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SNC Log Symplectic Structures on Fano
Products

Katsuhiko Okumura

Abstract. his paper classiûes Poisson structures with the reduced simple normal crossing divisor on
a product of Fano varieties of Picard number 1. he characterization of even-dimensional projective
spaces from the viewpoint of Poisson structures is given by Lima and Pereira. In this paper, we gener-
alize the characterization of projective spaces to any dimension.

1 Introduction

Geometry of log symplectic form is well investigated, and the term log symplectic
is slightly abused. In the ûeld of diòerential geometry, it mostly refers to a generi-
cally symplectic Poisson structure with the reduced and smooth divisor [1, 5]. Such a
structure is o�en called topologically stable Poisson [16], b-Poisson [7], or b-log sym-
plectic [11] in the ûeld of topological geometry. In Goto’s deûnition [4], log symplectic
indicates the generically symplectic Poisson strucuture with the reduced and simple
normal crossing degeneracy divisor. In this paper, we use this terminology following
Pym’s deûnition [14]. hat is, we do not suppose that the reduced degeneracy divi-
sor is smooth or simple normal crossing. his is a reasonable deûnition in terms of
holomorphic Poisson structures and the ûeld of algebraic geometry, as the degeneracy
divisors usually have singularities in the higher-dimensional case [6,heorem 23]. In
fact, some of the Feigin and Odesskii’s examples have elliptic singular points.

One of the main beneûts of holomorphic Poisson structure is that holomorphic
Poisson manifolds also have the almost complex structure. Interestingly, in terms of
the symplectic geometry, the known examples of projective irreducible holomorphic
symplectic manifolds are only of four types [12]. herefore, the analogous problem
is worth investigating. Since Poisson structures can be regarded as a generalization
of symplectic forms, there should be many more types of such Poisson manifolds.
Indeed, one can easily ûnd such examples on the projective space. However, the fol-
lowing theorem suggests that the Poisson structure still imposes severe constraints.

heorem 1.1 ([10]) Let (X ,Π) be a log symplectic structure with the simple normal
crossing degeneracy divisor (say snc log symplectic structure) on a complex Fano variety
X with cyclic Picard group of even dimension 2n ≥ 4. hen X is a projective space, and
Π is a diagonal Poisson structure.
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he diagonal Poisson structure on a projective space (or an aõne space) is deûned
as a generically symplectic Poisson structurewhose degeneracy divisor is the union of
all coordinate hyperplanes. A local form of a diagonal Poisson structure can be given
byΠ = ∑i< j c i jx ix j

∂
∂x i

∧ ∂
∂x j

for a general systemof coeõcients c i j and homogeneous
coordinates x i of X.

he degeneracy divisor must have singularities when we treat the higher-
dimensional variety, so we usually assume a ûxed kind of the singularity of the
degeneracy divisor. his principle is justiûed, because the Zariski closure of set of
log symplectic structures or the set of SNC log symplectic structures forms a union of
connected components in themoduli space of all Poisson bivector ûelds [15].

here are two cases used to classify holomorphic log symplecticmanifolds. One is
when the singularity is not a simple normal crossing singularity, and the other iswhen
the Picard group of a variety is not cyclic. Pym [15] researches the case where all the
singular points are elliptic singular points. So one of the main unsolved situations is
that the variety is not of Picard rank 1. he author [13] classiûes the case of the blowing
up of projective spaces along a linear subspace. he focus of this paper is a product of
varieties.

In this paper, we prove the following theorem.

heorem 1.2 Let X i be a complex Fano variety of Picard number 1 and of dimension
n i ≥ 3, let X = ∏

m
i=1 X i be a product of even dimension 2n = ∑

m
i=1 n i , and let Π be a

SNC log symplectic structure on X. henwe have X i = Pn i , andΠ is a diagonal Poisson
structure.

A diagonal Poisson structure on the product of projective spaces indicates that the
degeneracy divisor is the union of all coordinate hyperplanes. Let x i1 , . . . , x in i denote
a homogeneous coordinate system of X i and c i jk l ∈ C. hen we can express the
diagonal Poisson structure on the product of the projective spaces in the following
form:

Π = ∑
1≤i ,k≤m
0≤ j≤n i
0≤l≤nk

c i jk l x i jxk l
∂

∂x i j
∧

∂
∂xk l

.

his theorem gives the characterization of projective spaces of any dimensions.

Corollary 1.3 Let X be a complex Fano variety of Picard number 1. Suppose that
X × X admits a SNC log symplectic structure, then X is a projective space.

2 Poisson Structures

Only in this chapter, we assume that the base ûeld is an algebraivally closed and of
characteristic 0. Let X be a smooth projective variety. A Poisson structure on X is a
bivector ûeld Π ∈ Γ(X ,∧2TX) such that the Schouten bracket [Π,Π] ∈ Γ(X ,∧3TX)

vanishes identically. When we deûne a bilinear map by { f , g} = Π(d f , dg) for f ,
g ∈ OX , the bracket satisûes the following properties:
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(a) (skew-symmetric) { f , g} = −{g , f },
(b) (Jacobi identity) { f , {g , h}} + {g , {h, f }} + {h, { f , g}} = 0,
(c) (Leibniz rule) { f , g ⋅ h} = { f , g}h + g{ f , h}.

In general, (a) and (c) hold for every bracket deûned by a bivector ûeld. Jacobi identity
holds if and only if the bivector ûelds vanishes the Schouten bracket.

We say a Poisson structure Π has rank 2k at a point x ∈ X if Πk(x) ≠ 0 and
Πk+1(x) = 0. For the largest number k that satisûes Πk ≠ 0, we say Π is of rank 2k. If
dimX = 2n and rankΠ = 2n, then we call the Poisson structure Π generically sym-
plectic. We setD2k−2(Π) ∶= {x ∈ X ∣ rankx Π < 2k}.We call this set 2k-th degeneracy
locus. If Π has rank 2k, then the divisorial part of D2k−2(Π) is called the degener-
acy divisor of Π, and we denote it by D(Π). If Π is a generically symplectic Poisson
structure, then the degeneracy loci forms a divisor, that is, D(Π) = D2n−2(Π) =

{x ∈ X ∣ Πn(x) = 0}. For a projective variety X, as Πn is a holomorphic section of
∧2nTX = −KX , D(Π) is an eòective anti-canonical divisor.

3 Outline of Pym’s Proof

In this section, we review an outline of the proof of heorem 1.1 given by Pym. For
the product case, the proofwill also be given along this outline. herea�er,we assume
that a variety X is over a complex number ûeldC. Pym’s proof is consist of three steps.
First claim is that Fano index of X has inequality

iX ≥ 2n − 1.

his claim can be proved by an inductive argument on the dimension of X. he key
ideas of the induction are generalized in Lemmas 5.1 and 5.2 in this paper. he classi-
ûcation of Fano varieties with high-index are well known.

heorem 3.1 ([2, 3, 8]) Let X be a n-dimensional Fano variety of Picard number 1.
Suppose iX ≥ n − 1. hen X is in one of the following cases:

(i) iX = n + 1 and X = Pn ;
(ii) iX = n and X = Qn ⊂ Pn+1, a smooth quadric hypersurface;
(iii) iX = n − 1 and X is one of the following varieties:

(a) a degree-sixhypersurface in the (n+1)-dimensionalweighted projective space
P(3, 2, 1, . . . , 1);

(b) a double cover of Pn branched over a smooth quartic hypersurface;
(c) a smooth cubic hypersurface in Pn+1;
(d) an intersection of two smooth quadric hypersurfaces in Pn+2;
(e) a linear section of the Grassmannian Gr(2, 5) in its plucker embedding.

As anext step, Pymdeveloped the key lemma. We can calculate each variety ofhigh
index one by one; we then obtain the conclusion that the varietymust be a projective
space.

heorem 3.2 ([14, Prop 5.14]) Let D = D(Π) = ∑
k
j=1 D j be a irreducible decom-

position of the degeneracy divisor. We write [D j] = c1(OX(D j)). hen the following
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relation holds in the cohomology rings of X:

(3.1) ch(TX) − ch(TX
∨
) = 2

k

∑
j=1

sinh([D j]).

Example 3.3 First case is X = P2n , n ≥ 2. Let H be an ample generator of the Picard
group, D(Π) = ∑

k
j=1 D j a irreducible decomposition. hen we write D j = d jH. he

Euler sequence leads the equation ch(TX) = (2n + 1)eH − 1. herefore, the le�-hand
side of (3.1) becomes 2(2n+ 1) sinh[H]. We compare the intersection number of both
sides of (3.1) by intersecting the degree 2i − 1 cycle H2i−1. hen we obtain

2n + 1 =
k

∑
j=1
d j

2n + 1 =
k

∑
j=1
d j

3

⋮

2n + 1 =
k

∑
j=1
d j

2n−1 ,

where the top equation is obtained when i = 2n − 1. his straightforward calculation
gives a unique solution of integers d j :

d j = 1 (1 ≤ ∀ j ≤ k)
k = 2n + 1.

Since we suppose that the degeneracy divisor is a simple normal crossing one, it is
composed of coordinate hyperplanes.

If the variety is not a projective space, then we can conûrm that it is unsuitable in
terms of the above lemma. We show this in one case, but it can be conûrmed in the
remaining cases as well.

Example 3.4 Let X ⊂ P2n+1 be a smooth quadric hypersurface. Let H be an ample
generator of the Picard group and let D(Π) = ∑

k
j=1 D j be an irreducible decomposi-

tion. hen we write D j = d jH. We have the relative Euler sequence:

0Ð→ TX Ð→ TP2n+1 ⊗OX Ð→ NX/P2n+1 Ð→ 0.

herefore, we obtain the chern character

ch(TX) = ch(TP2n+1 ⊗OX) − ch(NX/P2n+1)

= ch(TP2n+1) − ch(OX(2)) = (2n + 2)eH − 1 − e2H .

In the similar way, we compare the coeõcients

2n + 2 − 2 =
k

∑
j=1
d j
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2n + 2 − 22
=

k

∑
j=1
d j

3

⋮

2n + 2 − 22n−1
=

k

∑
j=1
d j

2n−1 .

If n ≥ 2, there are no solutions that satisfy the above system of equations.

Finally, we specify the form of the Poisson structure; r-matrix construction plays
an important role.

Deûnition 3.5 Let X be a variety equippedwith an action of Lie groupG, let g be its
Lie algebra, and let r be a classical triangular r-matrix for G, that is, [r, r] = 0 ∈ ∧3g.
henwe obtain the Poisson structure on X by pushing r forward along the actionmap
g→ Γ(X ,TX). We call this construction of Poisson structures r-matrix construction.

When X is a 2n-dimensional projective space, we have already known that the
degree of each irreducible component of the degeneracy divisor is 1 by Example 3.3.
hen one can show that such a Poisson structure must be obtained from r-matrix
construction for the Lie group G = (C∗)2n .

4 Numerical Properties of Fano Products

Let X = ∏
m
i=1 X i be a variety of dimension 2n, let X i be a Fano variety of dimension

n i ≥ 3 and of Picard number 1 with the projection p i ∶X → X i , H i an ample genera-
tor of Pic(X i), and let H i = p∗i H i be a pull-back of H i . Recall that the intersection
number is obtained by the following formula:

m

∏
i=1

Hd i
i =

⎧⎪⎪
⎨
⎪⎪⎩

d > 0 ∀i , d i = n i ,
0 ∃i , d i ≠ n i ,

where a system of integers d i satisûes ∑m
i=1 d i = 2n and d is a degree of a projective

variety X.

Proposition 4.1 Settings are the same as the above. We write the irreducible decom-
position of the degeneracy divisor D = D(Π) = ∑

k
j=1 D j . We set D j = ∑

m
i=1 a i jH i for

some non-negative integer a i j ∈ N. hen for every j, there uniquely exists 0 ≤ i ≤ m
such that a i j ≠ 0 and a l j = 0 for all l ≠ i. his indicates that we obtain

ch(TX i ) − ch(TX i
∨
) = 2

k

∑
j=1

sinh([a i jH i]).

Proof Since X is a product ofmanifolds X i , we have ch(TX) = ∑
m
i=1 p∗i ch(TX i ). By

Pym’s method, we have

(4.1) ch(TX) − ch(T∨X) = 2
k

∑
j=1

sinh([D j]) = 2
k

∑
j=1

sinh(
m

∑
i=1

[a i jH i]).
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We consider terms of degree 3 of (4.1) and intersection numbers with respect to the
2n − 3−cycle Hn1

1 ⋅ ⋅ ⋅Hn i−1
i ⋅ ⋅ ⋅Hn l−2

l ⋅ ⋅ ⋅Hnm
m . his detects the coeõcient of H iH l

2 that
is not contained in the le� side of (4.1). As we calculated the intersection number, we
have

0 = 3d
k

∑
j=1
a i ja l j

2 .

his implies that a i ja l j
2 = 0 for every j. herefore, for some ûxed j, if there exists a

non-zero integer a i j , then we ûnd that the other integers a l j = 0 for all l ≠ i. More-
over, since H j is an eòective divisor on X, such an integer a i j indeed exists. Now, we
have ch(TX) = ∑

m
i=1 ch(TX i ); thus, the conclusion on the coeõcients of D j suggests

that the formula drops down to each variety X i and each divisor D j on X i such that
p∗i D j = D j . ∎

his proposition and the discussion by Pym immediately lead the following
corollary.

Corollary 4.2 Settings are the same as in the above proposition. hen X i = Pn i or
iX i < n i − 1, where iX i is the Fano index of X i .

5 Proof of the Main Theorem

In this section, we complete the proof of themain theorem. he ûrst goal is to show
that X i = Pn i for every i. For this aim, it is enough to conûrm that iX i ≥ n i − 1. In
order to prove this,wewill construct the triplet (X ,Π,D(Π)) inductively. At ûrst,we
take any irreducible component of D(Π) and name it D1. hen it is enough to show
that we can choose another component D2 such that (Y = D1 ∩ D2 ,Π ∣Y ,D(Π ∣Y) =

(D(Π)−D1−D2) ∣Y) is again an SNC log symplectic structure on some Fano product.

5.1 Lemmas for the Induction

he settings are the same as in the above section; namely, let X i be a Fano manifold
of Picard number 1 and of dimension n i ≥ 3 over a complex number ûeldC, let H i be
an ample generator of Pic(X i), let H i = p∗i H i be a pull-back ofH i , let X =∏

m
i=1 X i be

a product of even dimension 2n = ∑
m
i=1 n i , let p i ∶X → X i be the i-th projection, let Π

be a SNC log symplectic structure on X, let D = D(Π) = ∑
k
j=1 D j be the degeneracy

divisor and its irreducible decomposition, and let D j be a divisor on X i for some i
such that p∗i D j = D j .

Lemma 5.1 Let Π be a SNC log symplectic structure on X = ∏
m
i=1 X i with n i ≥ 3

and ω = Π−1 a two-form corresponding to Π, that is, Π¬ω = 1. We take an arbi-
trary irreducible componentD j of the degeneracy divisorD(Π), andwe set the one-form
α = ResD j ω. hen α is not identically zero and has poles along D j ∩ (D(Π)/D j).

Proof α is evidently a non-zero meromorphic one-form that may have poles along
D j∩(D(Π)/D j). It is enough to show that α is not holomorphic. We suppose thatD j

is a divisor on X i and set X =∏k≠i Xk . hen D j = D j × X holds. Applying Kunneth’s
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formula, the following equation holds:

H0
(D j ,Ω1

D1
) = H0

(D j ,Ω1
D j

)⊗H0
(X ,OX)⊕H0

(D j ,OD j
)⊗H0

(X ,Ω1
X).

By the Kodaira vanishing theorem, the latter term is 0.
We apply the Lefshetz hyperplane theorem for Hodge decomposition (see e.g.,

[9, Example 3.1.24]), X i ,D j and (p, q) = (0, 1). hen the equation H0(D j ,Ω1
D j

) =

H0(X i ,Ω1
X i
)= 0 holds. herefore,H0(D j ,Ω1

D j
)= 0 and α can not be holomorphic. ∎

Lemma 5.2 (Residue theorem for a product variety) Let X i be a complex mani-
fold with Pic(X i) = Z[H i] and H1(X i ,OX i ) = 0, let X = ∏

m
i=1 X i be a product, let

p i ∶X → X i be an i-th projection, let D be a simple normal crossing divisor on X, and let
α ∈ Γ(X ,Ω1

X(logD)) with residues λ j , that is, ResD j α = λ j . We write the irreducible
decomposition D = ∑

k
j=1 D j and D j = ∑i a i jH i . hen the following equation holds:

k

∑
j=1
a i jλ j = 0 f or al l i .

Proof here exists a residue exact sequence

0Ð→ Ω1
X Ð→ Ω1

X(logD)Ð→ ⊕ jOD j Ð→ 0.

his induces the long exact sequence

H0
(X ,Ω1

X)Ð→ H0
(X ,Ω1

X(logD))
φ
Ð→ ⊕ jH0

(D j ,OD j)
δ
Ð→ H1

(X ,Ω1
X).

Now, we have H0(D j ,OD j) = H0,0(D j) = H0(D j ,C). he injection ι j ∶D j → X
induces ι j∗;H p(X ,C) → H p(D j ,C). Its dual is ι j∗

∨
∶ (H p(D j))

∨ → (H p(X ,C))∨.
he Poincaré duality suggests that there is a map (H p(D j))

∨ = H2n−2−p(D j ,C) →

H2n−p(X ,C) = (H p(X ,C))∨. In particular, when we take p = 2n − 2, we obtain the
morphism

ι j∗∶H
0
(D j ,C)Ð→ H1,1

(X).
Due to the construction of ι j∗, this sends 1 ↦ [c1(D j)]. hen the connecting mor-
phism δ is a sum of ι j∗. Recall that we assumed that H1(X i ,OX i ) = 0, so δ factors
through the inclusion Pic(X) ⊗ C → H1(X ,Ω1

X) and Pic(X) = ∑
m
i=1 Pic(X i). As α

is an element of H0(X ,Ω1
X(logD)), δ(φ(α)) = 0. he i-th component contained in

Pic(X i) of this equation is∑k
j=1 λ ja i j = 0. ∎

5.2 Induction

Now,we focus on the ûrst component X1 and show that X1 = Pn1 . Ifwe can prove this
claim, then we can show that X =∏

m
i=1 Pn i by changing the index of the variety.

We take an irreducible component D1 of D(Π) and suppose that D1 is a divisor
on X1. hen, Lemma 5.1 ensures that there exists some irreducible component D2
such that ResD2(ResD1 ω) ≠ 0.

We will ûnd two cases:
(A) D2 is a divisor on X1,
(B) D2 is a divisor on X2.
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Case A. We set Y1 = D1 ∩ D2, DY = (D(Π) − D1 − D2) ∩ Y , and ΠY = Π ∣Y .
hen [14, Lemma 5.18] ensures that ΠY is a generically symplectic Poisson structure.
By construction, we can write Y = Y1 ×∏

m
i=2 X i . Applying the residue theorem for

α = ResD1 ω and the variety D1 = D1 ×∏
m
i=2 X i , we obtain the third irreducible com-

ponent D3 such that D3 is a divisor on X1. hen D3 ensures that DY is non-empty,
and so DY is a simple normal crossing divisor. he adjunction formula indicates that
DY is an anti-canonical divisor; that is, Yi is a Fano variety. Owing to the construction
of Y , we have D(Π ∣Y) = DY . If n1 ≥ 5, by applying the Lefshetz hyperplane theorem
twice, we see that H2(X1 ,Z) → H2(Y1 ,Z) is an isomorphism. hus, Yi is also the
variety of Picard number 1. herefore, we obtain a new SNC log symplectic triplet
(Y =∏k≠i Xk × Yi ,ΠY) with dimY1 = n1 − 2.

Next, we consider the casewhere n1 = 3, 4. hen Yi does not satisfy the hypothesis
of Lefshetz hyperplane theorem. Aswe have three divisorsD1 ,D2 ,D3 on X i , the Fano
index iX1 of X1 becomes greater than 3. Since we suppose that n1 ≤ 4, Corollary 4.2
indicates that X1 = Pn1 . Moreover, as we computed in Example 3.3, we see that the
degree a i j ≠ 0 of the divisor D j equals 1. his means that we just obtain the pro-
jective space as a degree 1 hyperplane of the projective space when we cut out some
irreducible component D1, D2 of D(Π) in the step of the induction. herefore, we
can discuss this in the same way, because of the two facts, that is, H0(Pn ,Ω1

Pn) = 0
and Picard number of the projective space is 1. Finally, we can also replace X with Y
even if n1 = 3, 4.

Case B. Now, we have Y = D1 ∩ D2 = D1 × D2 ×∏
m
i=3 X i , Y1 = D1. We can also ûnd

that D(Π ∣Y) = (D(Π) − D1 − D2) ∣Y . hen the residue theorem ensures that there
exist D4 such that D4 is a divisor on X2 in the similar way as above. By switching the
role of D1 and D2, we obtain D3 with D3 is a divisor on X1. herefore, D1 and D2 is a
Fano variety. If n1 ≥ 4 and n2 ≥ 4, thenwe can apply the Lefshetz hyperplane theorem
and obtain that ρ(D1) = ρ(D2) = 1.

Next, we suppose n i = 3, for i = 1 or 2. he Fano index iX i of X i is greater than 2,
since D(Π) has at least 2 components D i and D i+2 that are derived from X i . here-
fore, Corollary 4.2 leads to X i = P3.

Dimension ≤ 2 and Summary. he outline of our inductive process is as follows.
First, we take D1 = a11p∗1 H1. Next, we take D2 whose existence is ensured by Lemma
5.1. Although we distinguish two cases by the source of D2, in any case, we obtain
the SNC log symplectic triplet (Y ,Π ∣Y ,DY). hen we take D1 again and repeat steps
untilwe ûnd thatY1 is aprojective space, and thiswill be achievedwhen the dimension
becomes smaller than 3. Finally, we go back through the induction steps one by one
and count the Fano index; then we ûnd that X1 = Pn1 .
Before the conclusion, we note the following. On the above construction, we treat

the case of n i ≥ 3, that is, our initial condition. In both Case A and Case B, the
step reduces the dimension of the component. In particular, when we repeat Case B,
n2 = dimX2 may be equal to or smaller than 2, and this is out of our assumptions.
But if we encounter a such case, then that component must pass through Case B of
n2 = 3. his means thatwe can treat such a low-dimensional component as a degree 1
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hyperplane cut of the projective space. hus, our induction works for every stage of
the inductive process.

5.3 Poisson Structures on the Product of Projective Spaces

Proposition 5.3 [14, Exercise 5.17] Let (X = ∏
m
i=1 Pn i ,Π) be a SNC log symplec-

tic structure with n i ≥ 3. hen, Π must be induced by r-matrix construction for the
standard action of the torus G = (C∗)n1 × (C∗)n2 × ⋅ ⋅ ⋅ × (C∗)nm .

Proof Let Y be an orbit of a general point x and let g be a Lie algebra of G. he
action ofG preserves the degeneracy divisor D(Π) = X/Y . For the actionmap a∶g→
Γ(Y ,TY) and the element ξ ∈ g, we construct an element ξX ∈ Γ(X ,TX). ξX satisûes
two conditions, ξX ∣Y= a(ξ) and ξX ∣U= 0 for any open subset U contained in X/Y .
So we obtain themap ã∶g→ Γ(X ,TX).

Next, we consider the basis of Γ(X ,TX(− logD)). For a standard aõne coordi-
nate x1 , . . . , xn , the vector ûelds x1∂x1 , . . . , xn∂xn form a basis on that aõne open
set. As they can glue to that on a product of projective spaces, we see that they
form a global basis for TX(− logD). herefore, TX(− logD) is a trivial bundle over X
whose ûbers are canonically identiûed with g. Since holomorphic sections of a triv-
ial bundle on a compact manifold are always constant, we obtain the isomorphism
∧2g ≃ Γ(X ,∧2TX(− logD)) as a vector space. ∎

When we take coordinates ([x10 ∶ x11 ∶ ⋅ ⋅ ⋅ ∶ x1n1], [x20 ∶ ⋅ ⋅ ⋅ ∶ x2n2], . . . , [xm0 ∶

⋅ ⋅ ⋅ ∶ xmnm ]), this means that Poisson structure Π is an invariant against the following
transformation:

x i0 z→ x i0

x i j z→ c i jx i j ,

where j ≠ 0 and c i j ∈ C∗. We can write the Poisson structure by using the coordinate
as follows:

Π = ∑
i j>k l ,0≤ j≤n i ,0≤l≤nk

{x i j , xk l}
∂

∂x i j
∧

∂
∂xk l

.

When we set y i j = c i jx i j , we have ∂
∂y i j

=
∂x i j

∂y i j

∂
∂x i j

= 1
c i j

∂
∂x i j

. herefore, {x i j , xk l} must
be divisible by x i j . For the same reason, xk l also divides by {x i j , xk l}. herefore, the
following equation holds:

{x i j , xk l} = c i jk l x i jxk l

for some coeõcient c i jk l ∈ C. For the general choice of the coeõcients c i jk l , in order
tomakeΠ be a generically symplectic, the degeneracy divisor is a union of all coordi-
nate hyperplanes. One can also conûrm that bivector ûelds of this form vanishes the
Schouten bracket.
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