GAUSSIAN PROCESSES WITH MARKOVIAN COVARIANCES

BY

DUDLEY PAUL JOHNSON

ABSTRACT. We show that any Gaussian process can be derived in a simple manner from a Markov process if it has zero mean and covariance identical to the covariance of a real valued function of a temporally homogeneous Markov process.

Suppose that \(M_T \), \(T \) being either the nonnegative integers or the nonnegative real numbers, is a temporally homogeneous Markov process on a measurable space \((S, \Sigma) \) with initial distribution \(P(\cdot) \) and transition probability function \(P_t(\cdot, \cdot) \). Let \(f \) be a mapping of \(T \times S \) into the real numbers which is square integrable with respect to the measure \(P_t(a, \cdot) \) for each \(t \in T \) and \(a \in S \).

Suppose now that \(X_T \) is a real Gaussian process with zero expectations and covariance

\[
\Gamma_{st} = \int_S P(du) \int_S f(s, v)P_s(u, dv) \int_S f(t - s, w)P_{t-s}(v, dw)
\]

identical to the covariance of \(f(t, M_t) \), \(t \in T \). Let \(X_T^\ast(\Sigma) \) be the generalized Gaussian random field (see [2]) on \(T \times \Sigma \) with zero expectations and covariance function

\[
\Gamma^\ast_{st}(U, V) = \int_S P(du) \int_U P_s(u, dv) \int_U P_{t-s}(v, dw)
\]

identical to the covariance of the random field

\[
I_U(M_t), \quad t \in T, \quad U \in \Sigma
\]

where \(I_U \) is the indicator function of \(U \). Then if \(F(\Sigma) \) is the set of all functions mapping \(\Sigma \) into the real numbers we have the following

Theorem. Under the above conditions \(X_T^\ast \) is a Markov process on \(F(\Sigma) \) and

\[
X_T = \int_S f(t, u)X_t^\ast(du)
\]

where the integral is the Wiener-Ito stochastic integral.

Proof. Since conditioning and projections are the same for a Gaussian field (see [1] or [3]), it follows that \(X_T \) is a Markov process on \(F(\Sigma) \) if for each \(s \) and
In T and $V \in \Sigma$, the projection $E_u(X^*_{s+t}(V) \mid X^*_s(U), U \in \Sigma)$ of X^*_{s+t} on the closed linear span of the functions $X^*_s(U)$, $U \in \Sigma$ is equal to the projection $E_u(X^*_{s+t}(V) \mid X^*_s(U), r \leq s, U \in \Sigma)$ of X^*_{s+t} on the closed linear span of the functions $X^*_r(U)$, $r \leq s$ and $U \in \Sigma$. To do this we show that for each $V \in \Sigma$,

$$E_u(X^*_{s+t}(V) \mid X^*_s(U), U \in \Sigma) = \int_S P_t(u, V)X^*_s(du)$$

That is, we show that for each $r \leq s$, $U \in \Sigma$ and $V \in \Sigma$,

$$X^*_r(U) \perp X^*_{s+t}(V) - \int_S P_t(w, V)X^*_r(dw).$$

But

$$EX^*_r(U)X^*_{s+t}(V) - \int_S P_t(w, V)X^*_r(dw)$$

$$= EX^*_r(U)X^*_{s+t}(V) - \int_S P_t(w, V)EX^*_r(U)X^*_r(dw)$$

$$= \int_S P(du)\int_U P_t(u, dv)P_{s+t-r}(v, dw) - \int_S P_t(w, V)$$

$$\times \int_U P(du)\int_U P_t(u, dv)P_{s+t-r}(v, dw)$$

$$= \int_S P(du)\int_U P_t(u, dv)P_{s+t-r}(v, V) - \int_S P(du)\int_U P_t(u, dv)$$

$$\times \int_S P_{s+t-r}(v, dw)P_t(w, V) = \int_S P(du)\int_U P_t(u, dv)P_{s+t-r}(v, V)$$

$$- \int_S P(du)\int_U P_t(u, dv)P_{s+t-r}(v, V) = 0$$

and so $X^*_s(U)$ is a Markov process on $F(\Sigma)$.

To complete the proof, we need only show that

$$X_t = \int_S f(t, u)X^*_t(du), \quad t \in T.$$

Clearly both X_t and $\int_S f(t, u)X^*_t(du)$ are Gaussian with zero expectation. To show that they are equal in distribution we need only show that their covariances are
equal. Since the covariance of X_t is Γ'_t and since

$$E \int_S f(s, v)X_t^*(dv) \int_S f(t, w)X_t^*(dw)$$

$$= \int_S \int_S f(s, v)f(t, w)EX_t^*(dv)X_t^*(dw)$$

$$= \int_S \int_S f(s, v)f(t, w)\int_S P_4(du)P(u, dv)P_{t-u}(v, dw)$$

$$= \int_S P(du)\int_S f(s, v)P_4(u, dv)\int_S f(t, w)P_{t-u}(v, dw) = \Gamma_{tt}$$

the theorem is proved.

REFERENCES

