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Stability and the Fourier–Mukai transform II

Kōta Yoshioka

Abstract

We consider the problem of preservation of stability under the Fourier–Mukai transform
FE : D(X)→D(Y ) on an abelian surface and a K3 surface. If Y is the moduli space of
µ-stable sheaves on X with respect to a polarization H, we have a canonical polarization
Ĥ on Y and we have a correspondence between (X, H) and (Y, Ĥ). We show that the
stability with respect to these polarizations is preserved under FE , if the degree of stable
sheaves on X is sufficiently large.

Introduction

Let X be an abelian or a K3 surface defined over C. For a smooth projective variety Z, D(Z)
denotes the bounded derived category of coherent sheaves on Z. For a variety Y and an object
E ∈D(X × Y ), an integral functor

FE : D(X) → D(Y )
x 7→ RpY ∗(p∗X(x)⊗ E)

is called the Fourier–Mukai transform, if FE is an equivalence of categories, where pX and pY are
projections from X × Y to X and Y , respectively (Y is then an abelian surface or a K3 surface).
The Fourier–Mukai transform is a very useful tool for analyzing moduli spaces of sheaves on X.
In order to apply the Fourier–Mukai transform to an actual problem, it is important to study
the problem of preservation of stability under the Fourier–Mukai transform. We assume that Y
is a fine moduli space of stable sheaves on X with respect to H and E is the universal family.
Under a suitable condition on H, there is a natural polarization Ĥ on Y . For a stable sheaf E on
X with respect to H, we would like to study the stability of the transform FE(E) with respect
to Ĥ. For this problem, we introduced the twisted degree degG(E) and the G-twisted stability
in [Yos01a, Yos03a], and under some conditions we showed that FE(E) or its dual is G2-twisted
stable up to the action of the shift functor, for a G1-twisted stable sheaf E with degG1

(E) = 0, 1,
where G1 = E∨|X×{y} and G2 = E|{x}×Y (see also a generalization by Huybrechts [Huy06]). On the
other hand, we showed that the Fourier–Mukai transform does not always preserve the stability,
even for a µ-stable vector bundle [Yos03b].

In this paper, we shall provide positive results on this problem (Theorem 1.7). Let H be
an ample divisor on X. For a coherent sheaf E on X, RipY ∗(p∗X(E(mH))⊗ E) = 0, i > 0, for
m� 0. Hence, the Fourier–Mukai transform of E(mH), m� 0, is a sheaf. Since the G1-twisted
stability is defined by using the asymptotic behavior of χ(E(mH)⊗G∨1 ), m� 0, we may expect
the stability of FE(E(mH)). Let us explain an observation on this expectation. For simplicity,
we assume that X is a principally polarized abelian surface and E the Poincaré line bundle on
X ×X, where we have identified the dual abelian surface Y with X. In this case, we have (1)
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Stability and the Fourier–Mukai transform II

ch(FE(E)) = a− ξ + r%X if ch(E) = r + ξ + a%X where ξ ∈NS(X),
∫
X %X = 1, (2) Ĥ coincides

with H and (3) the twisted stability coincides with the usual stability. For a semi-stable sheaf E
on X with ch(E) = r + ξ + a%X , ξ ∈NS(X), and a subsheaf E1 with ch(E1) = r1 + ξ1 + a1%X ,
ξ1 ∈NS(X), we see that

deg(FE(E1(mH)))
rk(FE(E1(mH)))

− deg(FE(E(mH)))
rk(FE(E(mH)))

=
−(ξ1 +mr1H, H)
χ(E1(mH))

− −(ξ +mrH, H)
χ(E(mH))

=
(rξ1 − r1ξ, H)m2(H2)/2 + (ra1 − r1a)m(H2) + ((ξ, H)a1 − (ξ1, H)a)

χ(E1(mH))χ(E(mH))

and

χ(FE(E1(mH)))
rk(FE(E1(mH)))

− χ(FE(E(mH)))
rk(FE(E(mH)))

=
r1χ(E(mH))− rχ(E1(mH))
χ(E1(mH))χ(E(mH))

.

Hence, if m is sufficiently large, then E1 does not induce a destabilizing subsheaf of
FE(E(mH)). The choice of m depends on E1. Moreover, for a subsheaf F1 of FE(E(mH)), E•1 =
F−1
E (F1)(−mH) may not be a subsheaf of E. Hence, in order to show the stability of FE(E(mH)),

this observation is not sufficient. We also need to study the complex E•1 or its cohomology sheaves.
This will be done in this paper.

The organization of this paper is as follows. In § 1, we first explain some background to
state the main result such as twisted stability, the Fourier–Mukai transform and a canonical
polarization on Y . Then we state our main result (Theorem 1.7). In § 2, we explain key results to
prove the main result. We first collect two results of Huybrechts [Huy06] on the Fourier–Mukai
transform and their variants in § 2.1, and then we prepare two propositions (Propositions 2.8
and 2.11) in § 2.2, which will be used to analyse E•1 above. In § 3, we discuss the problem of
preservation of stability. We first prove the main result in §§ 3.1 and 3.2. We next treat a special
case in § 3.3. We assume that X is an abelian surface with NS(X) = Z and Y is the dual of X.
Then we can give a more precise result (Theorem 3.7). We also add a remark on the birational
correspondence of moduli spaces induced by the Fourier–Mukai transform (Theorem 3.14).

This is a revised version of the second half of [Yos01b]. In that paper, we proved Theorem 1.7
under some technical conditions. In particular, we assumed the stability of E|{x}×Y . Recently,
in an important paper by Huybrechts [Huy06], the stability of E|{x}×Y is proved. Moreover,
he found a natural abelian subcategory of the derived category which is preserved under the
Fourier–Mukai transform. With these results, we can not only simplify the proof of the WIT
properties in [Yos01b] but also complete the proof of the main result.

1. Some background and the main theorem

1.1 Notation

Let X be a K3 surface or an abelian surface defined over C. We define a lattice structure 〈·, ·〉
on Hev(X, Z) :=

⊕2
i=0 H

2i(X, Z) by
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〈x, y〉 := −
∫
X
x∨ ∪ y

=
∫
X

(x1 ∪ y1 − x0 ∪ y2 − x2 ∪ y0),

where xi ∈H2i(X, Z) (respectively yi ∈H2i(X, Z)) is the 2ith component of x (respectively y)
and x∨ = x0 − x1 + x2. It is now called the Mukai lattice [Muk87]. The Mukai lattice has a
weight-2 Hodge structure such that the (p, q)-part is

⊕
i H

p+i,q+i(X). For a coherent sheaf E on
X,

v(E) := ch(E)
√

tdX
= rk(E) + c1(E) + (χ(E)− ε rk(E))%X ∈Hev(X, Z)

is called the Mukai vector of E, where ε= 0, 1 according to whether X is an abelian surface or
a K3 surface, and %X is the fundamental class of X.

In [Yos01a], we introduced the notion of twisted stability. Let K(X) be the Grothendieck
group of X. We fix an ample divisor H on X. For G ∈K(X)⊗Q with rkG> 0, we define the
G-twisted rank, degree, and Euler characteristic of x ∈K(X)⊗Q by

rkG(x) := rk(G∨ ⊗ x),
degG(x) := deg(G∨ ⊗ x) = (c1(G∨ ⊗ x), H),

χG(x) := χ(G∨ ⊗ x).

For a coherent sheaf E, we set

µG(E) :=


degG(E)
rkG(E)

, rk E > 0,

∞, rk E = 0.

We define the G-twisted stability as follows.

Definition 1.1.

(1) A torsion-free sheaf E on X is G-twisted semi-stable (respectively G-twisted stable) with
respect to H, if

χG(F (nH))
rkG(F )

≤ χG(E(nH))
rkG(E)

, n� 0

for 0 ( F ( E (respectively the inequality is strict).

(2) A purely one-dimensional sheaf E on X is G-twisted semi-stable (respectively G-twisted
stable) with respect to H, if

χG(F (nH))
degG(F )

≤ χG(E(nH))
degG(E)

, n� 0

for 0 ( F ( E (respectively the inequality is strict).

Definition 1.2. For a Mukai vector v, we denote the moduli stack of G-twisted semi-stable
sheaves E with v(E) = v by MG

H(v)ss and the open substack consisting of G-twisted stable
sheaves by MG

H(v)s. Let MG
H(v) (respectively MG

H (v)) be the moduli space of S-equivalence
classes of G-twisted semi-stable sheaves (respectively G-twisted stable sheaves ) E with v(E) = v.
If G=OX , then we omit the symbol G (e.g. we abbreviate MOX

H (v)ss to MH(v)ss).
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Definition 1.3. For a coherent sheaf E 6= 0 on X, we set

µmax,G(E) := max
06=F⊂E

µG(F ),

µmin,G(E) := min
F(E

µG(E/F ).

The following easy lemma shows that µmax,G(E) and µmin,G(E) are well-defined.

Lemma 1.1.

(1) For a torsion-free sheaf E on X, let 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E be the Harder–Narasimhan
filtration of E with respect to the µ-semi-stability. Then

µmax,G(E) =
degG(F1)
rkG(F1)

=
deg(F1)

rk F1
− deg G

rkG
,

µmin,G(E) =
degG(Fs/Fs−1)
rkG(Fs/Fs−1)

=
deg(Fs/Fs−1)
rk(Fs/Fs−1)

− deg G
rkG

.

(2) If E(rk E 6= 0) has a torsion, then µmax,G(E) =∞ and µmin,G(E) = µmin,G(E/T ), where T
is the torsion submodule of E.

(3) If E 6= 0 is a torsion sheaf, then µmax,G(E) = µmin,G(E) =∞.

Proof. Part (1) follows from properties of the Harder–Narasimhan filtration. Parts (2) and (3)
are obvious. 2

Definition 1.4. Let v be a Mukai vector with rk v > 0. A polarization H on X is general with
respect to v if, for every µ-semi-stable sheaf E with v(E) = v and a subsheaf F 6= 0 of E,

(c1(F ), H)
rk F

=
(c1(E), H)

rk E
if and only if

c1(F )
rk F

=
c1(E)
rk E

.

1.2 Fourier–Mukai transform
Let v0 := r0 + ξ0 + a0%X , r0 > 0, ξ0 ∈NS(X) be a primitive isotropic Mukai vector on X. We take
a general ample divisor H with respect to v0. We set Y :=MH(v0). Then Y is an abelian surface
(respectively a K3 surface), if X is an abelian surface (respectively a K3 surface). By the proof
of [Yos99b, Lemma 2.1], the following lemma holds.

Lemma 1.2. We write v0 = l(r + ξ) + a%X , ξ ∈NS(X), where r + ξ is primitive and
gcd(l, a) = 1. Assume that H is general with respect to v0.

(1) If X is a K3 surface and r|(ξ2)/2 + 1, then there is a µ-stable vector bundle E0 such that
〈v(E0)2〉=−2 and v0 = rk(E0)v(E∨0 )− %X . Moreover, Y ∼=X and a universal family is given
by

E := ker(E∨0 � E0
φ→O∆), (1.1)

where φ is the composition of the restriction map E∨0 � E0→ E∨0 � E0|∆ with E∨0 ⊗ E0

→OX .

(2) If X is an abelian surface or r 6 |(ξ2)/2 + 1, then Y consists of µ-stable locally free sheaves.

Proof. For the convenience of the reader, we give a proof.
(1) Assume that X is a K3 surface and r|(ξ2)/2 + 1. We set b := ((ξ2)/2 + 1)/r ∈ Z. Then

u0 := r + ξ + b%X satisfies 〈u2
0〉=−2. We take an ample Q-divisor H ′ such that H ′ is sufficiently
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close to H and general with respect to u0. By [Yos01a, Theorem 8.1], there is a stable sheaf F0

with v(F0) = u0, where we consider the stability with respect to H ′. By our choice of H ′, F0 is µ-
semi-stable with respect to H. We shall prove that F0 is a µ-stable locally free sheaf with respect
to H. We first note that F0 is rigid, and hence F0 is locally free. Since v0 = lv(F0) + (a− lb)%X
and 〈v2

0〉=−2l2 − 2lr(a− lb) = 0, we have r|l and l/r = lb− a. Then, by the primitivity of v0,
we have l = r and

v0 = rk(F0)v(F0)− %X .
We set E0 := F∨0 and E := ker(F0 � E0→O∆). Then E|X×{x} = ker(Hom(F0, Cx)⊗ F0→ Cx) is
a µ-semi-stable sheaf with v(E|X×{x}) = v0. Since H is general with respect to v0, we see that H
is general with respect to u0. Then, by the primitivity of r + ξ, F0 and E0 are µ-stable sheaves
with respect to H. We shall prove that E|X×{x} is stable with respect to H. Let F be a subsheaf
of E|X×{x} such that (rk F, c1(F )) = k(r, ξ), k < r. Since Hom(F0, Cx)⊗ F0 is semi-stable,
χ(F )/rk F ≤ χ(F0)/rk F0 and if the equality holds, then F ∼= F⊕m0 . Since Hom(F0, E|X×{x}) = 0,
this is impossible. Therefore, we get

χ(F )
rk F

≤ χ(F0)
rk F0

− 1
rk F

<
χ(E|X×{x})
rk(E|X×{x})

,

which implies that E|X×{x} is stable. Hence, (1.1) gives a family of stable sheaves with the Mukai
vector v0. By the irreducibility of MH(v0), E ∼= E|X×{x} for a point x ∈X.

(2) We first assume that X is a K3 surface. Then r0 = lr > 1. Assume that E ∈MH(v0)
is S-equivalent to

⊕s
i=1 Ei with respect to the µ-stability, where Ei are µ-stable sheaves with

respect to H. Since H is general with respect to v0, we may set v(Ei) := li(r + ξ) + ai%X . Since
〈v(Ei)2〉= li(li(ξ2)− 2rai)≥−2, we have li(ξ2)− 2rai ≥ 0, or li = 1 and (ξ2)− 2rai =−2. By
our assumption, the latter case does not hold. Hence, li(ξ2)− 2rai ≥ 0 for all i. Then we have
l(ξ2) =

∑
i li(ξ

2)≥ 2
∑

i air = 2ar, which implies that li(ξ2) = 2air for all i. This means that
lv(Ei) = liv(E). By the primitivity of v(E), we get s= 1. Thus E is µ-stable. Assume that E is
not locally free. Then E∨∨ is a µ-stable locally free sheaf with 〈v(E∨∨)2〉 ≤ −2lr <−2. Therefore,
E is locally free.

Assume that X is an abelian surface. Then 〈v(F )2〉 ≥ 0 for any µ-semi-stable sheaf F . Hence,
a similar argument shows the claim. 2

Remark 1.1. If X is an abelian surface, then every simple sheaf E with v(E) = v0 is µ-stable
with respect to all H (cf. [Muk78]). Hence, Y does not depend on H and consists of µ-stable
vector bundles. In particular, every H is general with respect to v0.

Definition 1.5. Assume that there is a universal family E on X × Y . Let pX :X × Y →X
(respectively pY :X × Y → Y ) be the projection. We define FE : D(X)→D(Y ) by

FE(x) := RpY ∗(E ⊗ p∗X(x)), x ∈D(X),

and F̂E : D(Y )→D(X) by

F̂E(y) := R HompX (E , p∗Y (y)), y ∈D(Y ),

where HompX (−,−) = pX∗HomOX×Y
(−,−) is the sheaf of relative homomorphisms.

Orlov [Orl97] and Bridgeland [Bri99] showed that FE is an equivalence of categories and
the inverse is given by F̂E [2]. FE is now called the Fourier–Mukai functor. We denote the ith
cohomology sheaf H i(FE(x)) by F iE(x). FE also induces a Hodge isometry of the Mukai lattices
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FE : Hev(X, Z) → Hev(Y, Z)
v 7→ pY ∗(ch(E)

√
tdX×Y p∗X(v)).

By the Grothendieck–Riemann–Roch theorem, we have the following commutative diagram.

D(X)

��

FE // D(Y )

��
Hev(X, Z)

FE // Hev(Y, Z)

We are also interested in the composition of FE and the ‘taking-dual’ functor DY : D(Y )
→D(Y )op sending x ∈D(Y ) to RHom(x,OY ), where D(Y )op is the opposite category of D(Y ).
By Grothendieck–Serre duality, GE := (DY ◦ FE)[2]op is defined by

GE(x) := R HompY (E ⊗ p∗X(x),OX×Y ), x ∈D(X),

where H i(E[n]op) means H i−n(E). Let ĜE : D(Y )op→D(X) be the inverse of GE :

ĜE(y) := R HompX (E ⊗ p∗Y (y),OX×Y ), y ∈D(Y ).

Definition 1.6. Let E be a coherent sheaf on X. We say that WITi holds for E with respect
to FE , if F jE(E) = 0 for j 6= i. Moreover, if Hj(FE(E)⊗ k(t)) = 0, j 6= i for all t ∈ Y , then we say
that ITi holds for E with respect to FE . Similarly, we define WITi, ITi for F̂E , GE and ĜE .

Since F̂E [2] is the inverse of FE , we get the following.

Lemma 1.3. We have spectral sequences

Ep,q2 = FpE (F̂
q
E(E))⇒ Ep+q∞ =

{
E, p+ q = 2,
0, p+ q 6= 2,

E ∈ Coh(Y ),

Ep,q2 = F̂pE (F
q
E(F ))⇒ Ep+q∞ =

{
F, p+ q = 2,
0, p+ q 6= 2,

F ∈ Coh(X).

In particular,

(i) FpE (F̂0
E (E)) = 0, p= 0, 1;

(ii) FpE (F̂2
E (E)) = 0, p= 1, 2;

(iii) there is an injective homomorphism F0
E (F̂1

E (E))→F2
E (F̂0

E (E));

(iv) there is a surjective homomorphism F0
E (F̂2

E (E))→F2
E (F̂1

E (E)).

1.3 A polarization of Y

We shall define a canonical polarization of Y . We set

G1 := E∨|X×{y},

G2 := E|{x}×Y
(1.2)

for some x ∈X and y ∈ Y . We also set

w0 := v(E|{x}×Y ) = r0 + ξ̃0 + ã0%Y , ξ̃0 ∈NS(Y ). (1.3)

Since FE(E∨|X×{y}) = Cy[−2] and FE(Cx) = E|{x}×Y , we have

FE(v∨0 ) = %Y , FE(%X) = w0
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and FE induces an isometry

v∨0
⊥ ∩ %⊥X → w⊥0 ∩ %⊥Y .

We note that there are Hodge isometries

fv∨0 : H2(X,Q) → (v∨0
⊥ ∩ %⊥X)⊗Q

D 7→ D +
(D,−ξ0)

r0
%X

fw0 : H2(Y,Q) → (w⊥0 ∩ %⊥Y )⊗Q

D 7→ D +
(D, ξ̃0)
r0

%Y

and the following commutative diagram.

H2(X,Q) ν //

V fv0
��

H2(Y,Q)

fw0

��
(v∨0
⊥ ∩ %⊥X)⊗Q

FE // (w⊥0 ∩ %⊥Y )⊗Q

For D ∈H2(X,Q), we set

D̂ := −ν(D)

= −
[
FE
(
D +

(D,−ξ0)
r0

%X

)]
1

=
[
pY ∗

((
c2(E)− r0 − 1

2r0
(c1(E)2)

)
∪ p∗X(D)

)]
1

∈H2(Y,Q), (1.4)

where [·]1 means the projection to H2(Y,Q).

Lemma 1.4.

(1) For a divisor D on X (up to numerical equivalence), we take an element E ∈K(X) with
v(E) =−r0D + (c1(L), ξ0)%X . Then the determinant line bundle det(pY !(FE(E))) on Y
satisfies

c1(det(pY !(FE(E)))) = r0D̂. (1.5)

(2) r0Ĥ is represented by an ample divisor on Y .

Proof. Part (1) is a consequence of the Grothendieck–Riemann–Roch theorem.

For part (2), since H is general with respect to v0, G-twisted semi-stability does not depend
on the choice of G. In particular, MG1

H (v0) = Y . Assume that X is a K3 surface. Then in [OY03,
Proposition 1.3], we constructed an ample line bundle L on M

G1

H (v0) such that

c1(L) = [pY ∗(ch(E)p∗X(
√

tdX(r0H + (H, ξ0)%X)∨))]1. (1.6)

Indeed we proved that Simpson’s polarization of Y satisfies (1.6). It is easy to see that the same
construction works for an abelian surface X. By using (1.4), we get

c1(L) = r0Ĥ.

Therefore, the claim holds. 2
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Remark 1.2.

(i) −ν is the same as the Donaldson µ-map.

(ii) Lemma 1.4(2) is proved by Bartocci et al. in [BBH97], if X is a K3 surface.

By its definition, Ĥ 6∈H2(Y, Z) in general. In Appendix Appendix A, we shall study the
generator of QĤ ∩H2(Y, Z).

Definition 1.7. We use the Q-divisor Ĥ as a polarization of Y . Hence, for x ∈K(Y )⊗Q,
degG2

(x) = (c1(x⊗G∨2 ), Ĥ). We also study G2-twisted stability of F ∈ Coh(Y ) with respect
to Ĥ.

Remark 1.3. If E is not locally free, that is, the case of Lemma 1.2(1), then Ĥ =H.

By using (1.4), we get

−FE
(
D +

(D,−ξ0)
r0

%X

)
= D̂ +

(D̂, ξ̃0)
r0

%Y .

1.4 The cohomological correspondence
By using § 1.3, we can describe the cohomological Fourier–Mukai transform FE :H2(X,Q)
→H2(Y,Q) more explicitly.

Proposition 1.5.

(1) Every element v ∈Hev(X, Z) can be uniquely written as

v = lv∨0 + a%X + d

(
H − 1

r0
(H, ξ0)%X

)
+
(
D − 1

r0
(D, ξ0)%X

)
,

where

l =
rk v
rk v0

=−〈v, %X〉
rk v0

∈ 1
r0

Z,

a=−〈v, v
∨
0 〉

rk v0
∈ 1
r0

Z,

d=
degG1

(v)
rk v0(H2)

∈ 1
r0(H2)

Z

(1.7)

and D ∈H2(X,Q) ∩H⊥. Moreover, v ∈ v(D(X)) if and only if D ∈NS(X)⊗Q ∩H⊥.

(2)

FE
(
lv∨0 + a%X +

(
dH +D − 1

r0
(dH +D, ξ0)%X

))
= l%Y + aw0 −

(
dĤ + D̂ +

1
r0

(dĤ + D̂, ξ̃0)%Y

)
(1.8)

where D ∈H2(X,Q) ∩H⊥.

Hence we have the following.

Corollary 1.6.

degG1
(v) =−degG2

(FE(v)).
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In particular, degG2
(w) ∈ Z for w ∈Hev(Y, Z) and

min{degG1
(E)> 0 | E ∈K(X)}= min{degG2

(F )> 0 | F ∈K(Y )}.

1.5 Main theorem
We can now state our main theorem. For more details, see Theorem 3.1 and Proposition 3.2.

Theorem 1.7 (cf. Theorem 3.1, Proposition 3.2). Let Y :=MH(v0) be the moduli space of
stable sheaves on X with the isotropic Mukai vector v0 of rk v0 > 0. Assume that H is a general
polarization with respect to v0 and there is a universal family E . We set G1 := E∨|X×{y} and

G2 := E|{x}×Y , where x ∈X and y ∈ Y . For a Mukai vector v ∈ v(D(X)), we write

v := lv∨0 + a%X + (dH +D)− (dH +D, ξ0)%X/r0,

where l ≥ 0, a > 0 and D ∈NS(X)⊗Q ∩H⊥.

(1) Assume that l > 0. If

d >max{(4l2r3
0 + 1/(H2))ε, (1 + ε)r2

0l(〈v2〉 − (D2))},

then FE induces an isomorphism

MG1
H (v)ss→MG2

Ĥ
(FE(v))ss

which preserves the S-equivalence classes.

(2) Assume that l = 0. If

a >max{(2r0 + 1)ε, (〈v2〉 − (D2))/2 + ε},

then FE induces an isomorphism

MG1
H (v)ss→MG2

Ĥ
(FE(v))ss

which preserves the S-equivalence classes.

Remark 1.4. We note that 〈v2〉 − 〈D2〉 is invariant under v 7→ vemH . Hence, for E ∈MG1
H (v)ss,

FE(E(mH)) ∈MG2

Ĥ
(FE(v))ss if

m>

{
(max{(4l2r3

0 + 1/(H2))ε, (1 + ε)r2
0l(〈v2〉 − (D2))} − d)/lr0, l > 0,

(max{(2r0 + 1)ε, (〈v2〉 − (D2))/2 + ε} − a)/(d(H2)), l = 0.

Remark 1.5. If E is G1-twisted stable, then by using Corollary 2.14 we get the µ-stability of
FE(E(mH)). Thus the twisted stability (cf. Definition 1.1) is as important as the µ-stability.

Let us briefly explain an outline of the proof of Theorem 1.7 (or Theorem 3.1 and
Proposition 3.2). For the proof, we use two results. The first one is due to Huybrechts (see
Theorem 2.1). We assume that E is locally free and set X1 :=X, X2 := Y . Then Huybrechts finds
a natural abelian subcategory Ai of D(Xi) such that FE [1] induces an equivalence A1→ A2. This
abelian category Ai is a tilting of a torsion pair in Coh(Xi), and naturally appears in Bridgeland’s
stability conditions [Bri03]. By the definition of A1, we have E ∈ A1 for E ∈MG1

H (v)ss. Then,
applying Theorem 2.1 to E, we have FE(E)[1] ∈ A2, which means that µmax,G2(F0

E (E))≤ 0 and
µmin,G2(F1

E (E))> 0. We next prepare two results (Propositions 2.8 and 2.11) on the constraint
of the Mukai vector

v(F1) = aw1 + l1%Y − ((d1Ĥ + D̂1) + (d1Ĥ + D̂1, ξ̂0)%Y /r0)
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of a G2-twisted stable subsheaf F1 of F iE(E), which is roughly a consequence of Bogomolov’s
inequality. If FE(E) 6∈MG2

Ĥ
(FE(v))ss, then we have an exact sequence in A2:

0→ F1[1]→FE(E)[1]→ F •2 → 0.

Applying Theorem 2.1, we have an exact sequence in A1:

0→ F̂E(F1)[2]→ E→ F̂E(F •2 )[1]→ 0.

By using Proposition 2.8 or 2.11, we get a contradiction, which complete the proof of Theorem 1.7.

Remark 1.6. Let X =
⋃
i Ui be an analytic open covering of X and α= {αijk} a Cech 2-cocycle

of O×X representing a torsion element [α] ∈H2(X,O×X). An α-twisted sheaf E := {(Ei, ϕij)} is a
collection of sheaves Ei on Ui and isomorphisms ϕij : Ei|Ui∩Uj

→ Ej|Ui∩Uj
such that ϕii = idEi ,

ϕji = ϕ−1
ij and ϕki ◦ ϕjk ◦ ϕij = αijk idEi . In [HS05] and [Yos04], we studied α-twisted sheaves on

an abelian or a K3 surface. In particular, we defined the basic notions such as the Mukai lattice
and the Mukai vector of twisted sheaves, and we constructed the moduli spaces MG

H(v) of semi-
stable α-twisted sheaves E with the Mukai vector v, where G is a locally free α-twisted sheaf on
X. Assume that H is general with respect to an isotropic Mukai vector v0. Then Y =MG

H (v0)
is an abelian or a K3 surface and there is a universal family E as an p∗X(α)× p∗Y (β)-twisted
sheaf on X × Y , where β = {βijk} is a suitable Cech 2-cocycle of O×Y . We also constructed the
Fourier–Mukai transform FE : Dα(X)→Dβ(Y ) for the derived categories of twisted coherent
sheaves.

It is easy to see that we have a similar polarization Ĥ on Y and Proposition 1.5 holds. Thus
the statements of Theorem 1.7 are well-defined. Moreover, Lemma 1.2, Theorems 2.1 and 2.2
and Propositions 2.8 and 2.11 hold for this case. Then by the same proof as in the untwisted
case, we get Theorem 1.7 for the twisted case.

2. Basic results

We use the notation in § 1. From now on, we assume that there is a universal family E on X × Y .
Thus we have the Fourier–Mukai transform

FE : D(X)→D(Y ).

2.1 Some results of Huybrechts

Based on Bridgeland’s paper [Bri03], Huybrechts proved the following important results [Huy06].

Theorem 2.1 (Huybrechts). We set

Ti := {E ∈ Coh(Xi) | E = 0 or µmin,Gi(E)> 0},
Fi := {E ∈ Coh(Xi) | E = 0 or µmax,Gi(E)≤ 0},

Ai := {V • ∈D(Xi) |Hj(V •) = 0, j 6=−1, 0, H−1(V •) ∈ Fi, H
0(V •) ∈ Ti},

where X1 =X and X2 = Y . Assume that E is locally free. Then FE [1] induces an equivalence
A1→ A2.

In particular, the following easily follows from [Huy06, Proposition 2.2].
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Theorem 2.2. Assume that E is locally free.

(1) E∨|{x}×Y is µ-stable with respect to Ĥ for all x ∈X. LetM
Ĥ

(w∨0 ) be the moduli space of stable

sheaves on Y with the Mukai vector w∨0 . Then we have an isomorphism X →M
Ĥ

(w∨0 ) by
the correspondence x 7→ E∨|{x}×Y . In particular, M

Ĥ
(w∨0 ) consists of µ-stable vector bundles.

(2) By the identification M
Ĥ

(w∨0 ) =X, FE∨ : D(Y )→D(M
Ĥ

(w∨0 )) coincides with F̂E : D(Y )→

D(X). Moreover, the canonical polarization (̂Ĥ) on M
Ĥ

(w∨0 ) coincides with H.

Remark 2.1. Theorem 2.2(1) for a specialK3 surface was first proved by Bartocci et al. [BBH97],
and this gave the first example of the Fourier–Mukai transform on a K3 surface.

Remark 2.2. By the proof of these results below, we see that the claims of Theorem 2.1 and
Theorem 2.2 hold for the twisted version of the Fourier–Mukai transform.

These results are crucial for our proof of the main result. For the sake of convenience, we give
other proofs of Theorem 2.1 (see Lemma 2.5) and Theorem 2.2. We also treat the case where E
is not locally free. We start with the following lemmas.

Lemma 2.3. If E is a µ-semi-stable sheaf on X with degG1
(E) = 0, then F0

E (E) = 0.

Proof. We may assume that E is µ-stable. Lemma 1.2 implies that E|X×{y} is a µ-stable
vector bundle for any y ∈ Y or E = ker(E∨0 � E0→O∆). In the first case, Hom(E∨|X×{y}, E) 6= 0
implies that E∨|X×{y} ∼= E. Since F0

E (E) is torsion free, we get F0
E (E) = 0. In the second case,

Hom(E0, E)⊗ E0→ E is injective. Hence F0
E (E) = 0. 2

Lemma 2.4. Assume that E is locally free. Let E be a coherent sheaf on X.

(1) If WIT0 holds for E with respect to FE , then E ∈ T1.

(2) If WIT2 holds for E with respect to FE , then E ∈ F1. In particular, E is torsion free.
Moreover, if F2

E (E) does not contain a zero-dimensional subsheaf, then µmax,G1(E)< 0.

Proof. For a coherent sheaf E on X, there is an exact sequence

0→ E1→ E→ E2→ 0

such that E1 ∈ T1 and E2 ∈ F1. Applying FE to this exact sequence, we get a long exact sequence

0 // F0
E (E1) // F0

E (E) // F0
E (E2)

// F1
E (E1) // F1

E (E) // F1
E (E2)

// F2
E (E1) // F2

E (E) // F2
E (E2) // 0.

(2.1)

Since E|X×{y} is µ-stable, E1 ∈ T1 implies that F2
E (E1) = 0. By using Lemma 2.3, we also see

that F0
E (E2) = 0 from E2 ∈ F1. If WIT0 holds for E, then we get FE(E2) = 0. Hence part (1)

holds. If WIT2 holds for E, then we get FE(E1) = 0. Thus the first part of (2) holds. Assume
that WIT2 holds for E and F2

E (E) does not contain a zero-dimensional subsheaf. If there is an
exact sequence

0→ E1→ E→ E2→ 0

such that E1 is a µ-semi-stable sheaf with µG1(E1) = 0 and E2 is a torsion-free sheaf with
µmax,G1(E2)< 0 or E2 = 0, then we see that WIT2 holds for E1, F2

E (E1) is zero-dimensional
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and F1
E (E2)∼= F2

E (E1). Since F̂0
E (F1

E (E2))→ F̂2
E (F0

E (E2)) = 0 is injective, F2
E (E1) = 0, and hence

E1 = 0. Therefore, the claim holds. 2

Proof of Theorem 2.2. (1) In order to prove the µ-stability of E∨|{x}×Y , it is sufficient to prove
the µ-stability of E|{x}×Y . Assume that there is an exact sequence

0→ F1→E|{x}×Y → F2→ 0

such that F1 6= 0 is a torsion-free sheaf with µmin,G2(F1)≥ 0 and F2 6= 0 is a torsion-free sheaf
with µmax,G2(F2)≤ 0. Applying F̂E to this exact sequence, we get a long exact sequence

0 // F̂0
E (F1) // 0 // F̂0

E (F2)

// F̂1
E (F1) // 0 // F̂1

E (F2)

// F̂2
E (F1) // Cx

// F̂2
E (F2) // 0.

(2.2)

By Lemma 1.3, WIT0 holds for F̂2
E (F1). Hence F̂2

E (F1) ∈ T1, which means that degG1
(F̂2
E (F1))

≥ 0. If the equality holds, then F̂2
E (F1) is zero-dimensional. By Lemma 1.3, WIT2

holds for F̂1
E (F1)∼= F̂0

E (F2). Hence F̂1
E (F1) ∈ F1, which implies that degG1

(F̂1
E (F1))≤ 0.

Therefore, degG1
(F̂E(F1))≥ 0. On the other hand, degG1

(F̂E(F1)) =−degG2
(F1)≤ 0. Hence

degG1
(F̂E(F1)) = degG2

(F1) = 0. Then we see that F̂1
E (F1) is a µ-semi-stable sheaf with

degG1
(F̂1
E (F1)) = 0 and F̂2

E (F1) is a zero-dimensional sheaf. Hence F2
E (F̂1

E (F1)) is zero-
dimensional. Since F̂0

E (F1) = 0 and F1
E (F̂1

E (F1)) = 0, Lemma 1.3 implies that there is an exact
sequence

0→ F1→F0
E (F̂2

E (F1))→F2
E (F̂1

E (F1))→ 0.

Hence we see that rk F1 ≥ rk E|{x}×Y , which is a contradiction. Therefore, E|{x}×Y is µ-stable.
Then we have an injective morphism φ :X →M

Ĥ
(w∨0 ) by sending x ∈X to E∨|{x}×Y . We

shall show that φ is surjective. Let F be a µ-semi-stable sheaf on Y with v(F ) = w∨0 . Since
F̂E(RHom(F,OY )) = ĜE(F ) 6= 0, there is a point x ∈X such that Hom(F, E∨|{x}×Y ) 6= 0 or
Hom(E∨|{x}×Y , F ) 6= 0. Then we see that F ∼= E∨|{x}×Y . Therefore, φ is a surjective morphism and

Ĥ is general with respect to w∨0 .

(2) The first claim follows from the definition of F̂E . Then (̂Ĥ) =H follows from
Proposition 1.5(2). 2

By Theorem 2.2, the role of (X, H) and (Y, Ĥ) are the same, if E is locally free. Theorem 2.1
follows from the following claims.

Lemma 2.5. Assume that E is locally free. Let E be a coherent sheaf on X.

(1) If E ∈ T1, then we have the following assertions:

(a) F2
E (E) = 0;

(b) F0
E (E) ∈ F2; moreover, if E does not contain a zero-dimensional subsheaf, then we have

µmax,G2(F0
E (E))< 0 or F0

E (E) = 0;
(c) F1

E (E) ∈ T2.

123

https://doi.org/10.1112/S0010437X08003758 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003758


K. Yoshioka

(2) If E ∈ F1, then we have the following assertions:

(a) F0
E (E) = 0;

(b) F1
E (E) ∈ F2; in particular, F1

E (E) is torsion free;
(c) F2

E (E) ∈ T2.

Proof. (1) Claim (a) is obvious. Since WIT2 holds for F0
E (E), the first part of (b) is a consequence

of Lemma 2.4. For the second claim, it is sufficient to show that F̂2
E (F0

E (E)) does not contain a
zero-dimensional sheaf. Since F̂0

E (F1
E (E)) is torsion free, by using the exact sequence

0→ F̂0
E (F1

E (E))→ F̂2
E (F0

E (E))→ E→ 0

coming from Lemma 1.3, we get the assertion. To prove part (c), if F1
E (E) 6∈ T2, then we have

an exact sequence
0→ F1→F1

E (E)→ F2→ 0

such that F1 ∈ T2 and F2 6= 0 is a torsion-free sheaf with µmax,G2(F2)≤ 0. We apply F̂E to this
exact sequence. By our assumptions, F̂2

E (F1) = 0 and F̂0
E (F2) = 0. Since F2

E (E) = 0, Lemma 1.3
implies that F̂2

E (F1
E (E)) = 0. Thus WIT1 holds for F2 and we have a surjective homomorphism

E→ F̂1
E (F1

E (E))→ F̂1
E (F2)

with degG1
F̂1
E (F2) = degG2

(F2). Then F̂1
E (F2) ∈ T1 and degG1

F̂1
E (F2)≤ 0, which implies that

F̂1
E (F2) is zero-dimensional. Then F2 = F1

E (F̂1
E (F2)) = 0, which is a contradiction. Thus the claim

holds.
(2) Claim (a) follows from Lemma 2.3, and claim (c) follows from Lemma 1.3 and

Lemma 2.4(1). For the proof of part (b), assume that there is an exact sequence

0→ F1→F1
E (E)→ F2→ 0

such that 0 6= F1 ∈ T2 and F2 ∈ F2. Since F0
E (E) = 0 and F̂0

E (F2) = F̂2
E (F1) = 0, by using

Lemma 1.3, we see that F̂0
E (F1

E (E)) = 0, WIT1 holds for F1 and we have an injective
homomorphism

F̂1
E (F1)→ F̂1

E (F1
E (E))→ E.

In particular, F1 does not contain a zero-dimensional subsheaf. Since degG1
(F̂1
E (F1))

= degG2
(F1)> 0, this is impossible. Therefore, FE(E) ∈ F2. 2

If E is not locally free, then (Y, Ĥ) = (X, H) and E = ker(E∨0 � E0→O∆). In this case, since
E∨ ∈D(X ×X) is not a sheaf, we need to treat FE and F̂E separately. For a coherent sheaf E
on X, we have exact sequences:

0 // F0
E (E) // E0 ⊗Hom(E0, E) ev // E

// F1
E (E) //// E0 ⊗ Ext1(E0, E) // 0

// F2
E (E) //// E0 ⊗ Ext2(E0, E) // 0,

(2.3)

0 // E0 ⊗Hom(E0, E) // F̂0
E (E) //

0 // E0 ⊗ Ext1(E0, E) // F̂1
E (E) //

E // E0 ⊗ Ext2(E0, E) // F̂2
E (E) // 0.

(2.4)

The following is a modification of Lemma 2.5.
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Lemma 2.6. Assume that E is not locally free. Let E 6= 0 be a coherent sheaf on X.

(1) Assume that E ∈ T1. Then

(a) F2
E (E) = 0;

(b) F0
E (E) ∈ F2 and Hom(E0, F0

E (E)) = 0; moreover, if E does not contain a zero-
dimensional subsheaf, then µmax,G2(F0

E (E))< 0 or F0
E (E) = 0;

(c) there is an exact sequence

0→ F1→F1
E (E)→ E0 ⊗Hom(F1

E (E), E0)∨→ 0

such that F1 ∈ T2.

(2) Assume that E ∈ F1. Then

(a) F0
E (E) = 0;

(b) F1
E (E) ∈ F2 and Hom(E0, F1

E (E)) = 0, in particular F1
E (E) is torsion free;

(c) F2
E (E)∼= E0 ⊗Hom(E, E0)∨.

(3) For a coherent sheaf E fitting in an exact sequence

0→ E1→ E→ E⊕n0 → 0 (2.5)

such that E1 ∈ T2, we have F̂0
E (E)∼= E0 ⊗Hom(E0, E), F̂1

E (E) ∈ T1 and F̂2
E (E) = 0.

(4) If E ∈ F2, then we also have F̂0
E (E)∼= E0 ⊗Hom(E0, E), F̂1

E (E) ∈ F1, and F̂2
E (E) ∈ T1.

Proof. The proof of part (1)(a) is clear. For claim (b), since FE(E0) = E0[−2], we have

Hom(E0, F0
E (E)) = Hom(E0, FE(E)) = Hom(E0, E[−2]) = 0.

By (2.3), we get F0
E (E) ∈ F2. If E does not contain a zero-dimensional subsheaf, then ker(ev)

is locally free. Since Hom(E0, ker(ev)) = 0, ker(ev) does not contain a µ-stable subsheaf F
with µ(F )≥ 0. Thus µmax,G2(F0

E (E))< 0 or F0
E (E) = 0. For claim (c), we set F1 := coker(E0 ⊗

Hom(E0, E)→ E). Since µmin,G2(E)> 0, we have F1 ∈ T2. By (2.3), Hom(F1
E (E), E0)∼=

Ext1(E0, E)∨, and hence we get our claim.
The proof of part (2)(a) is a consequence of Lemma 2.3. Since F0

E (E) = 0,

Hom(E0, F1
E (E)) = Hom(E0[−1], FE(E)) = Hom(E0[−1], E[−2]) = 0.

The other claims follow from (2.3).
For the proof of part (3), we use (2.4). It is easy to see that F̂2

E (E1) = F̂2
E (E0) = 0. Hence

F̂2
E (E) = 0. Then we see that Hom(F̂1

E (E), E0) = Hom(F̂E(E), E0[−1]) = 0. The other claims also
follow.

For the proof of part (4), since Hom(F̂2
E (E), E0) = Hom(E, E0[−2]) = 0, we have F̂2

E (E) ∈ T1.
By (2.4), we get im(F̂1

E (E)→ E) ∈ F1, which implies that F̂1
E (E) ∈ F1. 2

Then we have a similar result to Theorem 2.1.

Proposition 2.7. Let A′2 be the subcategory of D(X) such that an object V • ∈D(X) belongs
to A′2, if

(i) Hj(V •) = 0 for j 6=−1, 0;

(ii) H−1(V •) = 0 ∈ F2 and Hom(E0, H
−1(V •)) = 0;

(iii) there is an exact sequence 0→ F →H0(V •)→ E⊕n0 → 0 such that F ∈ T2.

Then FE [1] induces an equivalence A1→ A′2.
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Proof. F̂E(A′2)⊂ A1 is a consequence of Lemma 2.6. If V • ∈D(X) belongs to A1, then by
Lemma 2.6 we see that H−1(FE(V •)[1])[1] ∈ A′2 and we have an exact sequence

E⊕k0 →H0(FE(V •)[1]) λ→ E′→ 0

where F2
E (H

−1(V •)) = E⊕k0 and E′ := F1
E (H

0(V •)) fits in an exact sequence

0→ E′1→ E′→ E⊕n0 → 0

with E′1 ∈ T2. Hence, in order to prove FE(V •) ∈ A′2, we shall show that φ : E→ E0 ⊗
Hom(E, E0)∨ is surjective and ker φ ∈ T2, where E :=H0(FE(V •)[1]).

The surjectivity of φ is a consequence of the exact sequence

E⊕k0
ψ→ E0 ⊗Hom(E, E0)∨→ E⊕n0 → 0,

where ψ is the composite E⊕k0 → E→ E0 ⊗Hom(E, E0)∨. We note that ker ψ = E⊕k
′

0 , k′ ≤ k.
Then we have an exact sequence

E⊕k
′

0 → ker φ→ E′1→ 0.

Since Ext1(E0, E0) = 0, we have Hom(ker φ, E0) = 0. Then we see that Hom(ker φ, F ) = 0 for all
µ-stable sheaf F with µG2(F )≤ 0. 2

2.2 Useful facts
In the remaining part of this section, we give some facts which will play important roles in the
next section. For v ∈ v(D(X)), we write

v = lv∨0 + a%X + (dH +D)− (dH +D, ξ0)%X/r0, (2.6)

as in Proposition 1.5.

Proposition 2.8. Assume that l, a > 0. We set

N := max{(4r3
0l

2 + 1/(H2))ε, (1 + ε)r2
0l(〈v2〉 − (D2))}.

Then the following hold.

(1) If d > N , then for any µ-semi-stable sheaf F1 with

v(F1) = a1w0 + l1%Y − (d1Ĥ + D̂1 + (d1Ĥ + D̂1, ξ̃0)%Y /r0),
0< d1 ≤ d, d1/a1 ≤ d/a, D1 ∈NS(X)⊗Q ∩H⊥,

we have l1 ≤ ld1/d.

(2) If d > N , then for any µ-semi-stable sheaf E1 with

v(E1) = l1v
∨
0 + a1%X + (d1H +D1 − (d1H +D1, ξ0)%X/r0),

0< d1 ≤ d, d1/l1 < d/l, D1 ∈NS(X)⊗Q ∩H⊥,

we have a1 < ad1/d.

Proof. It is sufficient to prove the claims (1) and (2) for µ-stable sheaves. Indeed, for a µ-semi-
stable sheaf F1, we take a Jordan–Hölder filtration with respect to µ-stability. We assume that
F1 is S-equivalent to

⊕
i F1,i, where F1,i are µ-stable torsion-free sheaves with

v(F1,i) = a1,iw0 + l1,i%Y − (d1,iĤ + D̂1,i + (d1,iĤ + D̂1,i, ξ̃0)%Y /r0),
d1,i/a1,i = d1/a1, D1,i ∈NS(X)⊗Q ∩H⊥.
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Then since d1,i/a1,i = d1/a1 ≤ d/a and d1,i ≤ d1 ≤ d, if the claim holds for µ-stable sheaves, then
we have l1,i ≤ ld1,i/d for all i. Thus l1 ≤

∑
i ld1,i/d= ld1/d. Hence we may assume that F1 is

µ-stable. In the same way, we may assume that E1 is µ-stable. For µ-stable sheaves, the claims
follow from the following numerical statement. 2

Lemma 2.9. Assume that l, a > 0 as above.

(1) If d > N , then for any Mukai vector w1 ∈Hev(Y, Z) such that 〈w2
1〉 ≥ −2ε and

w1 = a1w0 + l1%Y − (d1Ĥ + D̂1 + (d1Ĥ + D̂1, ξ̃0)%Y /r0),
0< d1 ≤ d, d1/a1 ≤ d/a, D1 ∈NS(X)⊗Q ∩H⊥, (2.7)

we have l1 ≤ ld1/d.

(2) If d > N , then for any Mukai vector v1 ∈Hev(X, Z) such that 〈v2
1〉 ≥ −2ε and

v1 = l1v
∨
0 + a1%X + (d1H +D1 − (d1H +D1, ξ0)%X/r0),

0< d1 ≤ d, d1/l1 < d/l, D1 ∈NS(X)⊗Q ∩H⊥,

we have a1 < ad1/d.

Proof. We set (H2) := 2n and s := 〈v2〉/2 =−r0la+ d2n+ (D2)/2. By our assumption,
d2n− s+ (D2)/2 = r0la > 0. We shall first prove part (1).

Case I. We assume that d1 < d. By (1.7), we get that 1/(2nr0)≤ d1 ≤ d− 1/(2nr0). We note
that

〈w2
1〉 = 2nd2

1 − 2l1a1r0 + (D2
1)

≤ 2nd2
1 − 2l1r0d1a/d

= 2nd2
1 − 2l1r0

d1

d

d2n− s+ (D2)/2
r0l

= 2nd2
1 − 2l1d1

d2n− s+ (D2)/2
dl

. (2.8)

We first show that l1 < l for d > N . Assume that l1 ≥ l. By (2.8), we see that

−2ε ≤ 〈w2
1〉

≤ 2d2
1n− 2(d2n− s+ (D2)/2)d1/d

= 2nd1

(
d1 − d+

s− (D2)/2
dn

)
. (2.9)

We set n1 := max{(4r0 + 1/(2nr0))ε, (1 + ε)r0(〈v2〉 − (D2))}. Since N ≥ n1, by Lemma 2.10
below, we get a contradiction. Therefore, we have l1 < l for d > N .

We next show that l1 ≤ ld1/d. By (2.8), we get that

−2ε≤ 〈w2
1〉 ≤ 2nd1

((
d1 −

l1
l
d

)
+

l1
dnl

(s− (D2)/2)
)
.

We note that

2nd1

((
d1 −

l1
l
d

)
+

l1
dnl

(s− (D2)/2)
)
<−2ε (2.10)
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if and only if (l1/(dnl))(s− (D2)/2)< l1d/l − (d1 + ε/(nd1)). We shall show that (l1/l)d− d1

≤ 0, if d > N . Assume that (l1/l)d− d1 > 0. If ε= 0 and d > N , then it is easy to see that (2.10)
holds. Hence we assume that ε= 1. Since 1/(2nr0)≤ d1 ≤ (l1/l)d− 1/(2nlr2

0), we get that

l1d/l − (d1 + 1/(nd1))≥min
{
l1d

l
− 1

2nr0
− 2r0,

1
2nlr2

0

− 1
n(l1d/l − 1/(2nlr2

0))

}
.

We set n2 := 4l2r3
0 + 1/(2n). Then we see that n(l1d/l − 1/(2nlr2

0))> 4nlr2
0 for d > n2.

We set n3 := 2r2
0l + l/(2n) + 1/(4nr0). Then we get that l1d/l − 1/(2nr0)− 2r0 ≥ 1/(4nlr2

0).
Hence l1d/l − (d1 + 1/(nd1))≥ 1/(4nlr2

0) for d≥max{n2, n3}. So if d >max{n1, n2, n3,
4r2

0l(s− (D2)/2)}=N , then 〈w2
1〉<−2, which is a contradiction. Therefore, (l1/l)d− d1 ≤ 0

for d > N .
Case II. We next assume that d1 = d. If l1 ≥ l + 1/r0, then we get

〈w2
1〉 ≤ 〈v2〉 − (D2)− 2a

=
−(2nd2) + (lr0 + 1)(〈v2〉 − (D2))

(lr0)
.

Since d > 4r3
0l

2, we get nd2 > 4nr3
0l

2d. Then we see that nd2 > 4nr3
0l

2d > (lr0 + 1)(〈v2〉 − (D2))
and nd2 > n(4r3

0l
2)2 > 2lr0, and hence 〈w2

1〉<−2. Therefore, we get our claim.
We next prove part (2). Since FE(v1) = w1, the claim follows from part (1). 2

Lemma 2.10. Assume that 1/(2nr0)≤ d1 ≤ d− 1/(2nr0). Then

2nd1

(
d1 − d+

s− (D2)/2
dn

)
<−2ε (2.11)

for d > n1.

Proof. It is easy to see that (2.11) follows from the following inequality:

d− s− (D2)/2
dn

> max
{
d1 +

ε

nd1

∣∣∣∣ 1
2nr0

≤ d1 ≤ d−
1

2nr0

}
= max

{
d1 +

ε

nd1

∣∣∣∣d1 =
1

2nr0
, d− 1

2nr0

}
(2.12)

for all d > n1. Hence we shall show (2.12). If ε= 0 and d > r0(〈v2〉 − (D2)) = n1, then (2.12)
holds. Hence we assume that ε= 1. For d > n1, we have n(d− 1/(2nr0))> 4nr0 and (s−
(D2)/2)/(dn)< 1/(4nr0). Hence

d− 1
2nr0

+
1

n(d− 1/(2nr0))
< d− 1

2nr0
+

1
4nr0

= d− 1
4nr0

< d− s− (D2)/2
dn

.

We also get that

1
2nr0

+ 2r0 ≤−
1

4nr0
+ 1 + 2r0 <−

s− (D2)/2
dn

+ n1 <−
s− (D2)/2

dn
+ d.

Therefore, (2.12) holds. 2

Proposition 2.11. Assume that l = 0 and d > 0. We set

N := max{(〈v2〉 − (D2))/2 + ε, (2r0 + 1)ε}.

Then the following hold.
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(1) If a > N , then for any µ-semi-stable sheaf F1 with

v(F1) = a1w0 + l1%Y − (d1Ĥ + D̂1 + (d1Ĥ + D̂1, ξ̃0)%Y /r0),
0< d1 ≤ d, d1/a1 ≤ d/a, D1 ∈NS(X)⊗Q ∩H⊥,

we have l1 ≤ 0.

(2) If a > N , then for any µ-semi-stable sheaf E1 with

v(E1) = l1v
∨
0 + a1%X + (d1Ĥ + D̂1 − (d1H +D1, ξ0)%X/r0),

0< d1 ≤ d, l1 > 0, D1 ∈NS(X)⊗Q ∩H⊥,

we have a1/d1 < a/d.

In the same way as in the proof of Proposition 2.8, we may assume that E1 and F1 are
µ-stable. Then the claims follow from the following two lemmas.

Lemma 2.12. Assume that l = 0 and d > 0. We set N ′ := max{(〈v2〉 − (D2))/2, (2r0 + 1)ε}.
Then the following hold.

(1) If a > N ′, then for any Mukai vector w1 ∈Hev(Y, Z) such that 〈w2
1〉 ≥ −2ε and

w1 = a1w0 + l1%Y − (d1Ĥ + D̂1 + (d1Ĥ + D̂1, ξ̃0)%Y /r0),
d1 < d, 0< d1/a1 ≤ d/a, D1 ∈NS(X)⊗Q ∩H⊥,

we have l1 ≤ 0.

(2) If a > N ′, then for any Mukai vector v1 ∈Hev(X, Z) such that 〈v2
1〉 ≥ −2ε and

v1 = l1v
∨
0 + a1%X + (d1Ĥ + D̂1 − (d1H +D1, ξ0)%X/r0),

0< d1 < d, l1 > 0, D1 ∈NS(X)⊗Q ∩H⊥,

we have a1/d1 < a/d.

Proof. We shall only prove part (1). We may assume that F1 is µ-stable. Assume that l1 > 0.
Then r0l1 ≥ 1, and hence we see that

−2ε≤ 〈w2
1〉 ≤ d2

1(H2)− 2r0l1a1 ≤ d2
1(H2)− 2a1 ≤ d2

1(H2)− 2ad1/d.

We set

n1 := max
{
d

(
(H2)

2
d1 +

ε

d1

)∣∣∣∣ 1
r0(H2)

≤ d1 ≤ d−
1

r0(H2)

}
= max

{
d

(
(H2)

2
d1 +

ε

d1

)∣∣∣∣ d1 =
1

r0(H2)
, d− 1

r0(H2)

}
.

Then we have d2
1(H2)− 2ad1/d <−2ε for a > n1. Therefore, l1 ≤ 0 for a > n1. It is easy to see

that N ′ > n1. Hence part (1) holds. 2

Lemma 2.13. Assume that l = 0 and d > 0.

(1) If a > (〈v2〉 − (D2))/2 + ε, then for any Mukai vector w1 ∈Hev(Y, Z) such that 〈w2
1〉 ≥ −2ε

and

w1 = a1w0 + l1%Y − (d1Ĥ + D̂1 + (d1Ĥ + D̂1, ξ̃0)%Y /r0),
d1 = d, 0< d1/a1 ≤ d/a, D1 ∈NS(X)⊗Q ∩H⊥,

we have l1 ≤ 0.
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(2) If a > (〈v2〉 − (D2))/2 + ε, then for any Mukai vector v1 ∈Hev(X, Z) such that 〈v2
1〉 ≥ −2ε

and

v1 = l1v
∨
0 + a1%X + (d1H +D1 − (d1H +D1, ξ0)%X/r0),
d1 = d, l1 > 0, D1 ∈NS(X)⊗Q ∩H⊥,

we have a1/d1 < a/d.

Proof. We only prove part (2). If a1 ≥ a, then we see that

〈v2
1〉 − (D2

1)≤ d2(H2)− 2l1ar0 ≤ d2(H2)− 2a= 〈v2〉 − (D2)− 2a <−2ε.

Therefore, a1 < a. 2

Corollary 2.14. Assume that d > N if l > 0 and a > N if l = 0, d > 0. Let F be a µ-semi-
stable sheaf with v(F ) = FE(v). Then F is G2-twisted semi-stable. Moreover, if F is G2-twisted
stable, then it is µ-stable.

Proof. Assume that F is not µ-stable. Let

0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = F

be the Jordan–Hölder filtration of F with respect to the µ-stability. We set

v(Fi/Fi−1) = aiw0 + li%Y − (diĤ + D̂i + (diĤ + D̂i, ξ̃0)%Y /r0), Di ∈NS(X)⊗Q ∩H⊥.

Applying Proposition 2.8, or 2.11 to each Fi/Fi−1, we get that li ≤ ldi/d. Then we see that∑
i li ≤

∑
i ldi/d= l. Since

∑
i li = l, we have li = ldi/d for all i. Since di/ai = d/a, we get

li/ai = l/a, which implies that F is G2-twisted semi-stable. By the same proof, we also see
that F is µ-stable, provided that F is G2-twisted stable. 2

Remark 2.3. Assume that d > N if l > 0 and a > N if l = 0 and d > 0. Let F be a µ-semi-stable
sheaf with v(F ) = FE(v). Then F is locally free. Indeed we note that

v(F∨∨) = aw0 + l′%Y − (dĤ + D̂ + (dĤ + D̂, ξ̃0)%Y /r0), l′ ≥ l.

By Proposition 2.8 or 2.11, we get l′ ≤ l. Hence v(F∨∨) = v(F ), which implies that F is locally
free.

Remark 2.4. Assume that l > 0. If d > N and

min{−(D2)|(D, H) = 0, D ∈NS(X) \ {0}}> (r0l)2(〈w2〉+ 2(r0l)2ε)/4, (2.13)

then Ĥ is a general polarization with respect to w.
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To prove the claim, for a µ-semi-stable sheaf F with v(F ) = w, assume that there is an exact
sequence

0→ F1→ F → F2→ 0

such that Fi(6= 0), i= 1, 2, are µ-semi-stable sheaves with

v(Fi) := aiw0 + li%Y − (ξ̂i + (ξ̂i, ξ̃0)%Y /r0), ξi ∈NS(X)⊗Q

and (ξ1, H)/a1 = (ξ2, H)/a2. By the proof of Corollary 2.14, we see that l1/a1 = l2/a2 = l/a, and
Fi, i= 1, 2, are G2-twisted semi-stable sheaves. Assume that Fi are S-equivalent to a direct sum
of G2-twisted stable sheaves: Fi ∼

⊕si
i=1 Fij . Since χ(Fij , Fij′)≤ 2ε and lir0 ≥ si, we see that

〈v(Fi)2〉 ≥ −2s2
i ε≥−2l2i r

2
0ε. By using [Yos03a, part I, (5.3)], we see that

〈v(F̂E(w))2〉
r0l1r0l2

= −
((

ξ1

r0l1
− ξ2

r0l2

)2)
+

r0l

r3
0l

2
1l2
〈v(F̂E(F1))2〉+

r0l

r3
0l1l

2
2

〈v(F̂E(F2))2〉

≥ −
((

ξ1

r0l1
− ξ2

r0l2

)2)
− 2
(
l

l2
+

l

l1

)
.

Hence we get

r2
0l1l2(〈w2〉+ 2r2

0l
2ε)≥−((r0l2ξ1 − r0l1ξ2)2).

Since r0l2ξ1 − r0l1ξ2 = (r0l2)c1(F̂E(v1))− (r0l1)c1(F̂E(v2)) ∈NS(X), we get our claim.

3. Asymptotic stability theorem

3.1 Positive rank case
Theorem 3.1. Assume that H is general with respect to v0 and there is a universal
family E . Let E be a G1-twisted semi-stable sheaf with v(E) = v := lv∨0 + a%X + (dH +D)
− (dH +D, ξ0)%X/r0, where l, a > 0 and D ∈NS(X)⊗Q ∩H⊥. If

d >max{(4l2r3
0 + 1/(H2))ε, (1 + ε)r2

0l(〈v2〉 − (D2))},

then WIT0 holds for E with respect to FE and F0
E (E) is G2-twisted semi-stable. Moreover,

FE preserves the S-equivalence classes. Conversely for a G2-twisted semi-stable sheaf F with
v(F ) = v(FE(v)), WIT2 holds for F with respect to F̂E and F̂2

E (F ) is a G1-twisted semi-stable
sheaf. In particular, FE induces an isomorphism

MG1
H (v)ss→MG2

Ĥ
(FE(v))ss

which preserves the S-equivalence classes.

Proof. We set A∗2 := A2 or A′2 according to whether E is locally free or not. For a G1-twisted
semi-stable sheaf E with v(E) = v, we assume that FE(E) is not µ-stable. That is, WIT0 does
not hold for E with respect to FE , or WIT0 holds for E but F0

E (E) is not µ-stable. We set

v(F0
E (E)) := a′w0 + l′%Y − (d′Ĥ + D̂′ + (d′Ĥ + D̂′, ξ̃0)%Y /r0),

a′ > 0, D′ ∈NS(X)⊗Q ∩H⊥,
v(F1

E (E)) := a′′w0 + l′′%Y + (d′′Ĥ + D̂′′ + (d′′Ĥ + D̂′′, ξ̃0)%Y /r0),
a′′ ≥ 0, D′′ ∈NS(X)⊗Q ∩H⊥.

By Lemma 2.5(1) or Lemma 2.6(1), we get (i) µmax,G2(F0
E (E))< 0, (ii) F1

E (E) ∈ A∗2 and
(iii) F iE(E) = 0, i 6= 0, 1. In particular, d′ > 0 and d′′ ≥ 0. Let F1 6= 0 be a G2-twisted
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stable subsheaf of F0
E (E) such that µG2(F1) = µmax,G2(F0

E (E)) and F0
E (E)/F1 satisfies

µG2(F0
E (E)/F1)≤ µG2(F1) or F0

E (E)/F1 = 0. Then

v(F1) = a1w0 + l1%Y − (d1Ĥ + D̂1 + (d1Ĥ + D̂1, ξ̃0)%Y /r0),
a1 > 0, 0< d1/a1 ≤ d′/a′, D1 ∈NS(X)⊗Q ∩H⊥.

Let F •2 be an object in D(Y ) fitting in an exact triangle

F1→FE(E)→ F •2 → F1[1]. (3.1)

We note that H0(F •2 ) = F0
E (E)/F1, H1(F •2 ) = F1

E (E) and Hk(F •2 ) = 0, k 6= 0, 1. By our choice of
F1, we get d1 > 0 and F1, F

•
2 ∈ A∗2[−1]. Applying F̂E to (3.1), we have an exact triangle

F̂E(F1)→ E[−2]→ F̂E(F •2 )→ F̂E(F1)[1].

By Theorem 2.1 or Proposition 2.7, we have F̂E(F1), F̂E(F •2 ) ∈ A1[−2]. Then we see that WIT2

holds for F1 and we have an exact sequence

0→ F̂1
E (F

•
2 )→ F̂2

E (F1)
φ→ E→ F̂2

E (F
•
2 )→ 0.

Since E and F̂1
E (F

•
2 ) are torsion free, F̂2

E (F1) is also torsion free. Therefore, l1 > 0. Since
(l,−d, a) = (l′ − l′′,−d′ − d′′, a′ − a′′), we have d′ ≤ d and d′/a′ ≤ d/a. Moreover, if d′/a′ = d/a,
then d′′ = a′′ = 0. Since 0< d1 ≤ d′ ≤ d, applying Proposition 2.8 to the sheaf F1, we get that
l1 ≤ ld1/d. If F̂1

E (F
•
2 ) 6= 0, then F̂1

E (F
•
2 ) ∈ A1[−1] is a torsion-free sheaf with µmax,G1(F̂1

E (F
•
2 ))≤ 0,

which implies that µG1(im φ)> µG1(F̂2
E (F1))≥ µG1(E). This means that E is not µ-semi-

stable. Therefore, F̂1
E (F

•
2 ) = 0. Then we see that l1 = ld1/d and a1/l1 ≤ a/l, which implies that

d1/a1 = d′/a′ = d/a and F0
E (E) is a µ-semi-stable sheaf. By Proposition 2.8, we have l′ ≤ l.

Since a′′ = d′′ = 0, F1
E (E) is a zero-dimensional sheaf with l′′ ≥ 0. Hence we have l′′ = l′ − l = 0.

Therefore, F1
E (E) = 0 and F0

E (E) is G2-twisted semi-stable.
If E is G1-twisted stable, then we also see that FE(E) is a G2-twisted stable sheaf. Assume

that E is S-equivalent to E′ =
⊕

i Ei, where Ei are G1-twisted stable sheaves. We shall prove
that WIT0 holds for all Ei, F0

E (Ei) are G2-twisted stable and FE(E) = F0
E (E) is S-equivalent to⊕

i F0
E (Ei). Since FE(E′) =

⊕
i FE(Ei), WIT0 holds for Ei and FE(Ei) = F0

E (Ei) are G2-twisted
semi-stable sheaves. For every subsheaf Fi,2 ⊂FE(Ei) with µ(FE(Ei)) = µ(Fi,2), we regard Fi,2
as a subsheaf of FE(E) and apply the same argument as above. Then we see that F̂E(Fi,2) makes
Ei properly G1-twisted semi-stable. Therefore, FE(Ei) are G2-twisted stable. Then it is easy to
see that FE(E) is S-equivalent to

⊕
i FE(Ei). Therefore, FE preserves the S-equivalence classes.

Conversely for a G2-twisted semi-stable sheaf F with v(F ) = FE(v), assume that F̂E(F )[2] is
not a µ-stable sheaf. We set

v(F̂1
E (F )) := l′v∨ + a′%X − ((d′H +D′)− (d′H +D′, ξ0)%X/r0),

l′ ≥ 0, D′ ∈NS(X)⊗Q ∩H⊥,
v(F̂2

E (F )) := l′′v∨ + a′′%X + (d′′H +D′′)− (d′′H +D′′, ξ0)%X/r0,

l′′ > 0, D′′ ∈NS(X)⊗Q ∩H⊥.

By Theorem 2.1 or Proposition 2.7, F̂1
E (F ) ∈ F1 and µmin,G1(F̂2

E (F ))> 0. In particular, d′ ≥ 0
and d′′ > 0. Let F̂2

E (F )→ E2 be a quotient such that E2 is a G1-twisted stable torsion-free sheaf
with µG1(E2) = µmin,G1(F̂2

E (F )). We set

v(E2) = l2v
∨ + a2%X + (d2H +D2)− (d2H +D2, ξ0)%X/r0,

0< d2/l2 ≤ d′′/l′′, D2 ∈NS(X)⊗Q ∩H⊥.
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Since (l, d, a) = (l′′ − l′, d′′ + d′, a′′ − a′), d2/l2 ≤ d′′/l′′ ≤ d/l and d2/l2 < d/l unless l′ = d′ = 0.
Since l2 ≤ l′′, we also have d2 ≤ d′′ ≤ d. Let E•1 be an object in D(X) fitting in an exact triangle

E•1 → F̂E(F )[2]→ E2→ E•1 [1]. (3.2)

We note that H−1(E•1) = F̂1
E (F ), H0(E•1) = ker(F̂2

E (F )→ E2) and H i(E•1) = 0, i 6=−1, 0. In
particular, E•1 , E2 ∈ A1. We apply FE to (3.2). Then by using Lemma 2.5 or Lemma 2.6, we
have an exact sequence

0→F0
E (E

•
1)→ F

φ→F0
E (E2)→F1

E (E
•
1)→ 0

with F0
E (E

•
1) ∈ F2 and µmin,G2(F1

E (E
•
1))≥ 0 or F1

E (E
•
1) = 0. Assume that d2/l2 < d/l. Since

0< d2 ≤ d, we can apply Proposition 2.8 to conclude a2/d2 < a/d. Then φ(F ) gives a destabilizing
quotient sheaf. Therefore, d2/l2 = d′′/l′′ = d/l, l′ = d′ = 0 and F1

E (E
•
1) is a zero-dimensional sheaf.

In particular, F̂1
E (F ) = 0. If a2/l2 ≤ a/l, then d/a≤ d2/a2, which also means that φ(F ) gives a

destabilizing quotient sheaf, unless d/a= d2/a2 and φ is surjective. If F̂2
E (F ) contains a zero-

dimensional sheaf, then F must contain E|{x}×Y , x ∈X. Therefore, F̂2
E (F ) is a G1-twisted semi-

stable sheaf. It is easy to see that F̂2
E (F ) is G1-twisted stable if F is G2-twisted stable. It is also

easy to see the preservation of the S-equivalence classes. 2

3.2 Rank zero case
Proposition 3.2. Assume that H is general with respect to v0 and there is a universal family
E . Let E be a G1-twisted stable sheaf with v(E) := v = a%X + (dH +D)− (dH +D, ξ0)%X/r0,
where d > 0 and D ∈NS(X)⊗Q ∩H⊥. If

a >max{(2r0 + 1)ε, (〈v2〉 − (D2))/2 + ε},

then WIT0 holds for E with respect to FE and F0
E (E) is G2-twisted semi-stable. Conversely for

a G2-twisted semi-stable sheaf F on Y with v(F ) = FE(v), WIT2 holds with respect to F̂E and
F̂2
E (F ) is a G1-twisted semi-stable sheaf. In particular, FE induces an isomorphism

MG1
H (v)ss→MG2

Ĥ
(FE(v))ss

which preserves the S-equivalence classes.

Proof. Assume that FE(E) is not µ-stable. We set

v(F0
E (E)) := a′w0 + l′%Y − (d′Ĥ + D̂′ + (d′Ĥ + D̂′, ξ̃0)%Y /r0), D′ ∈NS(X)⊗Q ∩H⊥,

v(F1
E (E)) := a′′w0 + l′′%Y + (d′′Ĥ + D̂′′ + (d′′Ĥ + D̂′′, ξ̃0)%Y /r0), D′′ ∈NS(X)⊗Q ∩H⊥.

In the same way as in the proof of Theorem 3.1, by using Lemma 2.5(1) or Lemma 2.6(1),
we see that d′ > 0, d′′ ≥ 0 and we have an exact triangle

F1→FE(E)→ F •2 → F1[1] (3.3)

such that F1(6= 0) is a G2-twisted stable sheaf with

v(F1) = a1w0 + l1%Y − (d1Ĥ + D̂1 + (d1Ĥ + D̂1, ξ̃0)%Y /r0),
0< d1/a1 ≤ d′/a′, D1 ∈NS(X)⊗Q ∩H⊥

and F •2 is a complex such that µmax,G2(H0(F •2 ))< 0 or H0(F •2 ) = 0, and H1(F •2 ) ∈ T2. Applying
F̂E to (3.3), we see that WIT2 holds for F1, F̂ iE(F •2 ) = 0 for i 6= 1, 2 and there is an exact sequence

0→ F̂1
E (F

•
2 )→ F̂2

E (F1)
φ→ E→ F̂2

E (F
•
2 )→ 0.
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Since (0,−d, a) = (l′ − l′′,−d′ − d′′, a′ − a′′), we have d′ ≤ d and d′/a′ ≤ d/a. Moreover, if d′/a′ =
d/a, then d′′ = a′′ = 0. Since 0< d1 ≤ d′ ≤ d, applying Proposition 2.11 to the sheaf F1, we get
that l1 ≤ 0. Hence l1 = 0 and F̂1

E (F
•
2 ) = 0 by the torsion-freeness of F̂1

E (F
•
2 ). Since E is G1-twisted

semi-stable, a1/d1 ≤ a/d. Hence d1/a1 = d′/a′ = d/a, d′′ = a′′ = 0 and F0
E (E) is a µ-semi-stable

sheaf. By Proposition 2.11, we have l′ ≤ 0. Since a′′ = d′′ = 0, F1
E (E) is a zero-dimensional sheaf

with l′′ ≥ 0. Then we have l′′ = l′ = 0. Therefore, F1
E (E) = 0 and F0

E (E) is G2-twisted semi-stable.

If E is G1-twisted stable, then we also see that FE(E) is G2-twisted stable. Moreover, it
preserves the S-equivalence classes.

Conversely for a G2-twisted semi-stable sheaf F with v(F ) = FE(v), assume that F̂1
E (F ) 6= 0.

Then rk(F̂1
E (F )) = rk(F̂2

E (F ))> 0. Let F̂2
E (F )→ E2 be a quotient such that E2 is a G1-twisted

stable torsion-free sheaf with µ(E2) = µmin,G1(F̂2
E (F )). We set

v(E2) = l2v
∨ + a2%X + (d2H +D2)− (d2H +D2, ξ0)%X/r0, D2 ∈NS(X)⊗Q ∩H⊥.

By Lemma 2.5(2) or Lemma 2.6(4), we have d2 > 0. Let E•1 be an object in D(X) which defines
an exact triangle

E•1 → F̂E(F )[2]→ E2→ E•1 [1]. (3.4)

We note that H−1(E•1) = F̂1
E (F ), H0(E•1) = ker(F̂2

E (F )→ E2) and H i(E•1) = 0, i 6=−1, 0. Thus
E•1 , E2 ∈ A1. We apply FE to (3.4). Then, by using Lemma 2.5 or Lemma 2.6, we have an exact
sequence

0→F0
E (E

•
1)→ F

φ→F0
E (E2)→F1

E (E
•
1)→ 0

with µmax,G2(F0
E (E

•
1))≤ 0 and µmin,G2(F1

E (E
•
1))≥ 0. Then d= d2 − degG2

(FE(E•1))/r0(H2)
≥ d2. Since 0< d2 ≤ d, we can apply Lemmas 2.12 and 2.13 to conclude that a2/d2 < a/d.
Then the image of φ(F ) gives a destabilizing quotient sheaf. Therefore, F̂1

E (F ) = 0. If F̂2
E (F )

contains a zero-dimensional sheaf, then F must contain E|{x}×Y , x ∈X. Thus F̂2
E (F ) is purely

one-dimensional. Let F̂2
E (F )→ E2 be a quotient such that E2 is a G1-twisted stable purely

one-dimensional sheaf with

v(E2) = a2%X + (d2H +D2)− (d2H +D2, ξ0)%X/r0.

If a2/d2 ≤ a/d, then by the same argument we see that φ(F ) gives a destabilizing quotient sheaf,
unless d2/a2 = d/a and φ is surjective. By Corollary 2.14, φ is surjective. Thus F is properly G2-
twisted semi-stable. Therefore, F̂2

E (F ) is G1-twisted semi-stable, and F̂2
E (F ) is G1-twisted stable

if F is G2-twisted stable. It is also easy to see the preservation of the S-equivalence classes. 2

Definition 3.1. Let v be a Mukai vector with rk v = 0. A polarization H is general with respect
to v and G ∈K(X)⊗Q if for a G-twisted semi-stable sheaf E with v(E) = v and a non-trivial
subsheaf F of E,

χG(F )
(c1(F ), H)

=
χG(E)

(c1(E), H)
if and only if v(F ) ∈Qv.

If 〈v(G), v〉 6= 0, then there is a general polarization.

Lemma 3.3. For an effective divisor class ξ ∈NS(X), we set

Dξ := {ξ1 ∈NS(X)|ξ1 and ξ − ξ1 are represented as effective divisors}.
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(1) Dξ is a finite set.

(2) We set ξ = c1(v). Assume that (〈v(G), v〉ξ1 − bξ, H) 6= 0 for all ξ1 ∈Dξ and b ∈ Z satisfying
0≤ |b|< |〈v(G), v〉| and 〈v(G), v〉ξ1 − bξ 6= 0. Then H is a general polarization with respect
to v and G.

Proof. (1) We prove the claim for any smooth projective surface X. We fix an ample divisor L
on X such that L±KX are ample. We shall show that

{D ∈NS(X) | D is represented by an effective divisor with (L, D) = d}

is a finite set. We set D′ := (L2)D − (D, L)L. Then (D′, L) = 0 and (D′2) = (L2)2(D2)
− (D, L)2(L2). We shall bound (D2) in terms of (D, L). Then the claim follows from the
Hodge index theorem. For an irreducible and reduced curve C, we have (C, C +KX)≥−2.
Hence (D, D +KX)≥−2(D, L). Since |(D, KX)|< (D, L), we have (D2)≥−2(D, L)− (D, KX)
≥−3(D, L). Therefore, (D2) is bounded below.

(2) Let F be a proper subsheaf of a coherent sheaf E with v(E) = v. Then c1(F ) ∈Dξ. If

χG(F )
(c1(F ), H)

=
χG(E)

(c1(E), H)
,

then |χG(F )| is an integer which is smaller than χG(E). Hence the claim holds. 2

Remark 3.1. Assume that H satisfies the assumption in Lemma 3.3(2) for v and G1. Then H
also satisfies this condition for v exp(mH) and G1.

Lemma 3.4. Let v = a%X + (dH +D)− (dH +D, ξ0)%X/r0 be the Mukai vector in Proposi-
tion 3.2. Let H be a general polarization with respect to v and G1. Assume that

a >max{(2r0 + 1)ε, (〈v2〉 − (D2))/2 + ε}.

Then Ĥ is a general polarization with respect to FE(v) (cf. Definition 1.4).

Proof. For a µ-semi-stable sheaf F with v(F ) = FE(v), assume that there is an exact sequence

0→ F1→ F → F2→ 0

such that F1 and F2 are µ-semi-stable sheaves with µG2(F1) = µG2(F2). By Corollary 2.14,
F is G2-twisted semi-stable and F is S-equivalent to F1 ⊕ F2 with respect to G2-twisted
stability. By Proposition 3.2, F̂2

E (F ) is a G1-twisted semi-stable sheaf which is S-equivalent
to F̂2

E (F1)⊕ F̂2
E (F2). Since H is a general polarization, we have v(F̂2

E (F1)) ∈Qv, which implies
that v(F1) ∈QFE(v). Therefore, Ĥ is a general polarization. 2

The following corollary is a supplement to [Yos01a, Theorem 8.1] and [Yos03a].
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Corollary 3.5. Let X be a K3 surface or an abelian surface. We set v := ξ + a%X ,
(ξ2)≥−2ε, (ξ, H)> 0. Then MH(v) is a normal variety, if H is general with respect to v.
Moreover, if X is a K3 surface and v is primitive, then MH(v) is an irreducible symplectic

manifold which is deformation equivalent to Hilb〈v
2〉/2+1

X . In particular, MH(v) 6= ∅.

Proof. If X is an abelian surface, we assume that E is the Poincaré line bundle on X × X̂ and
if X is a K3 surface, we assume that E = I∆, where ∆⊂X ×X is the diagonal. We shall show
that MH(ξ + a%X) is isomorphic to a moduli space of stable torsion-free sheaves. Then the claim
follows from [Yos03a].

Replacing v by v ch(H⊗m), we may assume that a� d= (ξ, H)/(H2). By Proposition 3.2,
we have a desired isomorphism MH(ξ + a%X)→M

Ĥ
(a− ξ̂). 2

3.3 A special case
Let (X, H) be a polarized abelian surface with NS(X) = ZH. Let P be the Poincaré line bundle
on X × X̂. Then a Mukai vector v ∈ v(D(X)) is written as

v = r + dH + a%X

and

FP(v) = a− dĤ + r%
X̂
.

In this special case, we get more precise results. We set

n := (H2)/2, s := 〈v2〉/2 = d2n− ra.

We first treat positive rank cases.

3.3.1 Positive rank cases.

Proposition 3.6. We set k := gcd(r, d)> 0. Assume that r > 0. We take a pair of integers
(r′, d′) such that rd′ − r′d=−k and 0≤ r′ < r. If

dn >max
{

1
k

(
r′ +

(k − 1)
k

r

)
s, s

}
, (3.5)

then the following assertions hold.

(1) For any µ-semi-stable sheaf F1 with

v(F1) = a1 ± d1Ĥ + r1%X̂ , 0< d1 < d, d1/a1 ≤ d/a,

we have r1 ≤ rd1/d.

(2) For any µ-semi-stable sheaf E1 with

v(E1) = r1 + d1H + a1%X , 0< d1 < d, d1/r1 < d/r,

we have a1 < ad1/d.

Proof. We shall prove claim (1). We may assume that F1 is µ-stable. We set v(F1) := a1 ± d1Ĥ +
r1%X̂ , 0< d1 < d and d1/a1 ≤ d/a. If r1 ≤ 0, then obviously our claim holds. If r1 > 0, then we
see that

0≤ 〈v(F1)2〉 ≤ 2d1

rd
(nd(rd1 − r1d) + r1s).
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If r1 ≥ r, then we see that

nd(rd1 − r1d) + r1s≤ (nd(d1 − d) + s)r1 ≤ (−nd+ s)r1 < 0, (3.6)

which is a contradiction. Assume that r1 < r. If rd1 − r1d < 0, then there is a positive integer m
such that rd1 − r1d=−km. Then r1 − r′m is divisible by r/k and r1 − r′m< r. Hence we get
r1 − r′m≤ r − r/k, which implies that

nd(rd1 − r1d) + r1s = −mknd+ r1s

≤ −mknd+ rs− rs/k + r′ms < 0.

This is a contradiction. Therefore, rd1 − r1d≥ 0. 2

Remark 3.2. Assume that d= rt+ 1, t > 0 and s= dn. If v(F1) 6∈Q(t2n+ tĤ + %
X̂

) and
v(E1) 6∈Q(1 + tH + t2n%X) = QetH , then the same assertions (1) and (2) of Proposition 3.6
hold.

In the proof of Proposition 3.6(1), if r1 ≥ r, then we have

0≤ nd(rd1 − r1d) + r1s≤ (nd(d1 − d) + s)r1 ≤ (−nd+ s)r1 = 0.

Hence 〈v(F1)2〉= 0, d1 = d− 1 = rt and r1 = r. Then v(F1) = r(t2n+ tĤ + %
X̂

). Assume that
r1 < r. Then we see that 0≤−mnd+ r1s= (r1 −m)nd≤ 0, which implies that 〈v(F1)2〉= 0,
m= r1, d1 = r1t. Hence v(F1) =m(t2n+ tĤ + %

X̂
).

Theorem 3.7. Under the condition (3.5), GP induces an isomorphism

MH(r + dH + a%X)ss→M
Ĥ

(a+ dĤ + r%
X̂

)ss.

In particular, for E ∈MH(r + dH + a%X)ss, WIT2 with respect to GP holds for E and G2
P(E)

is semi-stable.

Proof. We only prove one direction, that is, we show that GP preserves semi-stability. Let E be
a semi-stable sheaf with v(E) = r + dH + a%X . We first note that the claim of Proposition 3.6
is slightly weaker than that in Proposition 2.8, since d1 < d. Hence WIT0 does not hold with
respect to FP in general. However, by the same argument as in the proof of Theorem 3.1,
we see that F0

P(E) is a µ-semi-stable sheaf and F1
P(E) is a zero-dimensional sheaf. Then

D
X̂

(FP(E)) = RHom(FP(E),O
X̂

) is a µ-semi-stable sheaf. In particular, WIT2 holds for E
with respect to GP . Assume that G2

P(E) is not semi-stable. Then we have an exact sequence

0→G1→G2
P(E)→G2→ 0

where G1 is a µ-semi-stable sheaf with v(G1) = a1 + d1Ĥ + r1%X̂ , d1/a1 = d/a and G2 is a stable
sheaf such that v(G2) = a2 + d2Ĥ + r2%X̂ , d2/a2 = d/a and r2/a2 < r/a. Then D

X̂
(Gi)[1] ∈ A2,

i= 1, 2, and we have an exact sequence in A2:

0→D
X̂

(G2)[1]→FP(E)[1]→D
X̂

(G1)[1]→ 0.

By using Theorem 2.1, we see that ĜiP(G2) = 0, i 6= 2, ĜP(G1)[2] ∈ A1 and we have an exact
sequence

0→ Ĝ1
P(G1)→ Ĝ2

P(G2)→ E→ Ĝ2
P(G1)→ 0.

From this description, we get a contradiction. Therefore, G2
P(E) is semi-stable. 2

Remark 3.3. If d= rt+ 1 and t≥ 0, then the condition is dn > s.
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Remark 3.4. If r = 1 and d≥ 2, then IT0 holds with respect to FP under the assumption
2(d− 1)n > s (cf. [Ter98, Theorem 1.1]).

If dn≤ s, then GP does not always preserve the stability.

Lemma 3.8. Assume that r > 0, d= tr + 1, t≥ 0 and dn < s≤ (d2 − (d− 1)2/r)n. Then there
is a µ-stable sheaf E with v(E) = r + dH + ((d2n− s)/r)%X such that E satisfies WIT2 with
respect to GP , but G2

P(E) is not µ-semi-stable.

Proof. We set v := r + dH + ((d2n− s)/r)%X . Since gcd(r, d) = 1, it is sufficient to find a member
E ∈MH(v)ss such that E satisfies WIT2 with respect to GP and G2

P(E) is not stable. We first
note that t > 0. Indeed if t= 0, then the second condition does not hold.

Claim 3.1. There is a µ-stable sheaf E with v(E) = v such that H0(X, E(−tH)) 6= 0 and WIT2

holds with respect to GP .

We first assume this claim and show that G2
P(E) is not µ-semi-stable. We set

F := coker(OX → E(−tH)).

Then we have an exact sequence

0→G2
P(F (tH))→G2

P(E)→G2
P(OX(tH))→ 0.

Since v(G2
P(OX(tH))) = nt2 + tĤ + %X , we get that

deg(G2
P(OX(tH)))

rk(G2
P(OX(tH)))

−
deg(G2

P(E(tH)))
rk(G2

P(E(tH)))
=
t(H2)
t2n

− rd(H2)
d2n− s

=
−2(s− dn)
t(d2n− s)

< 0.

Thus G2
P(E) is not µ-semi-stable. Therefore, we get our lemma.

Proof of Claim 3.1. We note that s≥ n. Let F be a stable sheaf with

v(F ) = (r − 1) +H − {(s− n)/r}%X .

Then since χ(F )≤ 0,

Ext1(F ⊗ P|X×{y},OX) =H1(X, F ⊗ P|X×{y})∨ 6= 0

for some y ∈ X̂. Let E be a sheaf on X such that E(−tH) is defined as a non-trivial extension

0→OX → E(−tH)→ F ⊗ P|X×{y}→ 0.

Then E is µ-stable (see [Yos99a, Lemma 2.1]). Moreover, since

χ(F (tH)) = (d2n− s)/r − nt2

= ((d2 − (d− 1)2/r)n− s)/r ≥ 0,

Theorem 3.14 in § 3.3.3 implies that WIT2 holds for a general F with respect to GP . Since WIT2

holds for OX(tH), we get our claim. 2

Proposition 3.9. Assume that r > 0 and d= tr + 1, t≥ 0. Then GP induces an isomorphism

MH(r + dH + a%X)ss→M
Ĥ

(a+ dĤ + r%
X̂

)ss (3.7)

if and only if dn≥ s.
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Proof. We first prove that GP induces an isomorphism (3.7) for dn≥ s. If dn > s, then
Theorem 3.7 and Remark 3.3 imply the claim. If dn= s, then we have v = r + dH + dtn%X .
Assume that t > 0. Let E be a semi-stable sheaf on X with v(E) = v. For a coherent sheaf F1

on X̂ with v(F1) = t2n+ tĤ + %
X̂

, we have

χ(GP(E)(kĤ))
rk GP(E)

<
χ(F1(kĤ))

rk F1
, k� 0.

Then, by using Remark 3.2, we can show that WIT2 holds for E and G2
P(E) is a semi-stable

sheaf. Conversely we also see that WIT2 holds for F ∈M
Ĥ

(a+ dĤ + r%
X̂

)ss and Ĝ2
P(F ) is a

semi-stable sheaf. Thus the claim holds. If t= 0, then d= 1. In this case, [Yos01a, Remark 3.1]
implies the claim.

We next assume that dn < s and prove that there is a semi-stable sheaf E ∈MH(r + dH +
a%X)ss such that WITi does not hold with respect to GP or WITi holds but GiP(E) is not
semi-stable. We note that

(d2 − (d− 1)2/r)n− dn= (t2(r2 − r) + tr)n≥ 0.

If dn < s≤ (d2 − (d− 1)2/r)n, then Lemma 3.8 implies the claim. Assume that (d2 − (d− 1)2/r)
n− s < 0. Then for the sheaf F in the proof of Claim 3.1 we have χ(F (tH)) = (d2 − (d− 1)2/r)
n− s < 0. By using Theorem 3.14, we have G1

P(E)∼= G1
P(F (tH)) 6= 0 and G2

P(OX(tH)) 6= 0 is a
quotient sheaf of G2

P(E). Thus WITi does not hold for E with respect to GP . Therefore, the
claim holds. 2

3.3.2 Rank zero case. For the rank zero case, we have the following results, the proofs of
which are left to the reader.

Lemma 3.10. Assume that r = 0 and d > 0. If a > d(d− 1)n, then:

(1) for any µ-semi-stable sheaf F1 with v(F1) = a1 ± d1Ĥ + r1%X̂ , 0< d1 < d and d1/a1 ≤ d/a,
we have r1 ≤ 0; and

(2) for any µ-semi-stable sheaf E1 with v(E1) = r1 + d1H + a1%X , 0< d1 < d and r1 > 0, we
have a1 < ad1/d.

Proposition 3.11. Assume that d > 0. GP induces an isomorphism MH(dH + a%X)ss→
M

Ĥ
(a+ dĤ)ss, if a > d(d− 1)n. Moreover, FP induces an isomorphism MH(dH + a%X)ss→

M
Ĥ

(a− dĤ)ss, if a > d2n.

3.3.3 Birational maps. By Proposition 3.9, GP does not preserve the stability in general. On
the other hand, we can show that GP or FP always preserves the stability for a general member
of the moduli spaces (Theorem 3.14).

Proposition 3.12. Assume that r, d > 0. If 〈v2〉< 2r, then WIT2 holds with respect to GP for
all µ-semi-stable sheaves E with v(E) = v.

Proof. We shall prove our claim by induction on 〈v2〉. Obviously our claim holds for semi-
homogeneous sheaves. Let E be a µ-semi-stable sheaf with v(E) = v. Assume that E is
S-equivalent to

⊕m
i=1 Ei, where Ei, 1≤ i≤m, are µ-stable sheaves. Then∑

i

〈v(Ei)2〉
rk Ei

=
〈v2〉
r

< 2.
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Since 〈v(Ej)2〉 ≥ 0 for all j, we get 〈v(Ei)2〉/rk Ei ≤ 〈v2〉/r < 2. Therefore, we shall prove our
claim for µ-stable sheaves.

We first note that a= nd2/r − 〈v2〉/2r > nd2/r − 1≥−1. If a= 0, then 2nd2 < 2r. Hence the
claim follows from Proposition 3.11. We assume that a > 0. Assume that Ext1(E, P|X×{y}) 6= 0,
y ∈ X̂. We take a non-trivial extension

0→P|X×{y}→G→ E→ 0.

Assume that G is not µ-semi-stable. Let

0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fl =G

be the Harder–Narasimhan filtration of G with respect to the µ-semi-stability. We set
v(Fi/Fi−1) := ri + diH + ai%X . Then 0< dl/rl < · · ·< d2/r2 < d1/r1 < d/r and ri ≤ r. We see
that ∑

i

〈v(Fi/Fi−1)2〉
ri

<
∑
i

2
(
n
d

r
di − ai

)
= 2n

d2

r
− 2a=

〈v2〉
r

< 2.

Since 〈v(Fj/Fj−1)2〉 ≥ 0 for all j, we get

〈v(Fi/Fi−1)2〉
ri

<
〈v2〉
r

< 2.

Since ri ≤ r, we get 〈v(Fi/Fi−1)2〉< 〈v2〉. By the induction hypothesis, our claim holds for
Fi/Fi−1. Hence G satisfies WIT2 with respect to GP . Since P|X×{y} also satisfies WIT2 with
respect to GP , E satisfies WIT2 with respect to GP .

Assume that G is µ-semi-stable. Since 〈v(G)2〉= 〈v2〉 − 2a, by the induction hypothesis, our
claim holds for G. Therefore, E satisfies WIT2 with respect to GP . 2

Lemma 3.13. Assume that r, d > 0.

(1) If a≥ 0, then there is a stable sheaf E with v(E) = v such that Ext1(E,OX) =H1(X, E)∨

= 0. In particular, WIT2 holds for E with respect to GP .

(2) If a≤ 0, then there is a stable sheaf E with v(E) = v such that H0(X, E) = 0. In particular,
WIT1 holds for E with respect to FP .

Remark 3.5. Let E be a stable sheaf with v(E) = v. Since F0
P(E) is torsion free, H0(X, E) = 0

implies that F0
P(E) = 0. Since Hom(E ⊗ P|X×{y},OX) = 0 for all y ∈ X̂, G1

P(E) is also torsion
free. Thus H1(X, E) = 0 implies G1

P(E) = 0.

Proof of Lemma 3.13. If 〈v2〉= 0, then obviously the claim holds. Hence we assume that 〈v2〉> 0.
We take an integer b such that

0 ≤ 〈(r + dH + (a+ b)%X)2〉
= 〈v2〉 − 2rb < 2r.

We note that b≥ 0. Let F be a stable sheaf with v(F ) = r + dH + (a+ b)%X such
that H1(X, F ) = 0. We consider a surjective homomorphism φ : F →

⊕b
i=1 Cxi , where
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x1, x2, . . . , xb ∈X. If we choose a sufficiently general φ, then{
H1(X, ker φ) = 0, if a≥ 0,
H0(X, ker φ) = 0, if a≤ 0.

Let MH(v)µss be the moduli stack of µ-semi-stable sheaves E with v(E) = v. Then the
usual deformation theory says that dimMH(v)µss ≥ 〈v2〉+ 1. On the other hand, [Yos99b,
Lemma 2.3(2)] implies that dim(MH(v)µss \ dimMH(v)s)≤ 〈v2〉. Hence ker φ ∈MH(v)µss

deforms to a stable sheaf. Therefore, we get our claim. 2

By [Yos01a, Corollary 4.15], we get the following theorem which was conjectured in [Yos01a,
Conjecture 4.16].

Theorem 3.14. Assume that r, d > 0.

(1) If a≥ 0, then GP induces a birational map

MH(r + dH + a%X) · · · →M
Ĥ

(a+ dĤ + r%
X̂

).

(2) If a≤ 0, then FP induces a birational map

MH(r + dH + a%X) · · · →M
Ĥ

(−a+ dĤ − r%
X̂

).

Acknowledgements

I would like to thank the referee for valuable suggestions to improve the manuscript.

Appendix A.

Assume that H is a primitive ample divisor on X. Then we can write the Q-ample divisor Ĥ on
Y as Ĥ = λH̃, where H̃ is a primitive element of H2(Y, Z) and λ ∈Q>0. We shall study this λ.
Since we also want to treat the case of the twisted Fourier–Mukai transform, ξ0 may not belong
to NS(X) and the universal family E is a suitable twisted sheaf in general. We consider primitive
sublattices

L1 := (Qv∨0 + QH + Q%X) ∩Hev(X, Z),
L2 := (Qw0 + QĤ + Q%Y ) ∩Hev(Y, Z).

We set

l1 := min{〈%X , x〉> 0 | x ∈ L1},
l2 := min{〈%Y , y〉> 0 | y ∈ L2}

= min{〈v∨0 , x〉> 0 | x ∈ L1}.

Then L1 = Zu1 + ZH + Z%X , where u1 ∈ L1 satisfies 〈u1, %X〉= l1. Hence the determinant of the
intersection matrix of L1 is l21(H2).

Lemma Appendix A.1. Let H̃ be a primitive ample divisor on Y such that r0Ĥ ∈ ZH̃. Then
l21(H2)
= l22(H̃2). In particular, Ĥ = l2/l1H̃.

Proof. FE induces an isometry L1→ L2. Since the determinant of the intersection matrix of L1

(respectively L2) is l21(H2) (respectively l22(H̃2)), we have the assertion. 2
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Example Appendix A.1. Assume that v0 = r0 + d0H + a0%X with d2
0(H2) = 2r0a0. We set l :=

gcd(r0, a0). Then L1 = Z1 + ZH + Z%X and l1 = 1. It is easy to see that l|d0(H2), and hence,
l2 = gcd(r0, d0(H2), a0) = l. Therefore, Ĥ = lH̃.

Example Appendix A.2. Assume that (r0, ξ0 mod H) is primitive in Z×H2(X, Z)/ZH. Then
L1 = Zv∨0 + ZH + Z%X . In this case, l1 = r0 and l2 = gcd(r0, (ξ0, H)). Therefore, H̃ = (r0/l2)Ĥ.
In particular, Ĥ 6∈NS(Y ) if l2 6= r0.
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