CONVEXITY OF THE FIELD
OF A LINEAR TRANSFORMATION

A.J. Goldman and M. Marcus

(received June 16, 1958)

Let U_n be an n-dimensional unitary space with inner product $(x, y) = \overline{(y, x)}$. In U_n let S_{n-1} denote the unit sphere:

$$S_{n-1} = \{ x \mid (x, x) = 1 \}.$$

Let A be an arbitrary linear transformation of U_n. The subset

$$F(A) = \{ \zeta \mid \zeta = (Ax, x), x \in S_{n-1} \}$$

of the ζ-plane ($\zeta = \xi + i\eta$) is called the field of A.

As the image of S_{n-1} under the continuous mapping $x \to (Ax, x)$, $F(A)$ must be compact and connected. Toeplitz proved in [4] that the boundary of $F(A)$ is a convex curve. Hausdorff then showed [2] that $F(A)$ actually fills the interior of this curve (i.e., that $F(A)$ is convex). Proofs of the convexity of $F(A)$ also appear in [3] and [5].

The purpose of this note is to provide a simple inductive proof for the convexity of $F(A)$ which reduces the essential computation to the single case $n = 2$. We then dispose of this case by verifying directly that $F(A)$ satisfies the definition of a convex set.

THEOREM. $F(A)$ is convex.

Proof. (a) If $n = 1$, then $F(A)$ is a single point.

(b) Deferring the case $n = 2$, we suppose $n \geq 3$ and consider the inductive step from $n - 1$ to n. Let x and y be any two vectors of S_{n-1}; we must show that $F(A)$ contains the segment joining the points (Ax, x) and (Ay, y) in the ζ-plane. Since $n \geq 3$, we can find a vector u in U_n such that $(u, x) = (u, y) = 0$. The unitary-orthogonal complement in U_n of the line L spanned by u

is a subspace U_{n-1} of U_n whose unit sphere S_{n-2} is contained in S_{n-1}; furthermore, x and y lie in S_{n-2}. Any vector w in U_n admits a unique decomposition $w = v + z$, with v in L and z in U_n; the unitary-orthogonal projection P of U_n onto U_{n-1} is defined by $Pw = z$. Obviously $A_0 = PAP = P(AP)$ is a linear transformation of U_{n-1} into itself. For any z in S_{n-2} (and thus in S_{n-1}) we have $Pz = z$ and thus, decomposing $Az = v_1 + z_1$, \[(Az,z) = (v_1 + z_1, z) = (z_1, z) = (P(Az), z) = (PAPz, z) = (A_0z, z);\] since $(A_0z, z) = (Az, z)$, $F(A_0)$ is a subset of $F(A)$. Also, taking $z = x$ and $z = y$, we see that (Ax, x) and (Ay, y) are in $F(A_0)$; $F(A_0)$ is convex by hypothesis, and so the segment joining (Ax, x) and (Ay, y) lies in $F(A_0)$ and thus in $F(A)$, as desired.

(c) We turn now to the case $n=2$. It is well known (see [1], for example) that there exists a coordinate system (or equivalently, a basis) in U_2 with respect to which the matrix of A takes a "superdiagonal" form

\[A = \begin{pmatrix} a & c \\ 0 & b \end{pmatrix}\]

so that for any vector x in the "unit circle" S_1 of U_2, with coordinates x_1, x_2 relative to the system, we have

\[(Ax, x) = a|x_1|^2 + b|x_2|^2 + c\bar{x_1}x_2 \quad (|x_1|^2 + |x_2|^2 = 1)\]

\[= b + (a-b)|x_1|^2 + c\bar{x_1}x_2.\]

If, using the convention $\arg (0) = 0$, we let

\[\alpha = |a-b| \quad (\alpha \geq 0)\]

\[t = \arg(a-b)\]

\[s = |x_1|^2 \quad (0 \leq s \leq 1)\]

\[\theta = \arg x_2 - \arg x_1 - t,\]

and consider the set $S = [F(A) - b]\exp(-it)$, we find that
\[S = \{ \zeta \mid \zeta = \alpha s + c(s(1-s))^{1/2} \exp(i\theta); \, 0 \leq s \leq 1, \, 0 \leq \theta \leq 2\pi \} \].

Since \(S \) is congruent to \(F(A) \), it suffices to prove that \(S \) is convex.

If \(c = 0 \), then \(S \) is a line segment and therefore convex.

If \(c \neq 0 \) then we can assume \(c = 1 \), since \(F(A) \) is convex if and only if \(c^{-1}F(A) = F(c^{-1}A) \) is convex. Thus we can take \(S \) to be the union of the circles

\[C(s): \mid \zeta - \alpha s \mid = (s(1-s))^{1/2} = f(s) \quad (0 \leq s \leq 1). \]

Let \(\zeta_1 \) and \(\zeta_2 \) be any points of \(S \) and let \(\zeta_o \) be any point on the line joining them: we must show that \(\zeta_o \) lies in \(S \). Let \(C(s_1) \) and \(C(s_2) \) be circles on which \(\zeta_1, \zeta_2 \) lie, and use the fact that \(\zeta_o \) can be written in the form

\[\zeta_o = r \zeta_1 + (1-r)\zeta_2 \quad (0 \leq r \leq 1) \]

to define \(s_o = rs_1 + (1-r)s_2 \).

Consider \(G(s) = \mid \zeta_o - \alpha s \mid - f(s) \). Obviously \(G(0) = \mid \zeta_o \mid \geq 0 \) (i.e., \(\zeta_o \) lies outside or on \(C(0) \)). We will show that \(G(s_o) \leq 0 \) (i.e., that \(\zeta_o \) lies inside or on \(C(s_o) \)). It follows that \(G(s^*) = 0 \) (i.e., that \(\zeta_o \) lies on \(C(s^*) \)) for some \(s^* \) with \(0 \leq s^* \leq s_o \leq 1 \), so that \(\zeta_o \) lies in \(S \) and the convexity of \(S \) will be proved.

To show that \(G(s_o) \leq 0 \), we apply the triangle inequality:

\[\mid \zeta_o - \alpha s_o \mid \leq \mid r \zeta_o - \alpha s_1 \mid + (1-r) \mid \zeta_o - \alpha s_2 \mid = rf(s_1) + (1-r)f(s_2). \]

Since \(f''(s) \leq 0 \) for \(0 < s < 1 \), we have

\[rf(s_1) + (1-r)f(s_2) \leq f(s_o) \]

and so \(\mid \zeta_o - \alpha s_o \mid \leq f(s_o) \) (i.e., \(G(s_o) \leq 0 \)). This completes the proof.
REFERENCES

National Bureau of Standards
and
University of British Columbia