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Morphisms between Cremona groups, and
characterization of rational varieties

Serge Cantat

Abstract

We classify all (abstract) homomorphisms from the group PGLr+1(C) to the group
Bir(M) of birational transformations of a complex projective variety M , provided
that r > dimC(M). As a byproduct, we show that: (i) Bir(PnC) is isomorphic, as an
abstract group, to Bir(PmC) if and only if n = m; and (ii) M is rational if and only if
PGLdim(M)+1(C) embeds as a subgroup of Bir(M).

1. Introduction

1.1 Algebraic transformations
Let M be a complex projective variety. Two natural groups of transformations are associated
to M. The first is the group Aut(M) of automorphisms of M ; with the topology of uniform
convergence, this group is a complex Lie group (see [CP94]). More precisely, the connected
component Aut(M)0 containing the identity IdM is a connected, complex, algebraic group, while
the discrete part Aut(M)] = Aut(M)/Aut(M)0 may have infinitely many elements.

The second group is the group Bir(M) of all birational transformations of M . In most cases,
Bir(M) coincides with Aut(M) and is finite, but for some peculiar varieties, such as the projective
space PnC, n > 1, Bir(M) has infinite dimension.

Our goal in this paper is to initiate the study of abstract morphisms from linear groups
to groups of birational transformations Bir(M). We treat one example in detail which, as a
byproduct, shows that:

– an irreducible variety M of dimension n is rational if and only if Bir(M) is isomorphic to
Bir(PnC) as an abstract group;

– the Cremona groups Bir(PnC) and Bir(PmC) are not isomorphic if n 6= m.

1.2 Field automorphisms
Let Aut(PnC) be the group of automorphisms of the complex projective space PnC. Once a system
of homogeneous coordinates [x0 : x1 : . . . : xn] is fixed, the group Aut(PnC) can be identified to
the group of projective transformations PGLn+1(C).

Let AutQ(C) be the group of automorphisms of the field (C,+, ·). The semi-direct product
AutQ(C) n Aut(PnC) acts on the set Pn(C). To describe this action, let us use our system of
homogeneous coordinates. The group AutQ(C) acts diagonally on Cn+1 and therefore on Pn(C):
If β is an element of AutQ(C), then

β([x0 : . . . : xn]) = [β(x0) : . . . : β(xn)].
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It acts also on PGLn+1(C), changing a matrix B = [bij ] into βB = [β(bij)]. This provides an
action g 7→ βg of AutQ(C) on Aut(PnC) such that

βg([x0 : . . . : xn]) = (β ◦ g ◦ β−1)([x0 : . . . : xn]),

and therefore an action of AutQ(C) n Aut(PnC) on Pn(C).
In a similar way, if M is a projective variety which is defined over a field K ⊂ C, the group

AutK(C) of automorphisms of the field extension C/K acts on M(C) and on both Aut(M) and
Bir(M), in such a way that

βg(m) = (β ◦ g ◦ β−1)(m)

for all β in AutK(C), all g in Bir(M), and all points m in M(C) for which both sides of this
equation are well defined. As a consequence, AutK(C) acts by automorphisms on the group
Bir(M). In the case of the projective space, this provides a faithful morphism from AutQ(C) to
the group of outer automorphisms of the group Bir(PnC).

1.3 Abstract morphisms
To state our main results, note that, given a field morphism α : C → C, the construction
described in the previous paragraph provides an injective morphism g 7→ αg from Aut(PnC)
to Aut(PnC). For example, if one writes C as the algebraic closure of a purely transcendental
extension Q(xi, i ∈ I) of the field of rational numbers, and if ϕ : I → I is an injective map,
then there exists a field morphism α : C → C which maps xi to xϕ(i); such a morphism is
surjective if and only if ϕ is onto. In this way, one gets injective, non-surjective, morphisms
Aut(PnC) → Aut(PnC).

Given g in PGLn+1(C), we denote by tg the linear transpose of g. The map

g 7→ g∨ := (tg)−1

determines an exterior automorphism of the group Aut(PnC). It is nothing more than the
natural morphism given by projective duality and it represents the only exterior and algebraic
automorphism of the group Aut(PnC) (see [Die71]).

Theorem A. Let M be a smooth, connected, complex projective variety, and let n be its
dimension. Let r be a positive integer and let ρ : Aut(Pr(C)) → Bir(M) be an injective morphism
of groups. Then n > r, and if n = r there exist a field morphism α : C → C and a birational
mapping ψ : M 99K Pn(C) such that either

ψ ◦ ρ(g) ◦ ψ−1 = αg, ∀g ∈ Aut(Pn(C)),

or
ψ ◦ ρ(g) ◦ ψ−1 = (αg)∨, ∀g ∈ Aut(Pn(C));

in particular, M is rational. Moreover, α is an automorphism of C if ρ is an isomorphism.

The following two results are direct corollaries of Theorem A. The first shows that the
Cremona groups Bir(PnC), n > 1, are pairwise non-isomorphic, thereby solving an open problem
for n > 4 (see § 1.4.1 below).

Theorem B. Let n and m be natural integers. The group Bir(PnC) embeds into Bir(PmC) if and
only if n 6 m. In particular, Bir(PnC) is isomorphic to Bir(PmC) if and only if n = m.

The second characterizes rational varieties M by the structure of Bir(M), as an abstract
group.
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Theorem C. Let M be an irreducible complex projective variety of dimension n. The following

properties are equivalent:

(a) M is rational;

(b) Bir(M) is isomorphic, as an abstract group, to Bir(PnC);

(c) there is a non-trivial morphism from PGLn+1(C) to Bir(M).

Remark 1.1. In fact, if K is an uncountable subfield of C, and if PGLn+1(K) embeds into Bir(M)

with n = dimC(M), then the complex variety M is rational; for instance, one can take K = R.

This statement follows easily from the proof of Theorem A.

1.4 Two related results

1.4.1 Finite subgroups. Let k be an algebraically closed field. The group of diagonal matrices

in PGLn+1(k) is a multiplicative group of rank n; hence, it contains a copy of the finite abelian

groups (Z/pZ)n for all prime integers p 6= char(k).

Given any prime integer p > 5 with p 6= char(k), Beauville proves that the abelian group

(Z/pZ)3 does not embed into Bir(P2
k); this implies that Bir(P2

k) is not isomorphic to Bir(Pmk′),

whatever the choice of m 6= 2 and of the algebraically closed field k′ (see [Bea07]).

In [Pro11], Prokhorov proves that, for any prime integer p > 17 and any field k of

characteristic zero, the abelian group (Z/pZ)4 does not embed into Bir(P3
C). Again, this implies

that Bir(P3
k) is not isomorphic to Bir(Pmk′) if m 6= 3 and k′ is an algebraically closed field.

Unfortunately, the methods used in the work of Beauville and Prokhorov are not available

in dimension n > 4 and it was not known, up to now, whether two distinct Cremona groups

Bir(PnC) and Bir(PmC), with n and m larger than 3, could be isomorphic. For instance, it is not

yet known whether there does exist a finite group without any faithful embedding into Bir(P4
C)

(it is expected that PGL6(Z/pZ) and even (Z/pZ)5 do not embed in Bir(P4
C) if p is a large prime

integer).

1.4.2 Classical groups and groups of diffeomorphisms. Theorems B and C should be

compared to well-known statements concerning morphisms between classical Lie groups (results

which we shall use in § 4.2.2) as well as morphisms between groups of diffeomorphisms of compact

manifolds.

For instance, Filipkiewicz proved the following result in [Fil83]. Let V and W be two

compact manifolds and let ρ : Diffk(V ) → Diffl(W ) be an isomorphism between their groups

of diffeomorphisms of class Ck and Cl; then k = l, and there is a diffeomorphism Φ: V → W

of class Ck such that ρ is the conjugation by Φ. This shows that the algebraic structure of

Diffk(V ) determines V . Moreover, the existence of an embedding of Diff∞(V ) into Diff∞(W )

forces the inequality dim(V ) 6 dim(W ), but this result has been obtained only very recently

(see [Ghy91, Hur13, Man12, Mil13]).

Our main results follow the same principle but, in the context of groups of birational

transformations, one must require that one of the varieties is rational: in general, Bir(M) is

too small to detect the birational type of M . For instance, if M has general type, Bir(M) is

finite; more specifically, if M is a generic curve of genus g > 3 then Bir(M) = {IdM}. Another

issue concerning Theorem A is the existence of isomorphisms coming from automorphisms of the

field C; isomorphisms of this kind do not exist in Filipkiewicz’s context.
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1.5 Strategy and relevant references
When n = 2, Theorems B and C are due to Déserti (see [Dés06]). The strategy that leads to the
proof of Theorem A is similar to Déserti’s argument, but it also requires several new ideas which
can be traced back to at least two distinct sources.

(i) Weil’s regularization theorem (see [Wei55]), a result that transforms a group of birational
transformations of M with uniformly bounded degrees into a group of automorphisms of a
new variety M ′ by a birational change of variables Ψ: M ′ 99K M . This is described in § 2.3,
with interesting complements that can be found in papers by Demazure [Dem70], Umemura
[Ume80, Ume82], or Huckleberry and Zaitsev [HZ96, Zai95].

(ii) The work of Epstein and Thurston on nilpotent Lie subalgebras in the Lie algebra of
smooth vector fields of a compact manifold; see [ET79], as well as [Ghy93] for similar ideas in
the context of groups of analytic diffeomorphisms.

We work over the field of complex numbers because it is algebraically closed, is not countable
and has characteristic zero. These properties are all used during the proof, but the crucial
point is that C is not countable. We could also prove Theorem A for groups of bimeromorphic
transformations of compact Kähler manifolds; we stick to the case of projective varieties because
one of the key steps is Weil’s regularization theorem, the proof of which is not accessible in the
literature for Kähler manifolds; on the other hand, we write the proof, as far as we can, in the
language of complex differential geometry.

2. Birational actions, degrees, and regularization

In this section, we collect several basic facts regarding groups of birational transformations and
then describe Weil’s regularization theorem.

2.1 Degrees and volumes
Let M be a smooth, irreducible, complex projective variety; denote its dimension by n. Let κ be
a Kähler form on M, fixed once and for all.

2.1.1 Kähler metrics. If k is a positive integer, denote by πi : Mk
→ M the projection

onto the ith factor: πi(x1, x2, . . . , xk) = xi. The manifold Mk is then endowed with the Kähler
form

∑k
i=1 π

∗
i κ. Volumes of submanifolds of Mk are computed with respect to the Kähler metric

determined by this Kähler form.

2.1.2 Graphs. Each birational transformation f of M is determined by two Zariski dense
open subsets U and V of M , and a regular isomorphism f : U → V . The largest open subset U
on which f is regular is the domain of definition Dom(f); its complement is the indeterminacy
locus Ind(f); the codimension of Ind(f) is at least 2.

To each birational transformation f : M 99KM , one associates its graph

Γf ⊂M ×M,

defined as the Zariski closure of the set {(x, f(x)) ∈M ×M ; x ∈ Dom(f)}. By construction, Γf
is an irreducible subvariety of M ×M of dimension n. Both projections π1, π2 : M ×M → M
restrict to birational morphisms πi : Γf → M , a fact which characterizes the set of graphs of
birational transformations.

Example 2.1. The graph Γf can be singular, as in the case of the monomial transformation of
the plane defined by f(x, y) = (y3/x2, y/x) in affine coordinates.
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2.1.3 Degrees. The total degree (or degree for short) tdeg(f) of a birational transformation
f is defined as the volume of Γf with respect to the fixed metric defined on M ×M in § 2.1.1
(see [CCG10]); hence,

tdeg(f) =

∫
Γf

(π∗1κ+ π∗2κ)n =

∫
Dom(f)

(κ+ f∗κ)n.

If L is a very ample line bundle on M , and κ is the pullback of the Fubini–Study metric by the
natural embedding of M in P(H0(M,L)∨), then tdeg(f) is the degree of the graph of f with
respect to the polarization π∗1(L)⊗ π∗2(L).

Lemma 2.2 (See [DS05, Lemma 4] and [Gue10]). There exists a constant cM , which depends
only on M and κ, such that

tdeg(f ◦ g) 6 cM tdeg(f) tdeg(g)

for all f and g in Bir(M).

Changing κ into c
1/n
M κ, we may and will assume that

tdeg(f ◦ g) 6 tdeg(f) tdeg(g). (1)

Similarly, if ψ : M ′ 99KM is a birational transformation, and κ′, κ are Kähler metrics on M ′ and
M , there exists a constant cψ such that

tdeg(ψ−1 ◦ f ◦ ψ) 6 cψ tdeg(f) (2)

for all f in Bir(M).

2.1.4 Groups with bounded degrees. Let d > 1 be a natural integer. The subset Bird(M) of
Bir(M) is defined as

Bird(M) = {f ∈ Bir(M); tdeg(f) 6 d}.

A subgroup G of Bir(M) has bounded degree if it is contained in Bird(M), for some d ∈ N∗.

2.2 Components of Bir(M) (see [Han87, HZ96, Zai95])
We summarize a few facts that are proved in [Han87] in the language of Hilbert schemes; they
may be replaced by Douady spaces if one wants to work on compact Kähler manifolds (see
[CP94] for an overview and references to the literature). For complex projective manifolds M ,
the Hilbert scheme and Douady space coincide (in the sense that the associated analytic spaces
are isomorphic).

On our way, we introduce notation that will be useful to the proof of Theorem A. As above,
M is a smooth and irreducible complex projective variety of dimension n.

2.2.1 Components. The set Bir(M) is contained in the Douady space (respectively, Hilbert
scheme) parameterizing complex analytic subsets of M × M of dimension n; more precisely,
Bir(M) is identified with the subset of irreducible subvarieties Γ ⊂ M × M of dimension n
such that both projections π1, π2 : Γ → M have degree 1. The Douady space of n-dimensional
subvarieties of M ×M of volume at most d is made of finitely many components Wj ; each Wj is

compact. The intersections of Bird(M) with these components are denoted by Birjd(M); hence
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each Birjd(M) is a subset of some component Wj of the Douady space. We shall call the sets

Birjd(M) the components of Bir(M).1

Given a subvariety V of M ×M of dimension n, one can compute the degrees deg1(V ) and
deg2(V ) of the natural projections π1|V and π2|V : V → M . These degrees define two functions
on the Douady space (respectively, Hilbert scheme). If W is a component of the Douady space,
the functions deg1(·) and deg2(·) are constant on W . Thus, if W contains a graph of a birational
transformation f , then deg1 = deg2 = 1 on W (see, for instance, [Har77, § III.9] or [Bar75, ch.
IV]). Moreover, the subset of elements V of W corresponding to irreducible subvarieties of M×M
is open; for Hilbert schemes, this statement is contained in [Gro66, Theorem 12.2].

Thus, as proved by Hanamura, each Birjd(M) is an open subset in the component Wj of

the Douady space that contains it (see [Han87, Proposition 1.7]); this endows Birjd(M) with the
structure of an analytic space.

Given two components Birjd(M) and Birj
′

d′(M), the composition (f, g) 7→ f◦g defines a rational

map from Birjd(M)×Birj
′

d′(M) to one of the components Birkdd′(M) (see (1)); similarly, the action

of Bir(M) on M defines rational mappings Birjd(M)×M 99KM . These assertions are proved or
implicitly used in [Han87, Proposition 2.7], and a complete proof is given in [HZ96, Lemmas 5.4
and 5.5] in the language of Barlet spaces.

Example 2.3 (see [CD13] for instance). Let us describe an example in dimension 2 to illustrate the
different viewpoints that one can use and explain why the composition may have indeterminacies

on Birjd(M)×Birj
′

d′(M)). Consider the set Q of quadratic birational transformations of the plane
P2
C, i.e. birational transformations f [x : y : z] = [P : Q : R] defined by homogeneous polynomials

of degree 2 with no common factor of positive degree. The total degree of such a transformation
is equal to 4. Indeed, the class of the graph Γf ⊂ P2

C × P2
C is equal to

[P2(C)]× {point}+ {point} × [P2(C)] + 2[P1(C)]× [P1(C)]

where [P1(C)] is the class of a line; thus, the volume of Γf with respect to the polarization O(1)
of P2

C is equal to 4. One can show that Q coincides with one component of Bir(P2
C) in the sense

of Hanamura. More precisely, PGL3(C)×PGL3(C) acts on Q by left and right composition, and
there are exactly three orbits: every element f ∈ Q is a composition a ◦ g ◦ b where a and b are
automorphisms and g is one of the three quadratic involutions

σ[x : y : z] = [yz : zx : xy], ρ[x : y : z] = [xy : z2 : yz], τ [x : y : z] = [x2 : xy : y2 − xz].

The orbit of σ is an open and dense subset Uσ of Q of dimension 14. The orbits of ρ and τ have
dimension 13 and 12, respectively.

Let f = a◦σ◦b and g = a′◦σ◦b′ be elements of Uσ. The indeterminacy locus Ind(σ) is the set
{e1, e2, e3} with e1 = [1 : 0 : 0], e2 = [0 : 1 : 0], and e3 = [0 : 0 : 1]. Its exceptional locus, Exc(σ),
is the triangle of the three lines that go through pairs of indeterminacy points; each of these
lines is contracted to the opposite vertex. Thus, Ind(f) is b−1(Ind(σ)) and Exc(f) is mapped to
a(Ind(σ)). Then the birational transformation g◦f is defined by homogeneous formulas of degree
4 if and only if f does not contract any curve onto an indeterminacy point of g, if and only if

1 The notation BirWj (M) would be better than Birjd(M), because the value of the degree d is already encoded in
the choice of the component Wj . Our choice has two advantages: the notation is not too heavy; it keeps track of
the degree bound 6 d and of the fact that a component of the Douady space has been fixed.

The terminology ‘component’ for the sets Birjd(M) may be misleading: we do not mean that these subsets are
irreducible components of an algebraic variety or connected components of a topological space.
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a(Ind(σ)) is disjoint from (b′)−1(Ind(σ)). This condition determines a Zariski open subset W of
Uσ × Uσ and one can easily verify that the composition (f, g) 7→ g ◦ f is a regular map from W
to a component of Bir(P2

C). On the other hand, when f contracts a curve on an indeterminacy
point of g, we have deg(g ◦f) < 4; this phenomenon shows that the composition does not extend
as a regular map to Q×Q.

Remark 2.4. We refer to [BF12, Dem70] for another structure on Bir(M) that differs from
Hanamura’s viewpoint. In both cases, Bird(M) does not have a natural structure of algebraic
variety (see [BF12, Han87] for interesting examples).

2.2.2 Zariski closures. Let A be a subset of Bir(M). Let Birjd(M) be a component of Bir(M).

The Zariski closure Zjd(A) is, by definition, the intersection of Birjd(M) with the Zariski closure

of A∩Birjd(M) in the component of the Douady space (or Hilbert scheme) that contains Birjd(M).

There are at most countably many components Birjd(M). If A is uncountable, at least one of the

Birjd(M) intersects A on an uncountable subset. Hence, at least one of the Zjd(A) has dimension
at least 1.

2.3 Weil’s regularization theorem
2.3.1 Regularization. Let M be a complex projective variety and G a subgroup of Bir(M).

One says that G can be regularized, if there exist a smooth complex projective variety M ′ and
a birational map Ψ: M ′99KM such that

Ψ−1 ◦G ◦Ψ ⊂ Aut(M ′).

In other words, changing M into another birationally equivalent variety M ′, all indeterminacy
points of all elements of G disappear simultaneously.

Theorem 2.5 (Weil’s regularization theorem, I). Let M be a complex projective variety. Let G
be a subgroup of Bir(M). If G has bounded degree, then G can be regularized.

The proof of this result can be found in [HZ96, Zai95]. The heuristic idea is to replace
G by its Zariski closure G in the components Birjd(M), with d large enough to assure that
Bird(M) contains G. Since G is Zariski dense in G, the composition law on Bir(M) restricts
to a rational map G × G 99K G. Similarly, the action of G on M extends to a rational map
G×M 99K M . These mappings endow G with the structure of a pre-algebraic group acting by
birational transformations on M , in the sense of [Wei55], and Weil’s original theorem can then
be applied to this group.

2.3.2 Complement. Let M be a complex projective variety, or more generally a compact
Kähler manifold. The group Aut(M) is a complex Lie group. Moreover, each subset

Autd(M) = Bird(M) ∩ Aut(M)

intersects only finitely many connected components of Aut(M). If d is larger than the volume of
the diagonal ΓIdM

, then Autd(M) contains the connected component of the identity Aut(M)0, and
Autd(M)/Aut(M)0 is a finite set. If G is a subgroup of Aut(M) that is contained in some Autd(M),
then G ∩ Aut(M)0 is a normal subgroup of G with finite index (see [Lie78], for instance). As a
consequence, when Weil’s regularization theorem is applied, one obtains the following stronger
result.

Theorem 2.6 (Weil’s regularization theorem, II). Let M be a complex projective variety. Let
G be a subgroup of Bir(M). If G has bounded degree, there exist a smooth, complex, projective
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variety M ′ and a birational map Ψ: M ′ 99KM such that:

(i) Ψ−1 ◦G ◦Ψ is a subgroup of Aut(M ′);

(ii) there exists a normal, finite index subgroup G0 ⊂ G such that Ψ−1 ◦G0 ◦Ψ is contained in
Aut(M ′)0.

In particular, Ψ−1 ◦G ◦Ψ is a subgroup of Aut(M ′)0 if G is simple.

3. Vector fields and actions of nilpotent groups

Let M be a smooth and irreducible complex projective variety. This section is devoted to the
construction of meromorphic (or rational) vector fields and the study of the Lie algebra they
generate. This is applied to the study of uncountable abelian and nilpotent subgroups of Bir(M).

3.1 Construction of meromorphic vector fields
3.1.1 Meromorphic vector fields. Denote by Θm(M) the complex vector space of

meromorphic (or rational) vector fields on M . Given Y ∈ Θm(M), we denote by Dom(Y ) the
domain of definition of Y , i.e. the Zariski dense open subset of M on which Y is locally regular.
Since M is projective (and n > 1), Θm(M) is infinite-dimensional: the field of meromorphic
functions C(M) is an infinite-dimensional complex vector space which acts by left multiplication
on Θm(M).

With its Lie bracket [ . , . ], the vector space Θm(M) forms a complex Lie algebra. In local
coordinates (xi)16i6k, the Lie bracket of two vector fields X =

∑
i ai(x)∂i and Y =

∑
j bj(x)∂j

is given by

[X,Y ](x) =
∑
j

∑
i

(
ai(x)

∂bj
∂xi

(x)− bi(x)
∂aj
∂xi

(x)

)
∂j

(where ∂j stands for the vector field ∂/∂xj).

3.1.2 Construction of vector fields. Fix a component Birjd(M) of Bir(M). Let h be a smooth

point of Birjd(M) and let v be a tangent vector to Birjd(M) at the point h. The derivative of the
action

act : (h, x) 7→ h(x)

in the direction v determines a meromorphic vector field Xv on M . More precisely, if ht is a path
in Z such that h0 = h and ∂t(ht)|t=0 = v, then

Xv(h(x)) =
∂

∂t
(ht(x))|t=0. (3)

By construction, Xv does not vanish identically if v 6= 0. This linear injective map

X:ThBirjd(M) → Θm(M) (4)

provides a link between Birjd(M) and Θm(M) that plays an important role in the proof of
Theorem A.

Example 3.1. Consider the following family of birational transformations of C2 ⊂ P2
C: ht(x, y)

= ((1 + t)x, ((1 + t)x)dy), where d is a fixed positive integer and t describes the open unit disk
D. For t = 0, h0 is the monomial transformation which maps (x, y) to (x, xdy). Then

∂

∂t
(ht(x, y))|t=0 = (x, dxdy),
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and the corresponding vector field Xv satisfies Xv(x, x
dy) = (x, dxdy). This leads to the formula

Xv(x, y) = (x, dy), so that Xv has degree 1 for all d > 1.
Example 3.2. Starting with the family ht(x, y) = (x, (1 + txd)y), with h0(x, y) = (x, y), one gets

∂

∂t
(ht(x, y))|t=0 = (0, xdy)

and Xv(x, y) = (0, xdy) has degree d.

3.2 Uncountable abelian groups and abelian Lie algebras

3.2.1 Zariski closures. Let A be a subgroup of Bir(M). For all components Birjd(M) of

Bir(M), denote by Ajd the intersection of A with Birjd(M), and by Ad the union of the subsets

Ajd (for fixed d). The sets Ad form an increasing sequence of subsets of A, and

Ad ◦Ad′ ⊂ Add′ (5)

for all pairs of integers (d, d′). Let Zjd(A) be the Zariski closure of Ajd in Birjd(M) and Zd(A)

be the disjoint union of the Zjd(A). Since Zjd(A) may have irreducible components with distinct

dimensions, dim(Zjd(A)) is defined as the maximum of the dimensions of its components; then
one defines

dim(Zd(A)) = max
j

dim(Zjd(A)).

The following Lemma follows from § 2.2.1, Equation (5), the Zariski density of Ajd in Zjd(A),

and the fact that at least one Ajd is infinite if A is not countable.

Lemma 3.3. Let A be an uncountable subgroup of Bir(M).

(i) There exists a component Birjd(M) such that dim(Zjd(A)) > 1.

(ii) The function d 7→ dim(Zd(A)) is non-decreasing.

(iii) Zd(A) ◦ Zd′(A) ⊂ Zdd′(A) for all d, d′ > 1.

(iv) If A is abelian, then f ◦g = g◦f for all pairs (f, g) ∈ Zd(A)×Zd′(A); in particular, f ◦g = g◦f
for all f in Zd(A) and all g in A.

3.2.2 Abelian Lie algebras. We now assume that A is abelian and uncountable.

Let d > 1 be an integer such that dim(Zd(A)) > 1. Choose a component Birjd(M) for which

dimZjd(A) > 1, and let h be a smooth point of Zjd(A). The map

X : v ∈ ThZjd(A) 7→ Xv ∈ Θm(M)

is linear and injective. If f is an element of A and v is an element of ThZ
j
d(A),

f∗Xv = Xv.

Indeed, writing v as the velocity vector of a path ht at t = 0, with t in the unit disk D, one has

(f∗Xv)(f(h(x))) =Dfx(Xv(h(x))) =
∂

∂t
(f ◦ ht(x))|t=0

=
∂

∂t
(ht(f(x)))|t=0 = Xv(h(f(x)))

=Xv(f(h(x))),

so that Xv(y) = (f∗Xv)(y) for all y in a Zariski dense open subset of M . Consequently g∗Xv = Xv

for all d′ > 1 and g in Zd′(A). For g = h, one gets a new formula for Xv, namely

Xv(x) = (h−1)∗
∂

∂t
(ht(x))|t=0.
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As a consequence, the various vector fields Xv, Xw, for v ∈ ThZjd(A) and w ∈ TgZj
′

d′ (A), commute:

[Xv, Xw] = 0 (6)

in the Lie algebra Θm(M). In particular, we have the following lemma.

Lemma 3.4. Let A be an abelian subgroup of Bir(M), and let d be a positive integer. For all
components Birjd(M), and all smooth points h of Zjd(A), the image of

X : ThZ
j
d(A) → Θm(M)

is an abelian Lie subalgebra of Θm(M) of dimension dim(Th(Zjd(A))). Moreover, g∗Y = Y for
all elements Y in this algebra, all d′ > 1, and all g in Zd′(A).

Let α and β be two complex numbers. If (ht) is a path in Zjd(A) with h0 = h and velocity

vector v, and if (gs) is a path in Zj
′

d′ (A) with g0 = g and velocity vector w, then (hαt ◦ gβt) is a
path in Zdd′(A) such that

∂

∂t
(hαt ◦ gβt)|t=0 = αXv + βXw.

This shows that the union of all vector spaces X(ThZ
j
d(A)), for all components Birjd(M) and all

h ∈ Zjd(A), is an abelian subalgebra of ΘmM . We denote this abelian algebra by a∞(A) and call
it the Lie algebra associated to A.

Example 3.5. Let A be the abelian group (C,+). This group is isomorphic to the group (C[y],+)
of polynomial functions in one variable. In particular, A is isomorphic to the group of birational
transformations of the plane of the type

(x, y) 7→ (x+ p(y), y),

where p describes C[y]. The Lie algebra a∞(A) is made of all vector fields q(y)∂x, with q in C[y].

Example 3.6. We can also embed A = (C,+) into Bir(P3
C) as follows. Let ρ : A → Z be any

surjective morphism. Then A acts on P3(C) by

(x, y, z) 7→ (x+ p(y), y, yρ(p)z).

The Lie algebra a∞(A) coincides with the set of vector fields q(y)∂x, with q in C[y]. Moreover,
there are now two types of elements f in Zd(A): if ρ(p) = 0, then f l ∈ Bird(P3

C) for all l; if
ρ(p) 6= 0, then tdeg(f l) goes to infinity with l.

3.2.3 Orbits. Given m in M , define

V (m) = VectC {Xv(m);Xv ∈ a∞(A),m ∈ Dom(Xv)} ,
s(m) = dimC(V (m)) (hence s(m) 6 n = dimC(M)),

s(A) = max(s(m);m ∈M).

Note that s(A) coincides with the value of s(m) at a generic point.
The following lemmas are not required for the proof of Theorem A, but they illustrate some

of the forthcoming arguments. We thus state them and only provide a hint for their proofs.

Lemma 3.7. If dimC(a∞(A)) > s(A), there exists a non-constant, A-invariant, rational function
α : M → C.
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Proof. Let X1, . . . , Xs, s = s(A), be elements of a∞(A) such that (X1(m), . . . , Xs(m)) is a basis
for V (m) at the generic point of M . Since dimC(a∞(A)) > s, there is an element Y of a∞(A)
which is not a linear combination of the Xi with coefficients in C. On the other hand, by definition
of s, there exist rational functions α1, . . . , αs ∈ C(M) such that

Y (m) =
i=s∑
i=1

αi(m)Xi(m).

The αi are uniquely determined by this relation and at least one of them is not constant. Given
f ∈ A, Lemma 3.4 shows that f∗Xi = Xi for all 1 6 i 6 s and f∗Y = Y ; this implies that

αi ◦ f = αi, ∀i > 1,

and the conclusion follows because at least one of the αi is not constant. 2

For component Birjd(M) and each m in M , define the orbit of Zjd(A) as the following subset

Orbjd(m) of M :

Orbjd(m) = {h(m);h ∈ Zjd(A) and m ∈ Dom(h)}.

Denote its Zariski closure by Orb
j
d(m). The orbit Orbd(m) is defined as the union of the Orbjd(m),

and Orbd(m) is the Zariski closure of Orbd(m) in M . By definition, these orbits Orbd(m) are
tangent to the distribution of subspaces V (m), m ∈ M . Thus, choosing good components to
assure that the generic orbits Orbjd(m) have dimension s(A), one obtains the following lemma.

Lemma 3.8. The distribution of subspaces V (m), m ∈ M , is integrable in the following sense.
There exist a projective variety B of dimension n − s(A), a rational map Ψ: M 99K B, and a
component Birjd(M), such that:

(i) Orbjd(m) has dimension s(A) = dimC V (m) and is tangent to V (m) for generic m ∈M ;

(ii) Ψ is constant on each irreducible component of the generic orbit Orbjd(m);

(iii) Ψ is a local submersion at the generic point.

This fibration Ψ: M 99K B is A-invariant: there is a morphism ρB : A → Bir(B) with ρ(f) ◦
Ψ = Ψ ◦ f for all f in A. Moreover, dimZd(ρB(A)) = 0 for all d > 1, since otherwise one would
be able to construct meromorphic vector fields in a∞(A) that are transverse to the generic fibers
of Ψ, in contradiction to the definition of V (m) and s(A). Thus, the image of ρB is countable
(compare with Example 3.6).

3.3 Bounding degrees of abelian groups
The following proposition is a crucial step towards proving Theorem A.

Proposition 3.9. Let M be a smooth, connected, complex projective variety. Let A be an
abelian subgroup of Bir(M). If s(A) = dimC(M), then A has bounded degree: there exists d > 1
such that Bird(M) contains A.

Proof. Since s(A) = n, one can find n elements X1, . . . , Xn of a∞(A) such that

VectC(X1(m), . . . , Xn(m)) = TmM

at the generic point m of M . Each Xi is obtained from a tangent vector vi ∈ ThiZ
j
di

(A) for some

for some birational transformation hi in one of the varieties Zjdi(A). Let hi,ti , ti ∈ D, be a path in

Zjdi(A) with hi,0 = hi and velocity vector vi at ti = 0. Composing those paths together, one gets
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a subset of some Z ld(A) with d = d1 · · · dn (cf. (1)). By construction, if m0 is generic, its orbit
Orbld(m0) under the action of Z ld(A) contains an open neighborhood of m0. We now fix such a
point m0.

Let f be an element of A, and m be a point of Dom(f) ∩ Orbld(m0) such that f(m) is also
contained in Orbld(m0). Then there exists h in Z ld(A) such that h ◦ f(m) = m. Since both h and
f commute to all elements g of Z ld(A), one obtains

h ◦ f(g(m)) = g(h ◦ f(m)) = g(m)

for all g ∈ A such that {m,h ◦ f(m)} ⊂ Dom(g). Consequently, h ◦ f fixes pointwise all these
points g(m); since they form a Zariski dense subset of M , one deduces that f coincides with
h−1. This concludes the proof, because h−1 ∈ Bird(M) for all h in Bird(M). 2

3.4 Nilpotent groups, dimensions comparison, and degree bounds

3.4.1 Bounds on derived length. Let H be a group. We define H(1) = [H,H], the derived
subgroup of H, generated by all commutators aba−1b−1 with a and b in H, and then inductively

H(r) = [H(r−1), H(r−1)].

The first integer r > 1 such that H(r) is trivial is called the derived length of H; such an r exists
if and only if H is solvable. This integer is denoted by dl(H), and similar notations are used for
Lie algebras.

Proposition 3.10 (Epstein and Thurston [ET79]). Let M be a connected complex manifold.
Let h be a nilpotent Lie subalgebra of the Lie algebra Θm(M). Then h(r) = 0 if r > dim(M);
hence

dimC(M) > dl(h).

Remark 3.11. Note that h is assumed to be nilpotent while dl(h) is the derived length of h as a
solvable Lie algebra.

Proof. We prove Proposition 3.10 by induction on the dimension n of M .
Assume that h has positive dimension, since otherwise the result is clear. Its center is non-

trivial because h is nilpotent. Let X be a non-zero element in the center of h and m be a point
at which X is well defined and X(m) 6= 0. There is a local system of coordinates (x1, . . . , xn) in
a neighborhood U of m such that X = ∂xn in U . Since X is in the center of h, all elements of h
are of the form

v(x1, . . . , xn−1)∂xn +
n−1∑
i=1

ui(x1, . . . , xn−1)∂xi . (7)

For n = 1, this implies that h is abelian, of dimension at most 1, so that dl(h) 6 1 = dim(M).
We now assume that the result is proved up to dimension n− 1.

Let π : U → Cn−1 be the projection π(x1, . . . , xn) = (x1, . . . , xn−1). Locally, the fibers of π are
the orbits of X. Since X is in the center, π projects h onto a nilpotent algebra h1 of meromorphic
vector fields on Cn−1: if Y ∈ h is defined by (7), π∗Y is equal to

∑
ui(x1, . . . , xn−1)∂xi . This

defines an exact sequence

0 → h0 → h → h1 → 0

where the kernel h0 of π∗ is made up of vector fields of type v(x1, . . . , xn−1)∂xn and, as such, is
abelian. The induction hypothesis implies that h(n−1) = 0, and the conclusion follows. 2
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3.4.2 Embeddings of Heisenberg groups. Now let Hr be the group of r × r upper triangular
matrices with all diagonal coefficients equal to 1; this group is nilpotent, and its derived length is
the smallest integer l(r) such that 2l(r) > r. If B is in Hr, we denote by ai,j(B) its coefficients. For
all pairs of indices (i, j), with 1 6 i < j 6 r, we define Ai,j as the subgroup of Hr which is made
up of elements B such that ak,l(B) = 0 if k 6= l and (k, l) 6= (i, j). This defines a one-parameter,
abelian subgroup of Hr. Moreover, A1,r coincides with the center of Hr.

Let us now assume that Hr embeds into the group Bir(M). From § 3.2.2, each Ai,j gives rise
to an abelian subalgebra a∞(Ai,j) of Θm(M).

Lemma 3.12. The Lie algebra hr ⊂ Θm(M) generated by the abelian algebras a∞(Ai,j) is
nilpotent and its derived length dl(hr) is equal to l(r), the smallest integer l such that 2l > r.

Proof. Since [Ai,j , Ak,l] is equal to Ai,l if k = j and is equal to {Id} if k 6= j, we obtain [a∞(Ai,j),
a∞(Ak,l)] ⊂ a∞(Ai,l) if k = j and [a∞(Ai,j), a∞(Ak,l)] = 0 otherwise. This shows that the Lie
algebra is nilpotent. If j = k, and B is an element of Ai,j , then B does not commute with
any non-trivial element of Ak,l. Thus [a∞(Ai,j), a∞(Ak,l)] 6= 0, and the length of hr is equal
to l(r). 2

This lemma and Proposition 3.10 provide the following bound (see [Dés07] for M = P2
C).

Corollary 3.13. If r > 2dimC(M), the group Hr does not embed into Bir(M).

Unfortunately, this corollary does not imply Theorem A, even for small values of r and n.

4. Actions of special linear groups

In this section, we study morphisms from PGLr+1(C) to Bir(M), where M is a complex projective
variety of dimension n, and prove Theorem A.

4.1 Bounding degrees
Our first step is the following proposition.

Proposition 4.1. Let M be a complex projective variety of dimension n. If r > n and
ρ : PGLr+1(C) → Bir(M) is a morphism, either the image of ρ is reduced to {IdM} or ρ is
injective and its image is a subgroup of bounded degree in M .

To prove this, we assume that ρ is not trivial. Since PGLr+1(C) is a simple group, its image
G is isomorphic to PGLr+1(C), and can be identified with it.

4.1.1 A lemma. Consider the one-parameter subgroups Ai,j , j 6= i, defined by

Ai,j = {Id + aδi,j ; a ∈ C}

where δi,j is the Kronecker matrix with all entries equal to zero, except the coefficient (i, j)
which is equal to 1. The group Sr+1 of permutations of the indices {1, . . . , r + 1} embeds into
PGLr+1(C) (acting on Pr(C) by permutations of the homogeneous coordinates). By conjugation,
Sr+1 permutes transitively the one-parameter subgroups Ai,j .

Remark 4.2. The group GLr+1(C) is generated by elementary matrices and dilatations and the
proof of this result based on Gaussian elimination provides the following statement: there is an
integer k(r), such that every element of PGLr+1(C) is a product of at most k(r) elements in
∪Ai,j .
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Lemma 4.3. If one of the subgroups Ai,j ⊂ G is a subgroup of bounded degree in Bir(M), then
G is a subgroup of bounded degree in Bir(M).

To prove this, note that if one of the Ai,j has bounded degrees, then all of them do, because
the Ai,j are pairwise conjugate (cf. (2)). This implies that all Ai,j are contained in Bird(M)
for some positive integer d. Then, Remark 4.2 and Equation (1) imply that G is contained in
Birdk(r)(M) for some positive integer k(r).

4.1.2 Proof of Proposition 4.1. To obtain Proposition 4.1, we prove that one Ai,j has
bounded degree, and then apply Lemma 4.3. For this purpose, we now work with the subgroup of
upper triangular matrices in PGLr+1(C) with coefficients equal to 1 on the diagonal (see § 3.4.2).

Preliminary remark. The abelian groups A1,j , j = 2, . . . , r+ 1, generate an abelian subgroup A1

of PGLr+1(C). If s(A1) = n, as in Proposition 3.9, there exists a degree d such that PGLr+1(C)
is contained in Bird(M), and we are done.

First step: Matrices from the first row. We now assume that s(A1) < n. Then, after conjugation
by a permutation σ ∈Sr+1, there is an integer k > 3 with the following property: the Lie algebras
a∞(A1,r+1), a∞(A1,r), . . . , a∞(A1,k) contain meromorphic vector fields X1,r+1, X1,r, . . . , X1,k such
that:

(i) the vector fields X1,j , j > k, are C-linearly independent at the generic point m ∈M ;

(ii) every element X1,l of a∞(A1,l) with l < k is a linear combination of the X1,j , j > k, with

coefficients αjl in the field of meromorphic functions C(M):

X1,l(m) =

j=r+1∑
j=k

αjl (m)X1,j(m) for m ∈M.

Consider an open subset U of M on which the X1,j , j > k, are holomorphic and everywhere
C-linearly independent (i.e. linearly independent at every point m of U). Since these vector
fields commute, one can change U into a smaller open subset and find holomorphic coordinates
(xr+2−n, . . . , xr+1) on U such that

X1,j = ∂j , ∀j > k, (8)

where ∂j denotes the vector field ∂/∂xj . Since the X1,i pairwise commute, one gets

∂jα
j′

l = 0, ∀j > k, ∀j′ > k,∀l < k. (9)

Second step: Matrices from the last column, and conclusion. Now let Xk−1,r+1 be a non-zero
element of the Lie algebra a∞(Ak−1,r+1). Suppose that Xk−1,r+1 is a linear combination, with

coefficients βjk−1 in C(M), of the X1,j :

Xk−1,r+1(m) =

j=r+1∑
j=k

βjk−1(m)X1,j(m) for m ∈M.

The vector field Xk−1,r+1 commutes with the X1,j for all j > k because so do the corresponding
one-parameter subgroups Ak−1,r+1 and A1,j ; hence

∂jβ
j′

k−1 = 0, ∀j > k,∀j′ > k. (10)
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Equations (9) and (10) imply that

[Xk−1,r+1, X1,k−1] = 0 (11)

for all vector fields X1,k−1 in a∞(A1,k−1). This contradicts the fact that pairs of non-trivial
elements in A1,k−1 and Ak−1,r+1 never commute. Thus, our assumption leads to a contradiction,
so that all non-zero elements Xk−1,r+1 in a∞(Ak−1,r+1) are indeed C-linearly independent of the
X1,j , j > k, at the generic point m of M .

Fix such an element Xk−1,r+1 6= 0. Shrinking U again, and changing the system of local
coordinates (xr+2−n, . . . , xr+1), one can now assume that X1,j = ∂j , for all j > k, as in (8), and
that

Xk−1,r+1 = ∂k−1. (12)

We pursue the same strategy with the Lie algebra a∞(Ak−2,r+1), and obtain the existence
of an element Xk−2,r+1 6= 0 in a∞(Ak−2,r+1), a non-empty open subset U ⊂M , and a system of
local coordinates (xr+2−n, . . . , xr+1) on U such that (8) and (12) are satisfied and, moreover,

Xk−2,r+1 = ∂k−2. (13)

After a finite number of steps, one obtains the following properties:

(i) r 6 n;

(ii) if r = n, then the abelian group A generated by the A1,j , j > k, and the Al,r+1, 2 6 l 6 k−1,
satisfies s(A) = n.

Then we apply Proposition 3.9 to deduce that the group A has bounded degree, and Lemma
4.3 concludes the proof of Proposition 4.1.

4.2 Proof of Theorem A
4.2.1 Regularization. Proposition 4.1 and Weil’s regularization theorem (see § 2.3) imply the

following result.

Corollary 4.4. Let M be a complex projective variety. Let r > 0 be an integer and G be a
subgroup of Bir(M) which is isomorphic to PGLr+1(C). Then r 6 n, and if r = n there exist a
smooth complex projective variety M ′ and a birational map Ψ: M ′99KM such that

Ψ−1 ◦G ◦Ψ ⊂ Aut(M)0.

4.2.2 Automorphism groups, and conclusion. It remains to study smooth and connected
complex projective varieties M , with dimC(M) = n, such that the group PGLn+1(C) embeds
into Aut(M)0.

Theorem 4.5. Let M be a smooth, connected, complex projective variety. Let n be the
dimension of M . If there is a non-trivial morphism ρ : PGLn+1(C) → Aut(M)0, then M is
isomorphic to the projective space PnC.

Proof. Let G be the image of ρ in Aut(M)0. The group Aut(M)0 is a connected complex Lie
group. Let H be the Zariski closure of H in Aut(M)0. Since H is dense in H, H is a simple Lie
group. Moreover, H has rank at least n, because it contains the image, under the morphism ρ,
of the diagonal subgroup of PGLn+1(C), and this subgroup contains a copy of the finite abelian
group (Z/pZ)n for all prime numbers p.
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To sum up, Aut(M)0 contains an algebraic subgroup H that is simple, of rank at least n. From
[CZ12, Theorem 4.1], one knows that every compact complex manifold M which admits a faithful
holomorphic action of an almost simple complex Lie group of rank dimC(M) is isomorphic to
the projective space; this implies that M is isomorphic to Pn(C). 2

Thus, in Corollary 4.4, one can replace M ′ by Pn(C). Theorem A is now a consequence of
the following classical fact, which we state over the field of complex numbers, although it holds
in much greater generality.

Theorem 4.6. Let r > 0 be a natural integer. Let ρ : PGLr+1(C) → PGLr+1(C) be a non-trivial
morphism of groups. Then there exist a morphism of fields α : C → C and an element h of
PGLr+1(C) such that

ρ(αg) = h ◦ g ◦ h−1, ∀g ∈ Aut(Pn(C)),

or
ρ(αg) = h ◦ g∨ ◦ h−1, ∀g ∈ Aut(Pn(C)).

Such a result is not hard to prove. One technique is to reduce it to the fundamental theorem
of projective geometry. A good example of this strategy is provided by Élie Cartan’s proof of
the continuity of homomorphisms from SOn(R) to SLd(R) with bounded image (see [Car30]);
an exhaustive presentation of this method, over arbitrary fields instead of C or R, can be found
in Dieudonné’s book [Die71]. Another strategy which works uniformly for all algebraic groups is
proposed by Borel and Tits in [BT73].

5. Questions and remarks

5.1 Other Lie groups
The same strategy can be applied to all simple complex Lie groups in place of PGLr+1(C).
This provides the following statement. Let G be an almost simple complex Lie group, and let
r = rankC(G) be the rank of G. Let M be a complex projective variety of dimension n. If there
is a non-trivial morphism G → Bir(M), then r 6 n, and if r = n, then G is locally isomorphic
to PGLr+1(C) and M is a rational variety.

It would be more interesting to classify all possible morphisms from smaller Lie groups into
Bir(M). For example, Blanc and Déserti classified all possible morphisms from PSL2(C), and
even from PSL2(Q), to Bir(M) when dimC(M) = 2 (see [BD11]).

5.2 Automorphisms of the Cremona group
In [Dés06], Déserti proves that the group of all automorphisms of the Cremona group Bir(P2

C)
is generated by the group of field automorphisms Aut(C,+, ·) and the group of interior
automorphisms. For this purpose, she makes use of the explicit set of generators given by the
Noether–Castelnuovo theorem. For n > 3, Bir(P3

C) is not generated by finitely many regularizable
subgroups, and Déserti’s method does not apply easily. Thus, the problem of describing the group
of automorphisms of Bir(PnC) for n > 3 remains open.

5.3 The cubic threefold
Let V be a smooth cubic hypersurface of P4

C. In [CG72], Clemens and Griffith’s prove that V
is not rational, a result that follows from a precise description of the intermediate Jacobian
variety of V . Knowing that V is not rational, Theorem C implies that the group Bir(V ) is
not isomorphic to Bir(P3

C). One can dream of a new proof of Clemens and Griffith’s theorem
that would not require the intermediate Jacobian but would show that Bir(V ) is much smaller
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than Bir(P3
C). For instance, I suspect that the group GL3(Z), a group that does act by linear

projective transformations as well as by monomial transformations on P3
C, does not act faithfully

by birational transformations on V . It would be great to mix the Noether–Fano methods (see
[KSC04] for an introduction to this topic) with basic ideas from Zimmer’s program, geometric
group theory, or holomorphic dynamics in order to obtain such a result. This would provide a
‘quantitative measure’ of the fact that V is not rational that is different from the information
contained in the intermediate Jacobian.

5.4 Cremona representations
Can we build a theory of representations of Cremona groups that would be similar to the theory
of representations of Lie groups? For instance, is it possible to describe all faithful representations
of Bir(P2

C) into Bir(PnC) for n = 3, 4, . . .?
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