓ to C2 ∩ ℓ; thus, is maps hyperplane sections of C1 to
hyperplane sections ofC2. Since bothC1 andC2 are embedded inCP2 by the complete
linear system of plane sections, this implies that is is a projective automorphism, i.e.,
is ∈ PGL3. It remains to check that is ∈ Gp ; to that end, consider a generic ℓ ∋ p; this
line intersects C at d = degC > 1 points p1 , . . . , pd , and these points are mapped by
is to d distinct points on ℓ. So, is(ℓ) = ℓ for the generic (whence for any) ℓ ∋ p. If
ℓ1 , ℓ2 ∋ p, then

is(p) = is(ℓ1 ∩ ℓ2) = is(ℓ1) ∩ is(ℓ2) = ℓ1 ∩ ℓ2 = p,

which completes the proof.

Denote by hd the number of diòerent 3-dimensional orbits of the above action on
the space Sd ,p with the same set of d(d− 1) tangent lines (e.g., branching points of the
projection).
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Example One can easily observe that h2 = 2, h3 = 40 (which are the usual Hurwitz
numbers for degree d and genus (d−1

2 )). But beginning with d = 4, the situation
changes. So far the only calculated non-trivial example is d = 4 (see [22, 23]) for
which h4 = 120 × (310 − 1). Numbers hd for d > 4 are unknown at present.

Observe a straightforward analogy of the calculation of hd with (a special case) of
the classical Zeuten’s problem; see [1, 24]. Namely, given d ≥ 2 and 0 ≤ k ≤ d(d+3)

2
deûne the number Nk(d) as the number of smooth plane curves of degree d passing
through k points in general position and tangent to d(d+3)

2 −k lines in general position.
In [24] H. G. Zeuten predicted these numbers for d up to 4. His predictions were
rigorously proven only about twenty years ago; see [1] and references therein. _e
above problem of calculation of hd is similar to Zeuten’s problem for k = d(d+3)

2 . But
instead of taking d(d+3)

2 generic lines we should take d(d+3)
2 − 3 generic lines through

a given point p and count the number of 3-dimensional orbits under the action ofGp .

Deûnition 2.2 Introduce the Hurwitz number hl
g ,µ as the degree of the restric-

tion of the morphism δg ,µ to the (irreducible component of the) stratumH l
g ,µ where

m(g , µ) ≤ l ≤ M(g , µ).

By deûnition, we have hM(g ,µ)
g ,µ = hg ,µ . Also, the number hd introduced above

equals h0
(d−1)(d−2)/2,1d .

3 Final Remarks

(1) It would be very interesting to prove/disprove the irreducibility of the strataH l
g ,µ .

(2) It is important to develop tools that help to calculate the Hurwitz numbers of
H l

g ,d and/or H
l
g ,µ due to the fact that they are naturally related to Zeuten-type

problems. In the case of the usual single Hurwitz numbers there exists a stan-
dard combinatorial approach to their calculation that is not always very useful
for practical computations but is theoretically important. Other standard tools
for the usual Hurwitz numbers are the cut-and-join equation (see e.g., [8]) and
the ELSV-formula (see e.g., [7]). It might be possible to ûnd analogs of the latter
tools by using an appropriate compactiûcation of the above strata similar to those
already existing in the literature.

(3) Another approach to the calculation of the Hurwitz strata of the planarity ûltra-
tion might come from the correspondence theorem in tropical algebraic geom-
etry. Recently in [3] the authors developed some tropical tools for ûnding the
answers to a similar class of Zeuten-type problems.

(4) Finally, we want to mention a recent preprint [4], which gives a criterion when
meromorphic functions of degree d on a certain class of plane curves of degree
d with only nodes and some additional non-degeneracy assumptions might be
realized by a projection from a point outside the curve.

Acknowledgments We want to thank O. Bergvall and S. Shadrin for discussions,
and especially I. Tyomkin for his explanations of [21] and his help with the proofs
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