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Gorenstein rings through face rings of manifolds
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Abstract

The face ring of a homology manifold (without boundary) modulo a generic system of
parameters is studied. Its socle is computed and it is verified that a particular quotient
of this ring is Gorenstein. This fact is used to prove that the algebraic g-conjecture for
spheres implies all enumerative consequences of its far-reaching generalization (due to
Kalai) to manifolds. A special case of Kalai’s conjecture is established for homology
manifolds that have a codimension-two face whose link contains many vertices.

1. Introduction

In 1980 Stanley proved the necessity of McMullen’s conjectured description of f -vectors of
boundaries of simplicial convex polytopes [Sta80]. At about the same time, Billera and Lee
demonstrated that McMullen’s conditions were sufficient [BL81]. Since then, one of the central
problems in the field of face numbers of simplicial complexes is the possible extension of
McMullen’s g-conjecture to other spheres. In its most optimistic form it states that, just as
in the case of polytope boundaries, the face ring of a homology sphere modulo a generic system
of parameters has a Lefschetz element. We call this the algebraic g-conjecture. In the mid 1990s
Kalai suggested a far-reaching generalization of this conjecture to all homology manifolds [Nov98,
§ 7]. It is a remarkable fact that all of the enumerative consequences of Kalai’s conjecture are
implied by the apparently weaker algebraic g-conjecture. This follows from our main result,
Theorem 1.4, that a particular quotient of the face ring of a homology manifold is Gorenstein.
We also verify a special case of Kalai’s conjecture when the complex has a codimension-two face
whose link contains many vertices.

The main objects we will consider are Buchsbaum complexes and more specifically homology
manifolds. Historically, Buchsbaum complexes were defined algebraically. Here, we adopt the
following theorem of Schenzel [Sch81] as our definition. Let k be an infinite field of an arbitrary
characteristic, let ∆ be a simplicial complex, and let H̃i(∆) be the ith reduced simplicial
homology of ∆ with coefficients in k. Recall that if τ is a face of ∆, then its link is

lk τ = {σ ∈∆ | σ ∩ τ = ∅, σ ∪ τ ∈∆}.

Definition 1.1. A (d− 1)-dimensional simplicial complex ∆ is called Buchsbaum (over k) if it
is pure and, for every non-empty face τ ∈∆, H̃i(lk τ) = 0 for all i < d− |τ | − 1.
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I. Novik and E. Swartz

We say that ∆ is a homology manifold over k (without boundary) if it is Buchsbaum and in
addition H̃d−|τ |−1(lk τ)∼= k for all ∅ 6= τ ∈∆. A k-homology sphere is a complex ∆ such that for
all τ ∈∆, including τ = ∅,

H̃i(lk τ)∼=

{
0 if i < d− |τ | − 1,
k if i= d− |τ | − 1.

In particular, a k-homology sphere is a k-homology manifold, and a triangulation of a topological
sphere (topological manifold, respectively) is a k-homology sphere (k-homology manifold,
respectively) for any field k.

If ∆ is a simplicial complex on [n] := {1, 2, . . . , n}, then its face ring (or the Stanley–Reisner
ring) is

k[∆] := k[x1, . . . , xn]/I∆, where I∆ = (xi1xi2 · · · xik : {i1 < i2 < · · ·< ik} /∈∆).

Various combinatorial and topological invariants of ∆ are encoded in the algebraic invariants of
k[∆] and vice versa. For instance, if ∆ is a (d− 1)-dimensional complex, then the Krull dimension
of k[∆], dim k[∆], is equal to d. In this case, a set of d linear forms θ1, . . . , θd ∈ k[∆] is called a
linear system of parameters (l.s.o.p.) if

k(∆,Θ) := k[∆]/(θ1, . . . , θd)

has Krull dimension zero (equivalently, k(∆,Θ) is finite dimensional as a k-vector space).
Assuming that k is infinite, an l.s.o.p. always exists: a generic choice of θ1, . . . , θd does the job.
Although the algebraic structure of k(∆,Θ) generally depends on θ1, . . . , θd, in the following we
somewhat abuse notation and write k(∆) instead of k(∆,Θ). Unless it is specifically stated that
Θ is generic, our results apply to an arbitrary l.s.o.p.

One invariant that measures how far ∆ is from being a homology sphere is the socle of k(∆),
Soc k(∆), where, for a k[x1, . . . , xn]- or k[∆]-module M ,

SocM := {y ∈M | xi · y = 0 for all i= 1, . . . , n}.

When ∆ is a homology sphere, Soc k(∆) is a one-dimensional k-space. Since k[∆] is a graded
k-algebra for any ∆, the ring k(∆) and its ideal Soc k(∆) are graded as well. We denote by k(∆)i
and (Soc k(∆))i their ith homogeneous components. It is well known (for instance, see [Sta96,
Lemma III.2.4(b)]) that for any (d− 1)-dimensional ∆, k(∆)i, and hence also (Soc k(∆))i, vanish
for all i > d. If ∆ is a Buchsbaum complex, then, for i≤ d, (Soc (k(∆))i can be expressed in terms
of the local cohomology modules of k[∆] with respect to the irrelevant ideal, Hj(k[∆]), as follows;
see [NS07, Theorem 2.2].

Theorem 1.2. Let ∆ be a (d− 1)-dimensional simplicial complex. If ∆ is Buchsbaum, then,
for all 0≤ i≤ d,

(Soc k(∆))i ∼=
(d−1⊕
j=0

(
d

j

)
Hj(k[∆])i−j

)⊕
Si−d,

where S is a graded submodule of SocHd(k[∆]) and rM denotes the direct sum of r copies of M .

While Theorem 1.2 identifies a big chunk of the socle of k(∆), its other
part, S, remains a mystery. Here, we solve this mystery in the special case of
a connected orientable k-homology manifold without boundary, thus verifying [NS07,
Conjecture 7.2]. A connected k-homology manifold ∆ without boundary is called orientable
if H̃d−1(∆)∼= k.
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Gorenstein rings through face rings of manifolds

Theorem 1.3. Let ∆ be a (d− 1)-dimensional connected orientable k-homology manifold
without boundary. Then dimk S = dimk S0 = 1. In particular, dimk Soc k(∆)i =

(
d
i

)
βi−1, where

βi−1 := dimk H̃i−1(∆) is the (i− 1)th reduced Betti number of ∆.

A graded k-algebra of Krull dimension zero is called Gorenstein if its socle is a
one-dimensional k-space (see [Sta96, p. 50] for many other equivalent definitions). Let

I :=
d−1⊕
i=0

Soc k(∆)i and k(∆) := k(∆)/I.

(Note that the top-dimensional component of the socle is not a part of I.) If ∆ is a homology
sphere, then I = 0 and k(∆) = k(∆) is a Gorenstein ring [Sta96, Theorem II.5.1]. What if ∆ is
a homology manifold other than a sphere? How far is k(∆) from being Gorenstein in this case?
The answer (that was conjectured in [NS07, Conjecture 7.3]) turns out to be surprisingly simple.

Theorem 1.4. Let ∆ be a (d− 1)-dimensional connected simplicial complex. If ∆ is an
orientable k-homology manifold without boundary, then k(∆) is Gorenstein.

In [Sch81], Schenzel computed the Hilbert function of k(∆) for a Buchsbaum complex
∆ in terms of its face and Betti numbers. It follows from Theorem 1.3, Schenzel’s formula,
and the Dehn–Sommerville relations [Kle64] that for a connected orientable homology manifold
∆, the Hilbert function of k(∆) is symmetric, that is,

dimk k(∆)i = dimk k(∆)d−i for all 0≤ i≤ d. (1)

As the Hilbert function of a Gorenstein ring of Krull dimension zero is always symmetric [Sta96,
p. 50], Theorem 1.4 gives an alternative algebraic proof of (1).

As noted above, when ∆ is a (d− 1)-dimensional homology sphere, k(∆) is a Gorenstein ring,
which implies that dimk k(∆)i = dimk k(∆)d−i. We say that ∆ satisfies the algebraic g-conjecture
if, for sufficiently generic linear forms ω and Θ = {θ1, . . . , θd}, and i≤ d/2, the multiplication

·ωd−2i : k(∆)i −→ k(∆)d−i

is an isomorphism. At present the only large classes of spheres for which the algebraic g-conjecture
is known to hold are polytopal spheres [Sta80] and edge decomposable spheres [Mur, Nev07].

Kalai’s far-reaching generalization of the algebraic g-conjecture for homology spheres [Nov98]
posits that if ∆ is an orientable homology manifold and ω,Θ are sufficiently generic, then

·ωd−2i : k(∆)i −→ k(∆)d−i

is still an isomorphism for all i≤ d/2. Let h′′i = dimk k(∆)i. Given a system of parameters
and ω which satisfy Kalai’s conjecture, it is immediate that the multiplication ·ω : k(∆)i→
k(∆)i+1 is an injection for i < d/2. So, h′′0 ≤ · · · ≤ h′′bd/2c, and examination of k(∆)/(ω) shows
that the non-negative integer vector (h′′0, h

′′
1 − h′′0, . . . , h′′bd/2c − h

′′
bd/2c−1) is an M -vector, i.e.

satisfies Macaulay’s nonlinear arithmetic conditions (see [Sta96, p. 56]) for the Hilbert series
of a homogeneous quotient of a polynomial ring. Applying the same reasoning to I[i] :=⊕i

j=0 Ij , which is also an ideal, and k(∆, i) := k(∆)/I[i], instead of I and k(∆) = k(∆)/I, the
second conclusion can be strengthened to (h′′0, h

′′
1 − h′′0, . . . , h′′i − h′′i−1, h

′′
i+1 − h′′i +

(
d
i+1

)
βi) is

an M -vector for every i < bd/2c. We call these arithmetic restrictions on the h′′-vector the
manifold g-conjecture. In fact, as the following theorem shows (see Theorem 3.2 for a somewhat
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stronger version), these two conclusions follow from the algebraic g-conjecture. (Recall that the
links of vertices of a homology manifold are homology spheres.)

Theorem 1.5. Let ∆ be a (d− 1)-dimensional connected orientable homology manifold. If the
links of all vertices of ∆ satisfy the algebraic g-conjecture, then, for generically chosen ω and Θ,
·ω : k(∆)i −→ k(∆)i+1 is an injection for all i < bd/2c and is a surjection for all i≥ dd/2e.

For Kalai’s conjecture we prove this special case.

Theorem 1.6. Let ∆ be a (d− 1)-dimensional orientable k-homology manifold with d≥ 3. If
∆ has a (d− 3)-dimensional face τ whose link contains all of the vertices of ∆ that are not in τ ,
then, for generic choices of ω and Θ, ·ωd−2 : k(∆)1 −→ k(∆)d−1 is an isomorphism.

The condition that the link of τ contains all of the vertices of ∆ that are not in τ is equivalent
to saying that every vertex of ∆ is in the star of τ , st τ := {σ ∈∆ | σ ∪ τ ∈∆}. This condition
is not as restrictive on the homeomorphism type of ∆ as one might think: the results of [Swa09,
§ 5] imply that every connected homology manifold without boundary that has a triangulation
always has a triangulation ∆ satisfying this condition.

The outline of the paper is as follows. We verify Theorem 1.3 in § 2. The main ingredient in
the proof is Gräbe’s explicit description of Hd(k[∆]) as a k[∆]-module in terms of the simplicial
(co)homology of the links of faces of ∆ and maps between them [Gra84]. Theorem 1.4 is proved
in § 3 and is used to explore the relationship between the algebraic g-conjecture and Kalai’s
conjecture (such as Theorem 1.5). Section 4 is devoted to the proof of Theorem 1.6. The proofs
of Theorems 1.4 and 1.6 rely heavily on a result from [Swa09] relating k(lk v) (for a vertex v
of ∆) to the principal ideal (xv)⊂ k(∆).

2. Socles of homology manifolds

The goal of this section is to verify Theorem 1.3. To do so we analyze SocHd(k[∆]) and prove
the following.

Theorem 2.1. If ∆ is a connected orientable (d− 1)-dimensional k-homology manifold without
boundary, then SocHd(k[∆])i = 0 for all i 6= 0.

The proof relies on results from [Gra84]. We denote by |∆| the geometric realization of ∆.
For a face τ ∈∆, let cost τ := {σ ∈∆ | σ 6⊃ τ} be the contrastar of τ , let H i(∆, cost τ) be the
simplicial ith cohomology of a pair (with coefficients in k), and, for τ ⊂ σ ∈∆, let ι∗ be the map
H i(∆, cost σ)→H i(∆, cost τ) induced by the inclusion ι : cost τ → cost σ. Also, if ∅ 6= τ ∈∆, let
τ̂ be the barycenter of τ . Finally, for a vector U = (u1, . . . , un) ∈ Zn, let s(U) := {l | ul 6= 0} ⊆ [n]
be the support of U , let {el}nl=1 be the standard basis for Zn, and let N denote the set of non-
negative integers.

We consider the Zn-grading of k[x1, . . . , xn] obtained by declaring xl to be of degree el. This
grading refines the usual Z-grading and induces a Zn-grading of k[∆] and its local cohomology
modules. Thus, H i(k[∆])j =

⊕
H i(k[∆])U , where the sum is over all U = (u1, . . . , un) ∈ Zn with∑

ul = j, and multiplication by xl is a linear map fromH i(k[∆])U toH i(k[∆])U+el
for all U ∈ Zn.
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Theorem 2.2 [Gra84]. The following is an isomorphism of Zn-graded k[∆]-modules:

H i(k[∆])∼=
⊕
−U∈Nn

s(U)∈∆

Mi
U , whereMi

U =H i−1(∆, cost s(U)) (2)

and the k[∆]-structure on the Uth component of the right-hand side is given by

·xl =


0-map if l /∈ s(U),
identity map if l ∈ s(U) and l ∈ s(U + el),
ι∗ :H i−1(∆, cost s(U))→H i−1(∆, cost s(U + el)) otherwise.

We remark that the isomorphism of (2) on the level of vector spaces (rather than k[∆]-modules)
is due to Hochster, see [Sta96, § II.4], and that H i(k[∆])0

∼=Mi
(0,...,0) =H i−1(∆, ∅).

Proof of Theorem 2.1. In view of Theorem 2.2, if −U = (−u1, . . . ,−un) ∈ Nn is such that −ul ≥ 2
for some l ∈ [n], then the multiplication ·xl :Hd(k[∆])U →Hd(k[∆])U+el

is an isomorphism, and
hence no non-zero element of Hd(k[∆])U is in the socle. Thus (using Theorem 2.2 once again), to
prove that SocHd(k[∆])i = 0 for all i 6= 0, it is enough to show that for every ∅ 6= τ ∈∆ and l ∈ τ ,
the map ι∗ :Hd−1(∆, cost τ)→Hd−1(∆, cost σ), where σ = τ − {l}, is an isomorphism. Assume
first that σ 6= ∅. Consider the following diagram.

Hd−1(|∆|)
(j?)−1

// Hd−1(|∆|, |∆| − σ̂)
f?

// Hd−1(∆, cost σ)

Hd−1(|∆|)
(j?)−1

// Hd−1(|∆|, |∆| − τ̂)
f?

// Hd−1(∆, cost τ)

ι?

OO

The two f? maps are induced by inclusion and are isomorphisms by the usual deformation
retractions. The homomorphism j? is also induced by inclusion. Since ∆ is connected and
orientable, all of the spaces are one dimensional and j? is an isomorphism, so that (j?)−1 is well
defined and is an isomorphism as well. Hence, the compositions f? ◦ (j?)−1 are isomorphisms. The
naturality of j? implies that the diagram is commutative. It follows that ι? is an isomorphism.
If σ = ∅, replace Hd−1(|∆|, |∆| − σ̂) with Hd−1(|∆|) in the above diagram. The same reasoning
applies. 2

We are now in a position to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Since Si is a subspace of SocHd(k[∆])i (Theorem 1.2), and since the
latter space is the zero space whenever i 6= 0 (see Theorem 2.1), it follows that Si = 0 for all
i 6= 0. For i= 0, we have

dimk S0 = dimk Soc k(∆)d = dimk k(∆)d = βd−1(∆) = 1.

Here, the first step is by Theorem 1.2, the second step is a consequence of k(∆)d being
the last non-vanishing homogeneous component of k(∆), and the third step is by Schenzel’s
formula [Sch81] (see also [Sta96, Theorem II.8.2]). The ‘In particular’ part then follows from
Theorem 1.2, isomorphism (2), and the standard fact that H i−1(∆, cost τ)∼= H̃i−|τ |−1(lk τ), see
e.g. [Gra84, Lemma 1.3]. 2
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3. Gorenstein property

In this section we verify Theorem 1.4 and use it to discuss connections between various
g-conjectures. To prove that k(∆) = k(∆)/I is Gorenstein, where ∆ is a (d− 1)-dimensional
connected orientable homology manifold and I =

⊕d−1
i=0 Soc k(∆)i, we have to check that the

operation of modding out by I does not introduce new socle elements. This turns out to be a
simple application of [Swa09, Proposition 4.24], which we review now.

Let Θ = {θ1, . . . , θd} be an l.s.o.p. for k[∆] and let v be a vertex of ∆. Fix a facet
τ = {v = v1, v2, . . . , vd} that contains v. By using Gaussian elimination on the d× n matrix
whose (i, j)th entry is the coefficient of xj in θi, we can assume without loss of generality that
θi = xvi +

∑
j /∈τ θi,jxj . Denote by θ′i the linear form obtained from θi by removing all summands

involving xj for {j} /∈ lk v. Then Θ′ := {θ′2, . . . , θ′d} can be considered as a subset of k[lk v]1.
Moreover, it is easy to check, say, using [Sta96, Lemma III.2.4(a)], that Θ′ forms an l.s.o.p. for
k[lk v]. The ring k(lk v) := k[lk v]/(Θ′) has a natural k[x1, . . . , x̂v, . . . , xn]-module structure
(if j 6= v is not in the link of v, then multiplication by xj is the zero map), and defining

xv · y :=−θ′1 · y for y ∈ k(lk v)

extends it to a k[x1, . . . , xn]-module structure. Swartz [Swa09, Proposition 4.24] asserts the
following.

Theorem 3.1. Let ∆ be an orientable homology manifold. The map

φ : k[lk v]/(Θ′)→ (xv) (k[∆]/(Θ)) given by z 7→ xv · z

is well defined and is an isomorphism (of degree one) of k[x1, . . . , xn]-modules. Its inverse,
xv · z 7→ z, is given by replacing each occurrence of xv in z with −θ′1 and setting all xj for j 6= v
not in the link of v to zero.

Proof of Theorem 1.4. To prove the theorem, it is enough to show that the socle of k(∆) =
k(∆)/I, where I =

⊕d−1
j=0 Soc k(∆)j , vanishes in all degrees j 6= d. This is clear for j = d− 1.

For j ≤ d− 2, consider any element y ∈ k(∆)j such that xv · y ∈ Soc k(∆) for all v ∈ [n]. We
have to check that y ∈ Soc k(∆). And, indeed, the isomorphism of Theorem 3.1 implies that
y := φ−1(xv · y) ∈ k(lk v)j is in the socle of k(lk v). Since lk v is a (d− 2)-dimensional homology
sphere, k(lk v) is Gorenstein, and hence its socle vanishes in all degrees except the (d− 1)st one.
Therefore, y = 0, and hence xv · y = φ(y) = 0 in k(∆). Since this happens for all v ∈ [n], it follows
that y ∈ Soc k(∆). 2

We now turn to the connection between the various g-conjectures. Evidently, Kalai’s
conjecture implies the algebraic g-conjecture and the manifold g-conjecture. Since homology
spheres are homology manifolds, an immediate consequence of the manifold g-conjecture is
that all homology spheres satisfy the enumerative restrictions of McMullen’s g-conjecture for
polytopes. The surprise is that the algebraic g-conjecture implies the manifold g-conjecture. In
fact, as the following strengthening of Theorem 1.5 shows, only the algebraic g-conjecture in the
middle dimension is needed.

Theorem 3.2. Let ∆ be a (d− 1)-dimensional connected orientable homology manifold. If, for
at least (n− d) of the vertices v of ∆ and generically chosen ω and Θ′ in k[lk v]1, the map
·ω : k(lk v)b(d−1)/2c→ k(lk v)b(d−1)/2c+1 is surjective, then ∆ satisfies the manifold g-conjecture.

Proof. The condition on the links implies by [Swa09, Theorem 4.26] that for generic choices
of ω and Θ in k[∆]1, the map ·ω : k(∆)dd/2e→ k(∆)dd/2e+1 is surjective. Hence, the map
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·ω : k(∆)dd/2e→ k(∆)dd/2e+1 is surjective. Thus, k(∆)/(ω)i vanishes for i= dd/2e+ 1, and hence
also for all i > dd/2e+ 1, and we infer that ·ω : k(∆)i→ k(∆)i+1 is surjective for i≥ dd/2e. This
in turn yields that the dual map ·ω : Hom k(k(∆)i+1, k)→Hom k(k(∆)i, k) is injective for all
i≥ dd/2e. Since by Theorem 1.4 k(∆) is Gorenstein, Hom k(k(∆)i, k) is naturally isomorphic to
k(∆)d−i (see [Sta96, Theorems I.12.5 and I.12.10]). Therefore, ·ω : k(∆)j → k(∆)j+1 is injective
for j < bd/2c. 2

Theorem 3.2 combined with Stanley’s g-theorem for polytopes [Sta80], implies that every
(d− 1)-dimensional connected orientable Q-homology manifold all of whose vertex links are
polytopal spheres satisfies the manifold g-conjecture.

4. A special case of the g-theorem

In this section we prove Theorem 1.6. As in the proof of Theorem 1.4, we will rely on Theorem 3.1
and the notation introduced there. Since the set of all (ω,Θ) for which ·ωd−2 : k(∆)1→ k(∆)d−1

is an isomorphism is a Zariski open set (see [Swa09, § 4]), it is enough to find one ω that does
the job. Surprisingly, the ω we find is ‘very non-generic’: as we will see, w = xv, where v ∈ τ does
the job.

Proof of Theorem 1.6. We use induction on d starting with d= 3. In this case, the face τ is simply
a vertex, say v. Let σ = {v = v1, v2, v3} be a facet containing v. Let Θ be a generic l.s.o.p. for
k[∆] and, as in § 3, assume that θi = xvi +

∑
j /∈σ θi,jxj . Since dimk k(∆)1 = dimk k(∆)2 (see (1))

and since dimk Soc k(∆)1 = 0 (e.g. by Theorem 1.3), we will be done if we check that the map
·xv : k(∆)1→ k(∆)2 is injective. And, indeed, if xv · z ∈ Soc k(∆)2 for some z ∈ k(∆)1, then, by
the isomorphism of Theorem 3.1, z = φ−1(xv · z) is in Soc k(lk v)1. But, the latter space is the
zero space, so z = 0 in k(lk v)1, that is, z ∈ Span (θ′2, θ

′
3). Since lk v contains all the vertices of

∆ except v, it follows that θ′2 = θ2, θ′3 = θ3, and z − z is a multiple of θ1, and hence that z = 0
in k(∆).

The proof of the induction step goes along the same lines: let τ = {v1, . . . , vd−2}, let
σ = τ ∪ {vd−1, vd} be any facet containing τ , and let Θ be a generic l.s.o.p. for k[∆]. We show that,
for v ∈ τ , say v = v1, the map ·xd−2

v : k(∆)1→ k(∆)d−1 is an injection. If xd−2
v · z ∈ Soc k(∆)d−1

for some z ∈ k(∆)1, then, by Theorem 3.1,

xd−3
v · z = (−θ′1)d−3 · z ∈ Soc k(lk v)d−2.

However, lk v is a (d− 2)-dimensional homology sphere satisfying the same assumptions as ∆:
the star of the face τ − {v} contains all the vertices of lk v. Hence, by the inductive hypothesis
applied to lk v with ω =−θ′1 and Θ′ = (θ′2, . . . , θ

′
d), the map ·(−θ′1)d−3 : k(lk v)1→ k(lk v)d−2 is

an injection. Thus, z = 0 in k(lk v)1, and so z = 0 in k(∆)1. 2

Remark. Barnette’s lower bound theorem [Kal87] asserts that for every d and n, the f -vector
of any (d− 1)-dimensional connected triangulated manifold with n vertices is minimized
componentwise by the f -vector of (the boundary of) a stacked d-polytope with n vertices, S(d, n).
There is a conjectural algebraic strengthening of this result based on Kalai’s notion of algebraic
shifting, an operation that was introduced in the mid 1980s as a tool for studying f -numbers of
simplicial complexes (see e.g. [BK88] and a survey paper [Kal02]). This conjecture posits that
the algebraic shifting of every connected orientable (d− 1)-dimensional manifold on n vertices
contains as a subset ∆(S(d, n)): the algebraic shifting of S(d, n). The complex ∆(S(d, n)) was
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recently computed by Nevo [Nev07, Example 2.18] and independently by Murai [Mur07]. Using
their result, together with standard facts on rev-lex generic initial ideals [Eis95, Proposition 15.12]
and an algebraic definition of Buchsbaum complexes [Sch81, Definition and Theorem 3.1(ii)], it
is easy to show that in the case of symmetric algebraic shifting, a (d− 1)-dimensional connected
orientable Q-homology manifold ∆ satisfies the above conjecture if and only if for generically
chosen θ1, . . . , θd and ω, the map ·ωd−2 : k(∆)1→ k(∆)d−1 is a Q-isomorphism. In particular, it
follows that this conjecture holds for every (d− 1)-dimensional orientable Q-homology manifold
satisfying the assumptions of Theorem 1.6.
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