On the parity of ranks of Selmer groups IV.
With an appendix by Jean-Pierre Wintenberger

Jan Nekovář and Jean-Pierre Wintenberger

doi:10.1112/S0010437X09003959
On the parity of ranks of Selmer groups IV

Jan Nekovář

With an appendix by Jean-Pierre Wintenberger

Abstract

We prove the parity conjecture for the ranks of p-power Selmer groups ($p \neq 2$) of a large class of elliptic curves defined over totally real number fields.

Introduction

In recent years substantial progress has been made on the parity conjecture for Selmer groups of elliptic curves and Hilbert modular forms. It seems, however, that the authors interested exclusively in elliptic curves or in abelian varieties considered as motives with rational coefficients [CFKS, DD08, DDa, DDb, DC, Gre, Kim07, Kim, MR07, MR08] and those striving for utmost generality [Nek01, Nek06, Nek07, Nek08] inhabit two separate universes. The purpose of this article is to explain that a combination of the techniques of the two schools yields the following result.

Theorem 1. Let k be a totally real number field, k_0/k a finite abelian extension and k'/k_0 a Galois extension of odd degree. Let E be an elliptic curve over k; assume that at least one of the following conditions is satisfied:

(a) E is modular (over k) and $2 \nmid [k : \mathbb{Q}]$;
(b) $j(E) \notin \mathcal{O}_k$.

Then, for each prime number $p \neq 2$, the parity conjecture $C_{\text{par}}(E/k', p) \mod \text{cork}_{\mathbb{Z}_{p}} \text{Sel}_{p^{\infty}}(E/k') \equiv \text{ord}_{s=1} L(E/k', s) \mod 2$ holds. If $k = \mathbb{Q}$, then the statement also holds for $p = 2$.

In the above, $\text{Sel}_{p^{\infty}}(E/k')$ is the Selmer group for the p-power descent on E, which sits in an exact sequence

$$0 \to E(k') \otimes \mathbb{Q}_p/\mathbb{Z}_p \to \text{Sel}_{p^{\infty}}(E/k') \to \text{III}(E/k')[p^{\infty}] \to 0.$$

By Theorem A.1 of the Appendix to this article, the elliptic curve E is potentially modular (i.e., it becomes modular over a suitable finite totally real extension of k). This implies that the L-function $L(E/k', s)$ admits a meromorphic continuation to \mathbb{C} and satisfies the expected functional equation ([Tay02, proof of Corollary 2.2], [Nek06, §12.11.6]). In particular, $\text{ord}_{s=1} L(E/k', s) \in \mathbb{Z}$ is well-defined.

One can deduce more general parity results by combining Theorem 1 with [MR07, Theorems 6.4 and 7.1], [MR08, Theorem 1.1], [Gre, §11.8] or [DDc, Theorems 4.4 and 4.6].

Received 7 January 2008, accepted in final form 24 October 2008.

Keywords: Selmer groups, elliptic curves, parity conjecture, modularity.
(in these articles the authors prove relative results of the form ‘\(C_{\text{par}}(E/k', p) \) implies \(C_{\text{par}}(E/L, p) \) for various extensions \(L/k' \)).

In the case when \(E \) has potentially ordinary reduction at all primes above \(p \), Theorem 1 was proved (even for \(p = 2 \)) in [Nek06, 12.9–11] (note that the proof of [Nek06, Corollary 12.2.10(1),(2)] (respectively, of [Nek06, Corollary 12.2.10(3)]) works unconditionally, by [Appendix: Theorem A.1] (respectively, by [Appendix: Proposition A.2] applied to \(T = \{ v \mid p \} \)). To treat the general case we are going to replace in the arguments the Iwasawa-theoretical [Appendix: Theorem A.1] (respectively, by [Appendix: Proposition A.2] applied to [Appendix: Corollary 12.2.10(1),(2)] (respectively, of [Appendix: Proposition 3.

Step 1: reduction to the case \(k' = k \) (cf. [Nek06, § 12.11.2,7,8]; \(p \) is arbitrary)

This can be carried out in the following general context. Let \(M \cong \mathcal{M}^\prime(1) \) be a self-dual pure motive over a number field \(K \) with coefficients in a number field \(L \subset \mathbb{Q} \). Fix embeddings \(i_\infty : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C} \) and \(i_p : L \hookrightarrow \overline{\mathbb{Q}}_p \); let \(p \) be the prime of \(L \) induced by \(i_p \). The \(p \)-adic realization of \(M \) is a self-dual \(p \)-adic geometric representation \(M_p \cong M_p^\prime(1) \) of \(\text{Gal}(\overline{K}/K) \) (pure of weight \(-1\) at almost all finite primes). The parity conjecture for the Bloch–Kato Selmer group of \(M_p \) predicts that the integer

\[
\delta(K, M, p) := \dim_{L_p} H_1^1(K, M_p) - \text{ord}_{s=0} L(i_\infty M/K, s) \in \mathbb{Z}
\]

satisfies

\[
C_{\text{par}}(K, M, p) \quad : \quad \delta(K, M, p) \equiv 0 \pmod{2}
\]

(provided that \(L(i_\infty M/K, s) \) admits meromorphic continuation around \(s = 0 \)). For \(K = k \), \(M = h^1(E)(1) \), \(L = \mathbb{Q} \) and \(p = p \) this reduces to the usual parity conjecture

\[
C_{\text{par}}(E/k, p) \quad : \quad \text{cork}_{Z_p} \text{Sel}_{p^\infty}(E/k) \equiv \text{ord}_{s=1} L(E/k, s) \pmod{2}.
\]

Proposition 3. Let \(K'/K \) be a finite Galois extension with Galois group \(G \). Denote by \(\hat{G} \) the set of isomorphism classes of irreducible representations of \(G \) over \(\overline{\mathbb{Q}} \) and by \(\hat{G}^\circ = \{ \rho \in \hat{G} \mid \rho \simeq \rho^\vee \} \) the self-dual ones. After an extension of scalars we can assume that all \(\rho \in \hat{G} \) are defined over \(L \). If, for each \(\rho \in \hat{G} \), the \(L \)-function \(L(i_\infty M \otimes \rho/K, s) \) admits meromorphic continuation around \(s = 0 \) and satisfies the expected functional equation, then

\[
\delta(K', M, p) \equiv \sum_{\rho \in \hat{G}^\circ} \delta(K, M \otimes \rho, p) \cdot \text{dim}(\rho) \pmod{2}.
\]

1352
ON THE PARITY OF RANKS OF SELMER GROUPS IV

In particular, the validity of \(C_{\text{par}}(K, M \otimes \rho, p) \) for all \(\rho \in \hat{G}^o \) implies the validity of \(C_{\text{par}}(K', M, p) \). If \(G \) is abelian, then \(\hat{G} \) is the character group of \(G \) and \(\hat{G}^o = \{ \chi \in \hat{G} \mid \chi^2 = 1 \} \); thus

\[
\delta(K', M, p) \equiv \sum_{\chi \in \hat{G}, \chi^2 = 1} \delta(K, M \otimes \chi, p) \pmod{2}.
\]

Proof. The following argument can be, essentially, extracted from [Nek06, 12.11.2,7,8]. There are standard decompositions

\[
L(i_\infty M/K', s) = \prod_{\rho \in \hat{G}} L(i_\infty M \otimes \rho/K, s)^{\dim(\rho)},
\]

\[
H^1_f(K', M_\rho) = H^1_f(K, M_\rho \otimes \mathbf{Z}[G]) = \bigoplus_{\rho \in \hat{G}} H^1_f(K, M_\rho \otimes \rho)^{\dim(\rho)}.
\]

(3.1)

If \(\rho \not\in \hat{G}^o \), then

\[
\text{ord}_{s=0} L(i_\infty M \otimes \rho/K, s) = \text{ord}_{s=0} L(i_\infty M \otimes \rho^\vee/K, s),
\]

(3.2)

by the functional equation (the archimedean \(L \)-factors do not have a pole at \(s = 0 \) in the self-dual case) and

\[
\dim_{L_\rho} H^1_f(K, M_\rho \otimes \rho) = \dim_{L_\rho} H^1_f(K, M_\rho \otimes \rho^\vee)
\]

(3.3)

by the self-duality result [Nek06, 12.5.9.5(iv)]. (This latter work considers only the case of abelian \(G \), but the argument works in general. A similar result for finite Galois modules is proved in [Wil95, Proposition 1.6]. The ordinary case was treated earlier in [Gre94, Proposition 2]). A special case of such a self-duality (for \(M = h^1(A)(1), L = \mathbf{Q} \) and \(\rho = \rho \neq 2 \)) was reproved by another method in [DDb, Theorem 1.1]. The statement of the Proposition follows from (3.1)–(3.3).

Corollary 4. If \(K \subset K_0 \subset K_1 \subset \cdots \subset K_n \) is a chain of finite extensions such that \(K_0/K \) is abelian and each \(K_i/K_{i-1} \) is abelian of odd degree, then Proposition 3 applied to \(K_0/K \) and all \(K_i/K_{i-1} \) yields

\[
\delta(K_n, M, p) \equiv \sum_{\chi \in \hat{G}, \chi^2 = 1} \delta(K, M \otimes \chi, p) \pmod{2}, \quad G = \text{Gal}(K_0/K).
\]

Completion of Step 1. As \(k'/k_0 \) is a Galois extension of odd degree, it is solvable (of odd degree). Corollary 4 for \(K = k, K_0 = k_0, K_n = k' \) and \(M = h^1(E)(1) \) then implies that \(C_{\text{par}}(E/k', p) \) follows from \(C_{\text{par}}(E \otimes \chi/k, p) \) for all quadratic twists of \(E \) by \(\chi : \text{Gal}(k_0/k) \longrightarrow \{ \pm 1 \} \) (the assumptions on the \(L \)-functions in Proposition 3 are satisfied, by potential modularity of \(E \) (see [Tay02, proof of Corollary 2.2], [Nek06, § 12.11.6])). If \(k = \mathbf{Q} \), then \(C_{\text{par}}(E/\mathbf{Q}, 2) \) was proved in [Mon96]; Corollary 4 then implies \(C_{\text{par}}(E/k', 2) \).

Step 2: Proof of Theorem 1 in the case (a), \(k' = k, p \neq 2 \) (cf. [Nek06, 12.9.5.2,3])

Let \(B \) a quaternion algebra over \(k \) ramified at all infinite primes of \(k \) except one (and at no finite prime). Let \(R \subset B \) be an Eichler order of level \(\text{cond}(E) \) and \(N^*_H \) the (smooth projective) Shimura curve over \(k \) associated to \(B^*/\mathcal{F}^* \) and the open compact subgroup \(H = (R \otimes \mathbf{Z})^* \subset (B \otimes \mathbf{Z})^* \) (see [Nek07, 1.A]). Modularity of \(E \) implies that there is a non-constant \(k \)-morphism \(\text{Jac}(N^*_H) \longrightarrow E \); denote by \(\alpha : N^*_H \longrightarrow E \) its composition with an integral multiple of the Hodge embedding ([Zha01, p. 30], [CV07, 3.5], [Nek07, § 1.19]).
Fix a prime P of k above p and an imaginary quadratic extension K/k in which all primes of k dividing $P \operatorname{cond}(E)$ split; then

$$\operatorname{ord}_{s=1} L(E/K, s) \equiv [k : Q] \equiv 1 \pmod{2}$$

(see [MR08, Remark 1.2]). The infinite ring class field $K[P^\infty]$ in the sense of [Nek06, 12.6.1.4] is an abelian extension of K unramified outside the primes of K above P and is dihedral over k, and $G = \operatorname{Gal}(K[P^\infty]/K) \simeq G_{\operatorname{tors}} \times Z^r_2$ with $r = [k_P : Q_p]$ and G_{tors} finite. By [CV07, Theorem 4.2] there exist an integer n big enough so that G_{tors} injects into $G_n = \operatorname{Gal}(K[P^n]/K)$, a CM point $x \in N_{H}^*(K[P^n])$ and a character $\chi : G_n \longrightarrow \mathbb{Z}_p[\chi]^*$ not factoring through G_{n-1} with $\chi(G_{\operatorname{tors}}) = \{1\}$ and such that

$$e_\chi(\alpha(x)) = \sum_{g \in G_n} \chi^{-1}(g) \alpha(x) \in (E(F_n) \otimes \mathbb{Z}_p)^{(\chi)} \quad (F_n = K[P^n]^{G_{\operatorname{tors}}})$$

is not torsion. This implies, by a generalization of [BD90, Theorem 2.2] proved in [Nek07, Theorem 3.2] (as E does not have CM by K; see [Nek06, 12.9.6]), that

$$\operatorname{cork}_{\mathbb{Z}_p[\chi]} \operatorname{Sel}_{p^{\infty}}(E/F_n)^{(\chi')} = 1,$$

where χ' is the character of $\operatorname{Gal}(F_n/K) = G_n/G_{\operatorname{tors}}$ through which χ factors. Applying Theorem 2 to the extension F_n/K we obtain $C_{\operatorname{par}}(E/K, p)$:

$$\operatorname{cork}_{\mathbb{Z}_p} \operatorname{Sel}_{p^{\infty}}(E/k) \equiv 1 \equiv \operatorname{ord}_{s=1} L(E/K, s) \pmod{2}.$$

Varying K as in [Nek06, 12.10.9] we deduce $C_{\operatorname{par}}(E/k, p)$.

Step 3: First reduction in the case (b), $k' = k$ (cf. [Nek06, 12.10.5,6])

There is a totally real quadratic extension k_2/k such that the quadratic twist $E \otimes \chi$ of E by the corresponding quadratic character $\chi : \operatorname{Gal}(k_2/k) \xrightarrow{\sim} \{\pm 1\}$ has multiplicative reduction at some prime Q of k. Applying Corollary 4 to k_2/k we see that it is enough to prove $C_{\operatorname{par}}(E \otimes \chi', p)$ over $? = k, k_2$. Moreover, after possibly replacing k by a cyclic extension of odd order in which Q splits, we can assume that there is a prime $P \neq Q$ above p (cf. [Nek06, 12.10.6]).

Step 4: Application of a variant of Brauer’s theorem ($p \neq 2$) (cf. [Tay02, Nek06, 12.11.6])

Thanks to Step 3, we can assume that there is a prime Q of k at which E has multiplicative reduction and a prime $P \neq Q$ of k above p.

By assumption there exists a totally real finite Galois extension \overline{k}/k over which E becomes modular; set $G = \operatorname{Gal}(\overline{k}/k)$. By [CR81, Theorem 15.10] there exist solvable subgroups $H_j \subset G$ and integers $n_j \in \mathbb{Z}$ such that there is an equality of virtual representations of G

$$1_G = \sum_j n_j \operatorname{Ind}^{G}_{H_j}(1_{H_j});$$

set $k_j = \overline{k}^{H_j}$. As

$$L(E/k, s) = \prod_j L(E/k_j, s)^{n_j}, \quad \operatorname{cork}_{\mathbb{Z}_p} \operatorname{Sel}_{p^{\infty}}(E/k) = \sum_j n_j \operatorname{cork}_{\mathbb{Z}_p} \operatorname{Sel}_{p^{\infty}}(E/k_j),$$

it is enough to prove $C_{\operatorname{par}}(E/k_j, p)$ for all j. Fix j; then E is modular over k_j (see [Tay03, proof of Theorem 2.4]). If $2 \mid [k_j : Q]$, then we apply Step 2. Assume that $2 \nmid [k_j : Q]$. There exists a prime Q_j of k_j at which $E \otimes_k k_j$ has multiplicative reduction and a prime $P_j \neq Q_j$ of k_j above p.

1354
Fix a totally imaginary quadratic extension K_j/k_j in which Q_j is inert and all primes of k_j dividing $P_j Q_j^{-1} \text{cond}(E/k_j)$ are split. Let B_j be a quaternion algebra over k_j ramified at Q_j and at all infinite primes of k_j except one. There exists a k_j-embedding of K_j into B_j and we have (again by [MR08, Remark 1.2])

$$\text{ord}_{s=1} L(E/K_j, s) \equiv [k_j : Q_j] + 1 \equiv 1 \pmod{2}.$$

The argument of Step 2 then applies to the Eichler order $R_j \subset B_j$ of level $Q_j^{-1} \text{cond}(E/k_j)$ and the ring class field $K_j[P_j^{\infty}]$, yielding $C_{\text{par}}(E/k_j, p)$ for all j. This completes the proof of Theorem 1.

Acknowledgements
The author is grateful to Jean-Pierre Wintenberger for the appendix to this article and to a referee for helpful comments and corrections.

Appendix. Potential modularity of elliptic curves over totally real fields

Jean-Pierre Wintenberger

Abstract

Using the techniques of R. Taylor, we prove that an elliptic curve defined over a totally real number field F is potentially modular, i.e. becomes modular over a finite totally real extension F' of F. We can be more precise on the ramification of F'/F.

The following theorem is well known to experts.

Theorem A.1. Let E an elliptic curve over a totally real number field F. Then there exists a totally real number field $F' \supset F$ such that $E_{F'}$ is modular.

We explain what we mean by ‘modular’. Let F' be a totally real number field (a finite extension of \mathbb{Q}). Let π be a cuspidal automorphic representation of $\text{GL}_2(\mathbb{A}_{F'})$. We shall suppose that the archimedean components of π are such that π corresponds to a Hilbert modular form of parallel weight 2. Taylor has associated to π a compatible system $(\rho_{\pi, \lambda})$ of representations of the Galois group $G_{F'}$ (see [Tay89]). There is a conductor n, which is an ideal of the rings of integers of F', a Hecke algebra \mathbb{T} with Hecke operators $T_q \in \mathbb{T}$ for q prime of F' not dividing n, and a morphism $\theta : \mathbb{T} \rightarrow \mathbb{C}$. The subfield L of \mathbb{C} generated by the image of θ is a finite extension of \mathbb{Q}. For each prime λ of L, the Galois representation $\rho_{\pi, \lambda} : G_{F'} \rightarrow \text{GL}_2(L_{\lambda})$ is absolutely irreducible [Wil86, Proposition 2.1], unramified outside the primes dividing n and the rational prime ℓ below λ, and is characterized by

$$\text{tr}(\rho_{\pi, \lambda}((\text{Frob}_q))) = \theta(T_q),$$

for every prime q of F' which is prime to $n\ell$.

When we say that E is modular over F', we mean that there exists such a π such that, for any prime λ of L, the Galois representation $\rho_{\pi, \lambda}$ is isomorphic to the Galois representation $\rho(E)_{\ell}$ given by the action of $G_{F'}$ on the Tate module $V_{\ell}(E) = \mathbb{Q}_{\ell} \otimes_{\mathbb{Z}_{\ell}} \lim_n E(\mathbb{Q})[\ell^n]$ (ℓ is the characteristic of ℓ). By compatibility of the Galois representations attached to π and E and
the absolute irreducibility of the Galois representations attached to π, it suffices to check the isomorphism $\rho_{\pi,\lambda} \simeq \rho(E)_\ell$ for one λ.

Of course, it is believed that one can take $F' = F$ in the theorem. The following proposition is much weaker, but it is useful (see [Nek06, Corollary 12.2.10 and Definition 12.11.3] and [Nek08, comments after Theorem 1]).

Proposition A.2. Let T be a finite set of primes of F such that E has good reduction at all $q \in T$. One can then impose that F'/F is unramified at T.

Remark. Let N be a finite extension of F. One can furthermore impose that N and F' are linearly disjoint extensions of F (see [HST06, Proposition 2.1]).

Let us give a proof of the theorem and the proposition.

If E/Q has complex multiplication (by a quadratic field L), $V_\ell(E)$ is induced from the Galois character of G_{LF} attached to a Hecke character of LF and E is modular over F (see [JL70, Proposition 12.1]).

From now on, suppose that E/Q has no complex multiplication. We denote by M the smallest Galois extension of Q containing F. For each prime ℓ of F such that E has good reduction at ℓ, we denote by a_ℓ the trace of the Frobenius Frob_ℓ of E, i.e. $\text{Norm}(l) + 1 - a_\ell$ is the number of points of E in the residue field $k(l)$.

The following lemma is a variant of a theorem of Serre [Ser81, 8.2].

Lemma A.3. There exist infinitely many rational primes ℓ which satisfy the following properties:

(i) $\ell > 5$, ℓ splits completely in the Galois extension M/Q;
(ii) E has good ordinary reduction at each prime ℓ of F above ℓ;
(iii) $a_\ell \neq -1, 1 \mod \ell$.

Proof. For ℓ that splits completely in F and l a prime of F above ℓ such that E has good reduction at l, one has $|a_\ell| < 2\sqrt{\ell}$. Furthermore, the ordinarity condition in property (ii) is equivalent to the condition that ℓ does not divide a_ℓ. For $\ell > 5$, it follows that the congruences $a_\ell \equiv -1, 0, 1 \mod \ell$ are equivalent to the equalities $a_\ell = -1, 0, 1$. One sees that, to prove the lemma, one has to find infinitely many rational primes ℓ satisfying property (i), such that, at each prime l of F above ℓ, E has good reduction at l and $a_\ell \neq -1, 0, 1$.

Since E/Q has no complex multiplication, a theorem of Serre [Ser72] implies that there exists q_0 such that, for each rational prime $q > q_0$, the image of G_M in the Galois group of the extension $M_{[q]}$ of M generated by the points of order q of E is isomorphic to $\text{GL}_2(F_q)$. The number of elements of $\text{GL}_2(F_q)$ is $f(q) = (q^2 - 1)(q^2 - q)$. The number of elements of $\text{GL}_2(F_q)$ of trace t is $f_0(q) = 2(q - 1)^2 + (q - 2)(q^2 - q + 1)$ if $t \neq 0$ and $f_1(q) = (q - 1)^2 + (q - 1)(q^2 - q + 1)$ if $t = 0$. The quotients $f_0(q)/f(q)$ and $f_1(q)/f(q)$ have limit 0 when q goes to ∞. By choosing $q > q_0$ sufficiently large, it follows from Chebotarev’s theorem applied to $M_{[q]}/M$ that, for each $\epsilon > 0$, there exists a set \mathcal{P}_M of primes of M of density greater than $1 - \epsilon$ such that for $l \in \mathcal{P}_M$, one has $a_\ell \neq -1, 0, 1$. Let \mathcal{P}_M' be the set of primes of M such that $\sigma(l) \in \mathcal{P}_M$ for all σ in the Galois group of M/Q. The density of \mathcal{P}_M' is bigger than $1 - [M : Q]\epsilon$. By that we mean that the lower limit of $\sum_{l \in \mathcal{P}_M} \text{Norm}(l)^{-s} / \sum_l \text{Norm}(l)^{-s}$ when $s \to 1^+$ is bigger than $1 - [M : Q]\epsilon$. Choosing $\epsilon < 1/[M : Q]$, we see that \mathcal{P}_M' is infinite, which proves the lemma.

\[\square\]
Let ℓ be as in the lemma and such that:

- no prime of F above ℓ belongs to T;
- G_M maps surjectively onto $\text{GL}_2(F_{\ell})$.

Apply Taylor’s potential modularity [Tay02, Theorem 1.6.] to the representation $\bar{\rho}$ of G_F in $\text{GL}(E[\ell])$. As E has good ordinary reduction at primes above ℓ, the reducibility hypotheses of the restriction of $\bar{\rho}$ to the decomposition group of primes above ℓ are satisfied. We get:

- a totally real finite extension F' of F, with F'/F Galois, such that every prime l of F above ℓ splits completely in F';
- a cuspidal automorphic representation π of $\text{GL}_2(\mathbb{A}_{F'})$, whose archimedean components are as described above after the statement of the theorem, and a place λ of the field of coefficients of π above ℓ such that $\rho_{\pi,\lambda}$ and $\bar{\rho}_{|G_{F'}}$ have isomorphic reductions: $\bar{\rho}_{\pi,\lambda} \simeq \bar{\rho}_{|G_{F'}}$;
- for every prime l' of F' above ℓ, the restriction of $\rho_{\pi,\lambda}$ to the inertia subgroup $I_{l'}$ is of the form
 \[
 \begin{pmatrix}
 \chi_{l'} & * \\
 0 & 1
 \end{pmatrix},
 \]
 where $\chi_{l'}$ is the cyclotomic character.

To prove the proposition, we furthermore require that no prime of F in T ramifies in F'.

We explain what we have to add to the arguments of Taylor in [Tay02] to check that this is possible. Let p as in [Tay02] be the auxiliary prime such that the considered moduli problem for Hilbert–Blumenthal abelian varieties has p-level structure induced from a character of a quadratic extension L of F.

Firstly, we can choose the level structure at p so that it is unramified at all primes in T. We choose the auxiliary prime p such that no prime of F above p is in T. When we apply Lemma 1.1. of [Tay02], we impose that every prime of T splits in the quadratic extension L of $F = K$. We choose the set S of primes of F such that it contains our T. We choose the characters $\bar{\psi}_x$ for $x \in T$ unramified. We have that ϕ in Lemma 1.1. is the cyclotomic character. In the proof of Lemma 1.1. on page 132, we have that $\bar{\psi}_x$ is unramified. We see that $\text{Ind}_{G_{F_{l'}}}^{G_k} \psi$ is unramified at all primes in T.

We apply the theorem of Moret-Bailly ([Mor89], [HST06, Proposition 2.1]) to the Hilbert–Blumenthal modular variety X on [Tay02, p. 136]. We want to ensure that F'/F is unramified at all primes in T. By Moret-Bailly, this will follow from the fact that $X(F_{v,\text{ur}})$ is non-empty, for each $v \in T$, where $F_{v,\text{ur}}$ is the maximal unramified extension of F_v. We deduce that $X(F_{v,\text{ur}})$ is non-empty from the fact that the p and ℓ level structures are unramified at $v \in T$ and the following fact proved by Rapoport [Rap78] and Deligne and Pappas [DP94]: X has a compactification \overline{X} proper over $\mathbb{Z}[1/p\ell]$, smooth over \mathbb{Q}, with absolutely irreducible fibers and there is an open subscheme U of \overline{X} smooth over $\mathbb{Z}[1/p\ell]$ which is dense in each fiber and which parametrizes abelian schemes with suitable additional structures. For $v \in T$, we take the open subset $\Omega_v \subset X(F_v)$ of [HST06, Proposition 2.1] to be the set of points of U with values in the ring of integers $O_{v,\text{ur}}$ of $F_{v,\text{ur}}$. The set Ω_v is not empty as the scheme U has a point with values in the algebraic closure of the residue field of F_v, and, by smoothness, this point can be lifted to a point with values in $O_{v,\text{ur}}$.

We finish the proof of the theorem and the proposition. A theorem of Skinner and Wiles [SW01, Theorem 5.1] implies the modularity of $\rho_{|G_{F'}}$. The theorem of Skinner and Wiles is quoted as [Ski03, Theorem 4]. In [Ski03], Skinner also states a ‘theorem 3’, which he says should
be possible to prove. The proof of Theorem 4 relies on a deep and difficult argument using Hida’s theory, and is mainly concerned with Galois representations whose reduction does not have ‘big image’. This is not our problem, and the ‘less sophisticated’ ‘theorem 3’ should be enough for our argument. Indeed, it follows from the congruences $a_{l'} \not\equiv -1, 1 \mod l$ that, for each prime l' of E' above l, $\pi_{l'}$ is not a twist of the special representation and we have the minimality hypothesis for $\rho_{\pi, \lambda}$ needed to apply ‘theorem 3’.

REFERENCES

ON THE PARITY OF RANKS OF SELMER GROUPS IV

Jan Nekovář nekovar@math.jussieu.fr
Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie (Paris 6), Théorie des Nombres (Case 247), 4, place Jussieu, F-75252 Paris cedex 05, France

Jean-Pierre Wintenberger wintenb@math.u-strasbg.fr
Département de Mathématique, Université de Strasbourg, membre de l’Institut universitaire de France, 9 rue René Descartes, 67084 Strasbourg Cedex, France

1359