Canad. Math. Bull. Vol. 59 (4), 2016 pp. 813–823 http://dx.doi.org/10.4153/CMB-2016-042-2 © Canadian Mathematical Society 2016

A Classification of Three-dimensional Real Hypersurfaces in Non-flat Complex Space Forms in Terms of their Generalized Tanaka–Webster Lie Derivative

George Kaimakamis, Konstantina Panagiotidou, and Juan de Dios Perez

Abstract. On a real hypersurface M in a non-flat complex space form there exist the Levi–Civita and the k-th generalized Tanaka–Webster connections. The aim of this paper is to study three dimensional real hypersurfaces in non-flat complex space forms, whose Lie derivative of the structure Jacobi operator with respect to the Levi–Civita connection coincides with the Lie derivative of it with respect to the k-th generalized Tanaka-Webster connection. The Lie derivatives are considered in direction of the structure vector field and in direction of any vector field orthogonal to the structure vector field.

1 Introduction

A *complex space form* is an n-dimensional Kähler manifold of constant holomorphic sectional curvature c. A complete and simply connected complex space form is analytically isometric to a complex projective space $\mathbb{C}P^n$ if c>0, a complex Euclidean space \mathbb{C}^n if c=0, or a complex hyperbolic space $\mathbb{C}H^n$ if c<0. Furthermore, the complex projective and complex hyperbolic spaces are called *non-flat complex space forms*, and the symbol $M_n(c)$, $n\geq 2$, is used to denote them when it is not necessary to distinguish them.

Let M be a connected real hypersurface of $M_n(c)$ without boundary. Let ∇ be the Levi–Civita connection on M and J the complex structure of $M_n(c)$. Take a locally defined unit normal vector field N on M and denote it by $\xi = -JN$. This is a tangent vector field to M called the *structure vector field* on M. If it is an eigenvector of the shape operator A of M, the real hypersurface is called a *Hopf hypersurface* and the corresponding eigenvalue is $\alpha = g(A\xi, \xi)$. Moreover, the complex structure J induces on M an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is the tangential component of J and η is an one-form given by $\eta(X) = g(X, \xi)$ for any X tangent to M.

The classification of homogeneous real hypersurfaces in $\mathbb{C}P^n$, $n \ge 2$, was obtained by Takagi, and they were divided into six type of real hypersurfaces (see [13–15]).

Received by the editors January 28, 2016; revised May 29, 2016.

Published electronically August 19, 2016.

AMS subject classification: 53C15, 53B25.

Keywords: k-th generalized Tanaka–Webster connection, non-flat complex space form, real hypersurface, Lie derivative, structure Jacobi operator.

Among them the three dimensional real hypersurfaces in $\mathbb{C}P^2$ are geodesic hyperspheres of radius r, $0 < r < \frac{\pi}{2}$, which are called *real hypersurfaces of type* (A) and tubes of radius r, $0 < r < \frac{\pi}{4}$, over the complex quadric, which are called *real hypersurfaces of type* (B). All of them are Hopf hypersurfaces with constant principal curvatures (see [6]). In case of $\mathbb{C}H^n$, the study of Hopf hypersurfaces with constant principal curvatures, was initiated by Montiel in [8] and completed by Berndt in [1]. Such hypersurfaces in $\mathbb{C}H^2$ are open subsets of horospheres, geodesic hyperspheres, or tubes over totally geodesic complex hyperbolic hyperplane $\mathbb{C}H^1$ (type (A)), or tubes over totally geodesic real hyperbolic space $\mathbb{R}H^2$ (type (B)).

The *Jacobi operator* R_X of a Riemannian manifold M with respect to a unit vector field X is given by $R_X = R(\cdot, X)X$, where R is the curvature tensor field on \widetilde{M} . It is a self-adjoint endomorphism of the tangent space $T\widetilde{M}$ and is related to Jacobi vector fields, which are solutions of the second-order differential equation $\nabla_{\dot{\gamma}}(\nabla_{\dot{\gamma}}Y) + R(Y,\dot{\gamma})\dot{\gamma} = 0$ along a geodesic γ in \widetilde{M} (known as the Jacobi equation). In the case of real hypersurfaces in $M_n(c)$ the Jacobi operator with respect to the structure vector field ξ , R_{ξ} , is called the *structure Jacobi operator* on M and it plays an important role their study.

Apart from the Levi–Civita connection on a non-degenerate, pseudo-Hermitian CR-manifold, a canonical affine connection is defined, called the *Tanaka–Webster connection* (see [16, 18]). As a generalization of this connection, Tanno [17] defined the *generalized Tanaka-Webster connection* for contact metric manifolds by

$$\widehat{\nabla}_X Y = \nabla_X Y + (\nabla_X \eta)(Y) \xi - \eta(Y) \nabla_X \xi - \eta(X) \phi Y.$$

Using the naturally extended affine connection of Tanno's generalized Tanaka–Webster connection, Cho defined the k-th generalized Tanaka–Webster connection $\widehat{\nabla}^{(k)}$ on a real hypersurface M in $M_n(c)$ given by

$$\widehat{\nabla}_{X}^{(k)}Y = \nabla_{X}Y + g(\phi AX, Y)\xi - \eta(Y)\phi AX - k\eta(X)\phi Y$$

for any vector fields X, Y tangent to M where k is a nonnull real number (see [2, 3]). Then the following relations hold:

$$\widehat{\nabla}^{(k)}\eta=0,\quad \widehat{\nabla}^{(k)}\xi=0,\quad \widehat{\nabla}^{(k)}g=0,\quad \widehat{\nabla}^{(k)}\phi=0.$$

In particular, if the shape operator of a real hypersurface satisfies $\phi A + A\phi = 2k\phi$, the k-th generalized Tanaka-Webster connection coincides with the Tanaka-Webster connection.

The Lie derivative of a tensor field T of type (1,1) with respect to the generalized Tanaka–Webster connection is denoted by $\widehat{\mathcal{L}}_X^{(k)}T$, called k-th generalized Tanaka–Webster Lie derivative with respect to X and is given by

$$\big(\widehat{\mathcal{L}}_X^{(k)}T\big)Y = \widehat{\nabla}_X^{(k)}TY - \widehat{\nabla}_{TY}^{(k)}X - T\widehat{\nabla}_X^{(k)}Y + T\widehat{\nabla}_Y^{(k)}X,$$

where X, Y are tangent to M.

Many geometric conditions with respect to the k-th generalized Tanaka-Webster connection on real hypersurfaces have been studied. One of them is the classification of real hypersurfaces in $M_n(c)$, $n \ge 2$, whose k-th generalized Tanaka-Webster Lie derivative agrees with the ordinary Lie derivative when applied to the tensor field T

of type (1,1), *i.e.*, $(\widehat{\mathcal{L}}_X^{(k)}T)Y = (\mathcal{L}_XT)Y$, for all X, Y tangent to M. Because of (1.1), the last relation implies

(1.2)
$$g((\phi A + A\phi)X, TY)\xi - (\phi A - k\phi)(X \wedge TY)\xi =$$
$$g((\phi A + A\phi)X, Y)T\xi - T(\phi A - k\phi)(X \wedge Y)\xi,$$

and the wedge product is given by

$$(X \wedge Y)Z = g(Y,Z)X - g(X,Z)Y,$$

for all X, Y Z tangent to M.

Real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, whose structure Jacobi operator satisfies relation $\widehat{\mathcal{L}}_{\xi}^{(k)}R_{\xi} = \mathcal{L}_{\xi}R_{\xi}$ are classified. Furthermore, the non-existence of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, whose structure Jacobi operator satisfies relation $\widehat{\mathcal{L}}_{X}^{(k)}R_{\xi} = \mathcal{L}_{X}R_{\xi}$, for any X orthogonal to ξ is proved.

The purpose of this paper is to extend the previous results to the case of three dimensional real hypersurfaces in $M_2(c)$. First, we study real hypersurfaces in $M_2(c)$ satisfying relation

$$\widehat{\mathcal{L}}_{\xi}^{(k)} R_{\xi} = \mathcal{L}_{\xi} R_{\xi}$$

and obtain the following theorem.

Theorem 1.1 Every real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation (1.3) is a Hopf hypersurface. Moreover, M is locally congruent either to a real hypersurface of type (A), or to a Hopf hypersurface with $A\xi = 0$.

Next we study three dimensional real hypersurfaces in $M_2(c)$, whose structure Jacobi operator satisfies relation

$$\widehat{\mathcal{L}}_X^{(k)} R_{\xi} = \mathcal{L}_X R_{\xi}$$

for all *X* orthogonal to ξ , and the following theorem is proved.

Theorem 1.2 There do not exist real hypersurfaces in $M_2(c)$ whose structure Jacobi operator satisfies relation (1.4).

The following corollary is an immediate consequence of the above theorems.

Corollary 1.3 There do not exist real hypersurfaces in $M_2(c)$ such that $\widehat{\mathcal{L}}_X^{(k)} R_{\xi} = \mathcal{L}_X R_{\xi}$, for all $X \in TM$.

This paper is organized as follows. Section 2 includes basic results about real hypersurfaces in non-flat complex space forms. Section 3 provides the proof of Theorem 1.1. Finally, in Section 4, the proof of Theorem 1.2 is given.

2 Preliminaries

Throughout this paper, all manifolds, vector fields etc. are assumed to be of class C^{∞} , all manifolds are assumed to be connected, and the real hypersurfaces M are supposed

to be without boundary. Furthermore, all the material mentioned in this section is valid for all real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ without regard to the Lie derivative conditions.

Thus, let M be a real hypersurface immersed in a non-flat complex space form $(M_n(c), G)$ with complex structure J of constant holomorphic sectional curvature c, let N be a locally defined unit normal vector field on M, and let $\xi = -JN$ be the structure vector field of M. For a vector field X tangent to M, relation

$$JX = \phi X + \eta(X)N$$

holds, where ϕX and $\eta(X)N$ are respectively the tangential and the normal component of JX. The Riemannian connections $\overline{\nabla}$ in $M_n(c)$ and ∇ in M are related for any vector fields X, Y on M by

$$\overline{\nabla}_X Y = \nabla_X Y + g(AX, Y)N,$$

where g is the Riemannian metric induced from the metric G.

The *shape operator* A of the real hypersurface M in $M_n(c)$ with respect to N is given by

$$\overline{\nabla}_X N = -AX$$
.

The real hypersurface M has an almost contact metric structure (ϕ, ξ, η, g) induced from J of $M_n(c)$, where ϕ is the *structure tensor*, which is a tensor field of type (1,1) and η is an 1-form such that

$$g(\phi X, Y) = G(JX, Y),$$
 $\eta(X) = g(X, \xi) = G(JX, N).$

Moreover, the following relations hold:

$$\begin{split} \phi^2 X &= -X + \eta(X)\xi, \quad \eta \circ \phi = 0, \quad \phi \xi = 0, \quad \eta(\xi) = 1, \\ g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y), \quad g(X, \phi Y) = -g(\phi X, Y). \end{split}$$

The fact that *J* is parallel implies $\overline{\nabla} J = 0$, and this leads to

$$\nabla_X \xi = \phi A X$$
, $(\nabla_X \phi) Y = \eta(Y) A X - g(A X, Y) \xi$.

The ambient space $M_n(c)$ is of constant holomorphic sectional curvature c, and this results in the Gauss and Codazzi equations being respectively given by

(2.1)

$$\begin{split} R(X,Y)Z \\ &= \frac{c}{4} \Big[g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z \Big] \\ &+ g(AY,Z)AX - g(AX,Z)AY, \\ (\nabla_X A)Y - (\nabla_Y A)X &= \frac{c}{4} \big[\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X,Y)\xi \big], \end{split}$$

where R denotes the Riemannian curvature tensor on M, and X, Y, Z are any vector fields on M.

The tangent space T_PM at every point $P \in M$ can be decomposed as

$$T_P M = \operatorname{span}\{\xi\} \oplus \mathbb{D},$$

where $\mathbb{D} = \ker \eta = \{X \in T_P M : \eta(X) = 0\}$ and is called (*maximal*) holomorphic distribution (if $n \geq 3$). Due to the above decomposition, the vector field $A\xi$ can be written as $A\xi = \alpha \xi + \beta U$, where $\beta = |\phi \nabla_{\xi} \xi|$ and $U = -\frac{1}{\beta} \phi \nabla_{\xi} \xi \in \ker(\eta)$ is a unit vector field, provided that $\beta \neq 0$.

Next, the following results concern any non-Hopf real hypersurface M in $M_2(c)$ with local orthonormal basis $\{U, \phi U, \xi\}$ at a point P of M.

Lemma 2.1 Let M be a non-Hopf real hypersurface in $M_2(c)$. The following relations hold on M:

$$(2.2) \quad AU = \gamma U + \delta \phi U + \beta \xi, \qquad A\phi U = \delta U + \mu \phi U, \qquad A\xi = \alpha \xi + \beta U$$

$$\nabla_U \xi = -\delta U + \gamma \phi U, \qquad \nabla_{\phi U} \xi = -\mu U + \delta \phi U, \qquad \nabla_{\xi} \xi = \beta \phi U,$$

$$\nabla_U U = \kappa_1 \phi U + \delta \xi, \qquad \nabla_{\phi U} U = \kappa_2 \phi U + \mu \xi, \qquad \nabla_{\xi} U = \kappa_3 \phi U,$$

$$\nabla_U \phi U = -\kappa_1 U - \gamma \xi, \qquad \nabla_{\phi U} \phi U = -\kappa_2 U - \delta \xi, \qquad \nabla_{\xi} \phi U = -\kappa_3 U - \beta \xi,$$

where $\alpha, \beta, \gamma, \delta, \mu, \kappa_1, \kappa_2, \kappa_3$ are smooth functions on M and $\beta \neq 0$.

Remark 2.2 The proof of Lemma 2.1 is included in [12].

Because of Lemma 2.1, the Codazzi equation for $X \in \{U, \phi U\}$ and $Y = \xi$ implies the following relations:

(2.3)
$$\xi \delta = \alpha \gamma + \beta \kappa_1 + \delta^2 + \mu \kappa_3 + \frac{c}{4} - \gamma \mu - \gamma \kappa_3 - \beta^2,$$

(2.4)
$$\xi \mu = \alpha \delta + \beta \kappa_2 - 2 \delta \kappa_3,$$

(2.5)
$$(\phi U)\alpha = \alpha\beta + \beta\kappa_3 - 3\beta\mu,$$

$$(2.6) \qquad (\phi U)\beta = \alpha \gamma + \beta \kappa_1 + 2\delta^2 + \frac{c}{2} - 2\gamma \mu + \alpha \mu,$$

and for X = U and $Y = \phi U$,

$$(2.7) U\delta - (\phi U)\gamma = \mu \kappa_1 - \kappa_1 \gamma - \beta \gamma - 2\delta \kappa_2 - 2\beta \mu.$$

Furthermore, the combination of the Gauss equation (2.1) with the formula for Riemannian curvature $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$, taking into account relations of Lemma 2.1, implies

$$(2.8) U\kappa_2 - (\phi U)\kappa_1 = 2\delta^2 - 2\gamma\mu - \kappa_1^2 - \gamma\kappa_3 - \kappa_2^2 - \mu\kappa_3 - c.$$

Relation (2.1) implies that the structure Jacobi operator R_{ξ} is given by

$$R_{\xi}(X) = \frac{c}{4} [X - \eta(X)\xi] + \alpha AX - \eta(AX)A\xi$$

for any vector field *X* tangent to *M* , where $\alpha = \eta(A\xi) = g(A\xi, \xi)$.

Moreover, the structure Jacobi operator for X = U, $X = \phi U$ and $X = \xi$ due to (2.2) is given by

(2.9)
$$R_{\xi}(U) = \left(\frac{c}{4} + \alpha y - \beta^{2}\right) U + \alpha \delta \phi U,$$

$$R_{\xi}(\phi U) = \alpha \delta U + \left(\frac{c}{4} + \alpha \mu\right) \phi U \quad \text{and} \quad R_{\xi}(\xi) = 0.$$

The following theorem in the case of $\mathbb{C}P^n$ is due to Maeda [7] and in the case of $\mathbb{C}H^n$ is due to Ki and Suh [5] (see also [10, Corollary 2.3]).

Theorem 2.3 Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 2$, with $A\xi = \alpha \xi$.

- (i) α is constant.
- (ii) If W is a vector field that belongs to \mathbb{D} such that $AW = \lambda W$, then

$$\left(\lambda - \frac{\alpha}{2}\right) A \phi W = \left(\frac{\lambda \alpha}{2} + \frac{c}{4}\right) \phi W.$$

(iii) If the vector field W satisfies $AW = \lambda W$ and $A\phi W = v\phi W$, then

(2.10)
$$\lambda v = \frac{\alpha}{2} (\lambda + v) + \frac{c}{4}.$$

Remark 2.4 In case of three dimensional Hopf hypersurfaces we can always consider a local orthonormal basis $\{W, \phi W, \xi\}$ at some point $P \in M$ such that $AW = \lambda W$ and $A\phi W = \nu \phi W$. Thus, relation (2.10) is satisfied. Furthermore, the structure Jacobi operator of Hopf hypersurfaces, whose shape operator is given by the previous relations for X = W and $X = \phi W$ is given by

(2.11)
$$R_{\xi}(W) = \left(\frac{c}{4} + \alpha\lambda\right)W \quad \text{and} \quad R_{\xi}(\phi W) = \left(\frac{c}{4} + \alpha\nu\right)\phi W.$$

We also mention the following theorem, which plays an important role in the study of real hypersurfaces in $M_n(c)$. This is due to Okumura [11] in the case of $\mathbb{C}P^n$ and to Montiel and Romero [9] in the case of $\mathbb{C}H^n$. It provides the classification of real hypersurfaces in $M_n(c)$, $n \ge 2$, whose shape operator A commutes with the structure tensor field ϕ .

Theorem 2.5 Let M be a real hypersurface of $M_n(c)$, $n \ge 2$. Then $A\phi = \phi A$, if and only if M is locally congruent to a homogeneous real hypersurface of type (A). More precisely:

In case of $\mathbb{C}P^n$:

- (A₁) a geodesic hypersphere of radius r, where $0 < r < \frac{\pi}{2}$,
- (A_2) a tube of radius r over a totally geodesic $\mathbb{C}P^k$, $(1 \le k \le n-2)$, where $0 < r < \frac{\pi}{2}$. In case of $\mathbb{C}H^n$:
- (A_0) a horosphere in $\mathbb{C}H^n$, i.e., a Montiel tube,
- (A_1) a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane $\mathbb{C}H^{n-1}$,
- (A_2) a tube over a totally geodesic $\mathbb{C}H^k$ $(1 \le k \le n-2)$.

Remark 2.6 In the case of three-dimensional real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$, type (A_2) hypersurfaces do not occur.

Finally, we mention the following proposition (see [4]), which is used in the proof of Theorems 1.1 and 1.2.

Proposition 2.7 There do not exist real hypersurfaces in $M_2(c)$, whose structure Jacobi operator vanishes.

3 Proof of Theorem 1.1

Let M be a non-Hopf real hypersurface in $M_2(c)$ whose structure Jacobi operator satisfies relation (1.3). More analytically, the previous relation, due to (1.2) for $T = R_{\xi}$ and $X = \xi$, and since $R_{\xi}(\xi) = 0$ implies

(3.1)
$$g(\phi A \xi, R_{\xi}(Y)) \xi - (\phi A - k\phi) (\xi \wedge R_{\xi}(Y)) \xi = -R_{\xi}(\phi A - k\phi) (\xi \wedge Y) \xi$$
, for all Y tangent to M .

We consider N the open subset of M such that

$$\mathcal{N} = \{ P \in M : \beta \neq 0, \text{ in a neighborhood of } P. \}$$

Lemma 2.1 holds on \mathbb{N} , and the inner product of relation (3.1) for Y = U with ξ due to the first of (2.9) yields $\alpha \delta = 0$.

Suppose that $\alpha \neq 0$. Then the above relation implies $\delta = 0$ and relations (2.2) and (2.9) become, respectively,

$$(3.2)AU = \gamma U + \beta \xi, \qquad A\phi U = \mu \phi U, \qquad A\xi = \alpha \xi + \beta U,$$

$$(3.3)R_{\xi}(U) = \left(\frac{c}{4} + \alpha \gamma - \beta^{2}\right)U, \qquad R_{\xi}(\phi U) = \left(\frac{c}{4} + \alpha \mu\right)\phi U, \qquad R_{\xi}(\xi) = 0.$$

Because of (3.2) and the second relation of (3.3), the inner product of (3.1) for $Y = \phi U$ with ξ implies

$$\mu = -\frac{c}{4\alpha} \Longrightarrow R_{\xi}(\phi U) = 0.$$

Moreover, relation (3.1) for $Y = \phi U$, taking into account that $R_{\xi}(\phi U) = 0$ and the first of (3.3) results in $(\mu - k)R_{\xi}(U) = 0$. If $\mu \neq k$ then $R_{\xi}(U) = 0$. So the structure Jacobi operator vanishes identically, which is impossible because of Proposition 2.7.

Thus, $\mu = k$. Furthermore, the inner product of (3.1) for Y = U with ϕU , due to the first relation of (3.3) and $R_{\xi}(\phi U) = 0$, implies

$$(\gamma - k)g(R_{\xi}(U), U) = 0.$$

If $\gamma \neq k$, then $g(R_{\xi}(U), U) = 0$, and this results in $R_{\xi}(U) = 0$, which implies that the structure Jacobi operator vanishes identically, which is impossible because of Proposition 2.7.

So y = k. Differentiation of the last relation with respect to ϕU yields $(\phi U)y = 0$. Thus, since $\delta = 0$ and $\mu = y = k$ relation (2.7) implies k = 0, which is a contradiction. Therefore, we have $\alpha = 0$ on M, and relation (2.9) becomes

(3.4)
$$R_{\xi}(U) = \left(\frac{c}{4} - \beta^2\right)U, \quad R_{\xi}(\phi U) = \frac{c}{4}\phi U, \quad \text{and} \quad R_{\xi}(\xi) = 0.$$

Because of the second relation of (3.4), the inner product of relation (3.1) for $Y = \phi U$ with ξ gives c = 0, which is a contradiction.

Thus, \mathbb{N} is empty and the following proposition is proved.

Proposition 3.1 Every real hypersurface in $M_2(c)$ whose structure Jacobi operator satisfies relation (1.3) is a Hopf hypersurface.

Due to the above proposition, relations in Theorem 2.3 and remark 2.4 hold. Taking into account (2.11), relation (3.1) for Y = W and $Y = \phi W$ implies, respectively,

(3.5)
$$k\alpha(\lambda - \nu) = \lambda\alpha(\lambda - \nu)$$
 and $k\alpha(\lambda - \nu) = \nu\alpha(\lambda - \nu)$.

If there is a point where $\lambda \neq \nu$, relation (3.5) yields $k\alpha = \alpha\lambda$ and $k\alpha = \nu\alpha$, which implies $\alpha(\lambda - \nu) = 0$. So, $\alpha = 0$.

If $\lambda = \nu$ at all points, then this implies $(A\phi - \phi A)X = 0$ for any X tangent to M. So due to Theorem 2.5, M is locally congruent to a real hypersurface of type (A), and this completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Because of (1.2), since $T = R_{\xi}$ and $X \in \mathbb{D}$ because of $R_{\xi}(\xi) = 0$, relation (1.4) implies

$$(4.1) g((\phi A + A\phi)X, R_{\xi}(Y))\xi = -R_{\xi}(\phi A - k\phi)(X \wedge Y)\xi$$

for all *X* orthogonal to ξ and for all vectors *Y* tangent to *M*.

First we prove the following proposition.

Proposition 4.1 There do not exist Hopf hypersurfaces in $M_2(c)$ whose structure Jacobi operator satisfies relation (1.4).

Proof Let M be a Hopf hypersurface. Then we have $A\xi = \alpha \xi$, where α is constant, and remark 2.4 holds. Relation (4.1) for (X, Y) being (W, ξ) , $(\phi W, \xi)$, $(W, \phi W)$ and $(\phi W, W)$ taking into account relation (2.11) implies respectively

$$(\lambda - k)\left(\alpha v + \frac{c}{4}\right) = 0,$$

$$(4.3) \qquad (v-k)\left(\alpha\lambda + \frac{c}{4}\right) = 0,$$

$$(\lambda + \nu) \left(\alpha \nu + \frac{c}{4}\right) = 0,$$

$$(\lambda + \nu)\left(\alpha\lambda + \frac{c}{4}\right) = 0.$$

There are three possibilities to consider:

- (a) Suppose $\alpha = 0$. Then relations (4.2) and (4.3) give $\lambda = \nu = k$. So, relation (4.4) implies k = 0, which is a contradiction.
- (b) Suppose $\alpha \neq 0$ and there is a point where $\lambda \neq \nu$. If $\lambda \neq k$, then relation (4.2) implies $\alpha \nu + \frac{c}{4} = 0$. So $\alpha \lambda + \frac{c}{4} \neq 0$ and relation (4.3) yields $\nu = k$. Furthermore, relation (4.5) gives $\lambda + \nu = 0$. So, $\lambda = -k$, and the Hopf hypersurface has three constant principal curvatures and must be an open subset of a type (*B*) hypersurface. But type (*B*) hypersurfaces satisfy $\lambda \nu + \frac{c}{4} = 0$ and substitution of the last relation in (2.10) leads to a contradiction.
- (c) $\alpha \neq 0$ and $\lambda = \nu$. Because of (4.4) this implies that either $\lambda = 0$ or $\alpha\lambda = -\frac{c}{4}$. Substitution of the previous in (2.10) leads to a contradiction, and this completes the proof of the proposition.

Next we examine non-Hopf hypersurfaces in $M_2(c)$ whose structure Jacobi operator satisfies relation (4.1). Since M is a non-Hopf hypersurface, we have that $\beta \neq 0$

and relation (2.2) holds. Relation (4.1) for X = Y = U, X = U and $Y = \phi U$ and for $X = \phi U$ and Y = U implies, respectively,

$$(4.6) \qquad (\gamma + \mu)g(R_{\xi}(U), \phi U) = 0,$$

$$(4.7) \qquad (\gamma + \mu)g(R_{\xi}(\phi U), \phi U) = 0,$$

$$(4.8) \qquad (\gamma + \mu)g(R_{\xi}(U), U) = 0.$$

If $\gamma + \mu \neq 0$, then relations (4.6), (4.7), and (4.8) result in

$$g(R_{\xi}(U), \phi U) = g(R_{\xi}(\phi U), \phi U) = g(R_{\xi}(U), U).$$

The above relation leads to the conclusion that the structure Jacobi operator R_{ξ} vanishes identically and because of Proposition 2.7 this is impossible.

Thus on M, relation $\gamma + \mu = 0$ holds. Moreover, for X = U and $Y = \xi$ and for $X = \phi U$ and $Y = \xi$ due to (2.9) and $\gamma + \mu = 0$ relation (1.4) implies

$$\delta\left(\frac{c}{4} - \beta^2 + \alpha k\right) = 0,$$

$$(4.10) (\mu + k) \left(\frac{c}{4} + \alpha \mu\right) = -\alpha \delta^2,$$

$$(4.11) \qquad (\mu - k) \left(\frac{c}{4} - \alpha \mu - \beta^2\right) = \alpha \delta^2,$$

$$\delta\left(\frac{c}{4} + \alpha k\right) = 0.$$

Suppose that $\delta \neq 0$. Then combination of relations (4.9) and (4.12) yields $\beta = 0$, which is a contradiction.

So, on M we have $\delta = 0$ and $\gamma = -\mu$, and relations (4.10) and (4.11) become

$$(4.13) (\mu + k) \left(\frac{c}{4} + \alpha \mu\right) = 0 \text{and} (\mu - k) \left(\frac{c}{4} - \alpha \mu - \beta^2\right) = 0.$$

If $k + \mu \neq 0$, then $\frac{c}{4} + \alpha \mu = 0$ and the second of the above relation gives $\mu = k$, because if $\frac{c}{4} - \alpha \mu - \beta^2 = 0$, then relation (2.9) implies that the structure Jacobi operator R_{ξ} vanishes identically, which is impossible. Since $k = \mu$, we obtain $\xi \mu = 0$ and relation (2.4) implies $\kappa_2 = 0$. Furthermore, differentiation of $\gamma = -\mu$ with respect to ϕU gives

$$(\phi U)\mu = (\phi U)\gamma = 0.$$

Furthermore, differentiation of $\frac{c}{4} + \alpha \mu = 0$ with respect to ϕU because of the above relation and relation (2.5) gives $\kappa_3 = 3\mu - \alpha$. Since $(\phi U)\gamma = 0$, relation (2.7) implies $\kappa_1 = \beta/2$. So bearing in mind all the previous relations relation (2.3) gives $\beta^2/2 = c + 7\mu^2$. Differentiating the last relation with respect to ϕU yields $(\phi U)\beta = 0$ and relation (2.6) implies $\beta^2/2 + c/2 + 2\mu^2 = 0$. Moreover, since $\kappa_1 = \beta/2$ and $(\phi U)\beta = 0$, we conclude that $(\phi U)\kappa_1 = 0$ and due to $\gamma = -\mu$, $\kappa_1 = \beta/2$, $\kappa_3 = 3\mu - \alpha$ and $\kappa_2 = 0$ relation (2.8) results in $\beta^2/2 = 4\mu^2 - 2c$. Combination of the last one with $\beta^2/2 = c + 7\mu^2$ implies $c = -\mu^2$. Substitution of the latter in $\beta^2/2 + 2\mu^2 + c/2 = 0$ due to $\beta^2/2 = 4\mu^2 - 2c$ leads to c = 0, which is a contradiction.

Thus, on *M* we have $\mu + k = 0$. Summarizing on *M* the following relations hold:

$$\delta = 0$$
 and $\gamma = -\mu = k$.

The second relation of (4.13) implies that $k\alpha = \beta^2 - c/4$.

Moreover, due to $\mu=-k$, relation (2.4) implies $\kappa_2=0$, and bearing in mind all the previous relations, relation (2.7) results in $\beta=2\kappa_1$. Furthermore, because of $\gamma=-\mu$, $\beta=2\kappa_1$, and $\mu=-k$, relation (2.6) implies $(\phi U)\beta=\beta^2/2+c/2+2k^2$ and relation (2.8) taking into account $\gamma+\mu=0$, $\kappa_2=0$ and $\beta=2\kappa_1$ yields $(\phi U)\beta=-4k^2+\beta^2/2+2c$. Combination of the last two relations of $(\phi U)\beta$ results in $c=4k^2$. The last relation leads to a contradiction when the ambient space is $\mathbb{C}H^2$. So it remains to examine the case when the ambient space is $\mathbb{C}P^2$.

Since $c = 4k^2$ and $k \neq 0$, relation $k\alpha = \beta^2 - c/4$ implies $\alpha = \beta^2/k - k$. Differentiation of the latter with respect to ϕU taking into account relations (2.5) and (2.6) yields $\kappa_3 = 6k$. Furthermore, because of the last one and $\beta = 2\kappa_1$ relation (2.3) results in $\beta^2 = 22k^2$. So because of the above relations, relation (2.6) implies $\beta^2 + 2c = 0$. The last relation due to $c = 4k^2$ and $\beta^2 = 22k^2$ results in k = 0, which is impossible, and this completes the proof of Theorem 1.2.

Acknowledgments The authors would like to express their gratitude to the referee for the careful reading of the manuscript and for the comments on improving the manuscript.

References

- [1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew. Math. 395(1989), 132–141. http://dx.doi.org/10.1515/crll.1989.395.132
- [2] J. T. Cho, CR structures on real hypersurfaces of a complex space form. Publ. Math. Debrecen 54(1999), no. 3-4, 473-487.
- [3] ______, Pseudo-Einstein CR-structures on real hypersurfaces in a complex space form. Hokkaido Math. J. 37(2008), no. 1, 1–17. http://dx.doi.org/10.14492/hokmj/1253539581
- [4] T. A. Ivey and P. J. Ryan, The structure Jacobi operator for real hypersurfaces in CP² and CH². Results Math. 56(2009), no. 1–4, 473–488. http://dx.doi.org/10.1007/s00025-009-0380-2
- [5] U.-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form. Math. J. Okayama Univ. 32(1990), 207–221.
- [6] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space. Trans. Amer. Math. Soc. 296(1986), no. 1, 137–149. http://dx.doi.org/10.1090/S0002-9947-1986-0837803-2
- [7] Y. Maeda, On real hypersurfaces of a complex projective space. J. Math. Soc. Japan 28(1976), no. 3, 529–540. http://dx.doi.org/10.2969/jmsj/02830529
- [8] S. Montiel, Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Japan 35(1985), no. 3, 515–535. http://dx.doi.org/10.2969/jmsj/03730515
- [9] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata 20(1986), no. 2, 245–261. http://dx.doi.org/10.1007/BF00164402
- [10] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms. In: Tight and taut submanifolds, Math. Sci. Res. Inst. Publ., 32, Cambridge University Press, Cambridge, 1997, pp. 233–305.
- [11] M. Okumura, On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. 212(1975), 355–364. http://dx.doi.org/10.1090/S0002-9947-1975-0377787-X
- [12] K. Panagiotidou and Ph. J. Xenos, Real hypersurfaces in CP² and CH² whose structure Jacobi operator is Lie D-parallel. Note Mat. 32(2012), no. 2, 89-99.
- [13] R. Takagi, On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10(1973), 495–506.
- [14] ______, Real hypersurfaces in complex projective space with constant principal curvatures. J. Math. Soc. Japan 27(1975), 43–53. http://dx.doi.org/10.2969/jmsj/02710043
- [15] ______, Real hypersurfaces in complex projective space with constant principal curvatures. II. J. Math. Soc. Japan 27(1975), no. 4, 507–516. http://dx.doi.org/10.2969/jmsj/02740507
- [16] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan. J. Math. 2(1976), no. 1, 131–190.

- [17] S. Tanno, Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314(1989), 349–379. http://dx.doi.org/10.1090/S0002-9947-1989-1000553-9
- [18] S. M. Webster, *Pseudohermitian structures on a real hypersurface*. J. Diff. Geom. 13(1978), no. 1, 25–41.

Faculty of Mathematics and Engineering Sciences, Hellenic Military Academy, Vari, Attiki, Greece e-mail: gmiamis@gmail.com konpanagiotidou@gmail.com

Departmento de Geometria y Topologia, Universidad de Granada, 18071, Granada Spain e-mail: jdperez@ugr.es