Identities for field extensions generalizing the Ohno–Nakagawa relations

Henri Cohen, Simon Rubinstein-Salzedo and Frank Thorne

doi:10.1112/S0010437X15007411
Identities for field extensions generalizing the Ohno–Nakagawa relations

Henri Cohen, Simon Rubinstein-Salzedo and Frank Thorne

Abstract

In previous work, Ohno conjectured, and Nakagawa proved, relations between the counting functions of certain cubic fields. These relations may be viewed as complements to the Scholz reflection principle, and Ohno and Nakagawa deduced them as consequences of ‘extra functional equations’ involving the Shintani zeta functions associated to the prehomogeneous vector space of binary cubic forms. In the present paper, we generalize their result by proving a similar identity relating certain degree-ℓ fields to Galois groups D_2 and F_3, respectively, for any odd prime ℓ; in particular, we give another proof of the Ohno–Nakagawa relation without appealing to binary cubic forms.

1. Introduction

Let $N_3(D)$ denote the number of cubic fields of discriminant D. The starting point of this paper is the following theorem of Nakagawa [Nak98], which had previously been conjectured by Ohno [Ohn97].

Theorem 1.1 [Ohn97, Nak98]. Let $D \neq 1, -3$ be a fundamental discriminant. We have

$$N_3(D^*) + N_3(-27D) = \begin{cases} N_3(D) & \text{if } D < 0, \\ 3N_3(D) + 1 & \text{if } D > 0, \end{cases}$$

(1.1)

where $D^* = -3D$ if $3 \nmid D$ and $D^* = -D/3$ if $3 \mid D$.

This result is closely related to one that can be derived from the classical reflection principle of Scholz [Sch32], which omits the terms $N_3(-27D)$ and provides for two possibilities for each term on the right. The significance of D^* is that $\mathbb{Q}(\sqrt{D^*})$ is the mirror field of $\mathbb{Q}(\sqrt{D})$, the quadratic subfield of $\mathbb{Q}(\sqrt{D}, \zeta_3)$ distinct from $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\zeta_3)$.

Nakagawa deduced his result from a careful study of the arithmetic of binary cubic forms, which yielded an ‘extra functional equation’ for the associated Shintani zeta functions. It appears that such ‘extra functional equations’ might be a common feature in the theory of prehomogeneous vector spaces; for example, in an unpublished manuscript, Nakagawa and Ohno conjectured a related formula for the prehomogeneous vector space $(\text{Sym}^2 \mathbb{Z}^3 \otimes \mathbb{Z}^2)^*$, which, as Bhargava demonstrated in [Bha04, Bha05], may be used to count quartic fields. Nakagawa has...
made substantial headway toward proving this formula, but it appears that there are still many technical details to be overcome.

In this paper we demonstrate that the Ohno-Nakagawa results can be generalized in a different direction, in which cubic fields are replaced by certain degree-ℓ fields for any odd prime ℓ, using a framework involving class field theory and Kummer theory, and which also gives another proof of Theorem 1.1.

For an odd prime ℓ, we say that a degree-ℓ number field is a D_ℓ-field if its Galois closure is dihedral of order 2ℓ, and an F_ℓ-field if its Galois closure has Galois group F_ℓ, defined by

$$F_\ell := \langle \sigma, \tau : \sigma^\ell = \tau^{\ell-1} = 1, \tau \sigma \tau^{-1} = \sigma^g \rangle$$

for a primitive root $g \pmod{\ell}$. (Note that different primitive roots give isomorphic groups, but for our purposes it will be important to specify which primitive root is taken.) For $\ell = 3$ we have $D_3 = F_3 = S_3$, so this distinction is not apparent.

We observe the convention that discriminants always specify the numbers of pairs of complex embeddings. These will be indicated by powers of D of discriminant N with r embeddings. These will be indicated by powers of D pairs of complex embeddings and (D, ℓ) for our purposes it will be important to specify which primitive root is taken.) For $\ell = 3$ we have $D_3 = F_3 = S_3$, so this distinction is not apparent.

We observe the convention that discriminants always specify the numbers of pairs of complex embeddings. These will be indicated by powers of D of discriminant N with r embeddings. These will be indicated by powers of D pairs of complex embeddings and (D, ℓ) for our purposes it will be important to specify which primitive root is taken.) For $\ell = 3$ we have $D_3 = F_3 = S_3$, so this distinction is not apparent.

For $\ell > 5$, our methods will not relate all F_ℓ-fields of discriminant D' to D_ℓ-fields; we require an additional Galois-theoretic condition on our F_ℓ-fields, which we now describe. The Galois closure E' of each F_ℓ-field E that we count will be a degree-ℓ extension of a degree-$(\ell - 1)$ field K', cyclic over \mathbb{Q} (see Theorem 2.12). In turn, each K' will be a subfield of the degree-$2(\ell - 1)$ extension $K_z := \mathbb{Q}(\sqrt{D}, \zeta_\ell)$ (we assume $D \neq (-1)^{(\ell-1)/2}$); we call K' the mirror field of $K = \mathbb{Q}(\sqrt{D})$.

Choose and fix a primitive root $g \pmod{\ell}$, and define τ to be the unique element of $\text{Gal}(\mathbb{Q}(\zeta_\ell) / \mathbb{Q})$ with $\tau(\zeta_\ell) = \zeta_\ell^g$; we write τ also for the unique lift of this element to $\text{Gal}(K_z / K)$, as well as for its unique restriction to an element of $\text{Gal}(K'/\mathbb{Q})$. (We will have $K \cap K' = \mathbb{Q}$.)

The group $\text{Gal}(K'/\mathbb{Q})$ acts on $\text{Gal}(E'/K')$ by conjugation, and we require this action to match (1.2) for the choices of τ and g already made. More precisely, suppose that E' is such an extension of K', let τ denote any lift of the $\tau \in \text{Gal}(K'/\mathbb{Q})$ from the last paragraph to $\text{Gal}(E'/\mathbb{Q})$, and let $\sigma \in \text{Gal}(E'/K') \leq \text{Gal}(E'/\mathbb{Q})$ be any element of order ℓ. Then we require that $\tau \sigma \tau^{-1} = \sigma^g$. (This is independent of the choice of lift of τ and of σ.) We write $N_{F_\ell}^a(D)$ for the number of F_ℓ-fields of discriminant D satisfying this condition.

We will show in Lemma 2.11 that any F_ℓ-field with the discriminants we count has a mirror field as its $C_{\ell-1}$ subfield. With notation as above, we must have $\tau \sigma \tau^{-1} = \sigma^g$ for some primitive root g' modulo ℓ, so our condition may be stated as requiring that $g' = g$. Moreover, there are many F_ℓ-fields whose discriminants we do not count: for example, fields of the form $\mathbb{Q}(\sqrt{a})$ for $a \in \mathbb{Q}^\times \setminus \mathbb{Q}^\times\ell$ and $\ell \geq 5$; the $C_{\ell-1}$ subfield of all these fields is $\mathbb{Q}(\zeta_\ell)$. Our work raises a variety of questions regarding the relative frequencies of the fields being counted; we expect that these questions may be quite difficult to answer, and in any case we leave them for later investigation.

This brings us to the presentation of our main results.
THEOREM 1.2. For each negative fundamental discriminant \(D \neq -\ell \) we have

\[
N_{D^\ell}(D^{(\ell-1)/2}) = \begin{cases}
N_F^\ast((-1)^{0}\ell^{-2}|D|^{(\ell-1)/2}) \\
+ N_F^\ast((-1)^{0}\ell|D|^{(\ell-1)/2}) & \text{if } \ell \nmid D,
\end{cases}
\]

\[
N_F^\ast((-1)^{0}\ell^{-3/2}|D|^{(\ell-1)/2}) \\
+ N_F^\ast((-1)^{0}\ell|D|^{(\ell-1)/2}) & \text{if } \ell \mid D \text{ and } \ell \equiv 1 \pmod{4},
\]

\[
N_F^\ast((-1)^{0}\ell^{-5/2}|D|^{(\ell-1)/2}) \\
+ N_F^\ast((-1)^{0}\ell|D|^{(\ell-1)/2}) & \text{if } \ell \mid D \text{ and } \ell \equiv 3 \pmod{4}.
\]

For positive discriminants we obtain the following close analogue, reflecting the difference between positive and negative \(D \) in the Ohno–Nakagawa relation.

THEOREM 1.3. For each positive fundamental discriminant \(D \neq \ell, \ell \) we have

\[
\ell N_{F^\ell}(D^{(\ell-1)/2}) + 1 = \begin{cases}
N_F^\ast((-1)^{\ell/2}\ell^{-2}D^{(\ell-1)/2}) \\
+ N_F^\ast((-1)^{\ell/2}\ell D^{(\ell-1)/2}) & \text{if } \ell \nmid D,
\end{cases}
\]

\[
N_F^\ast((-1)^{(\ell-1)/2}\ell^{-3/2}D^{(\ell-1)/2}) \\
+ N_F^\ast((-1)^{(\ell-1)/2}\ell D^{(\ell-1)/2}) & \text{if } \ell \mid D \text{ and } \ell \equiv 1 \pmod{4},
\]

\[
N_F^\ast((-1)^{(\ell-1)/2}\ell^{-5/2}D^{(\ell-1)/2}) \\
+ N_F^\ast((-1)^{(\ell-1)/2}\ell D^{(\ell-1)/2}) & \text{if } \ell \mid D \text{ and } \ell \equiv 3 \pmod{4}.
\]

Nakagawa’s Theorem 1.1 is the \(\ell = 3 \) case of these results.

In fact, we shall prove something slightly stronger: the right-hand sides of (1.3) and (1.4) list two possibilities \(\ell^b \) and \(\ell^b' \) for the power of \(\ell \) in the discriminants of \(F_{\ell} \)-fields, but they do not rule out other powers of \(\ell \) that may occur in \(F_{\ell} \)-field discriminants with the desired Galois condition. Our proof (see Proposition 3.10) shows that in fact there are no \(F_{\ell} \)-fields with the given Galois condition and exponents of \(\ell \) between 0 and \((3\ell - 1)/2\) other than the ones that appear on the right-hand sides of (1.3) and (1.4). (Larger exponents do occur, and they appear not to correspond to \(D_{\ell} \)-fields.)

A special consideration arises when \(\ell \equiv 1 \pmod{4} \). Suppose that \(d \neq 1 \) is a fundamental discriminant not divisible by \(\ell \). Then \(D_{\ell} \)-fields of discriminant \(D^{(\ell-1)/2} \) with \(D = d \) and \(D = d\ell \) correspond, respectively, to \(F_{\ell} \)-fields enumerated on the first and second cases on the right-hand side of (1.3) or (1.4). It is easily checked that the discriminants and signatures of \(F_{\ell} \)-fields enumerated in the first terms of these two cases (for \(D = d \) and \(D = d\ell \), respectively) are identical, so that the only difference between them consists of the condition implied by the star.

It will be proved later that \(\mathbb{Q}(\sqrt{d}) \) and \(\mathbb{Q}(\sqrt{d\ell}) \) have the same mirror field when \(\ell \equiv 1 \pmod{4} \). However, our definition of \(\tau \in \text{Gal}(K'/\mathbb{Q}) \) involved lifting an element of \(\text{Gal}(\mathbb{Q}(\zeta_{4\ell})/\mathbb{Q}) \) to \(\text{Gal}(K_{\zeta}/K) \) and therefore depends on \(K \). Writing \(\tau' \) and \(\tau'' \) for the elements \(\tau \) determined when \(K = \mathbb{Q}(\sqrt{d}) \) and \(K = \mathbb{Q}(\sqrt{d\ell}) \), respectively, we will see later (in Remark 3.9) that the condition \(\tau'^{\sigma} \sigma'\tau'^{-1} = \sigma^g \) of (1.2) is equivalent to \(\tau'\sigma\tau'^{-1} = \sigma^{-g} \). (Note that for a primitive root \(g \) (mod \(\ell \)) with \(\ell \equiv 1 \pmod{4} \), \(-g \) is also a primitive root.)

When \(\ell = 5 \) there are only two primitive roots, so by letting \(g \) be either of them we find that all \(F_5 \)-fields satisfy \(\tau'\sigma\tau'^{-1} = \sigma^g \) or \(\tau'\sigma\tau'^{-1} = \sigma^{-g} \). Therefore, by counting \(D_{5_{\ell}} \)-fields of discriminant with \(D = d \) and \(D = \ell d \) together, we obtain a corresponding count of \(F_{5_{\ell}} \)-fields without any Galois condition.

2061
COROLLARY 1.4. If D is a negative fundamental discriminant that is coprime to 5, we have

$$N_{D_5}(D^2) + N_{D_5}(5D^2) = N_{F_{5}}((-1)^{0}5^{3}|D|^2) + N_{F_{5}}((-1)^{0}5^{5}|D|^2) + N_{F_{5}}((-1)^{0}5^{7}|D|^2);$$

and if $D \neq 1$ is a positive fundamental discriminant that is coprime to 5, we have

$$5(N_{D_5}(D^2) + N_{D_5}(5D^2)) + 2 = N_{F_{5}}((-1)^{2}5^{3}D^2) + N_{F_{5}}((-1)^{2}5^{5}D^2) + N_{F_{5}}((-1)^{2}5^{7}D^2).$$

Another (immediate) corollary of our results is that F_ℓ-fields of certain discriminants must exist.

COROLLARY 1.5. For each positive fundamental discriminant D that is coprime to $\ell - 1$, there exists at least one F_ℓ-field with discriminant of the form $(-1)^{(\ell-1)/2}aD^{(\ell-1)/2}$, for some a as described above. If $\ell \equiv 1 \pmod{4}$, then there exist at least two.

Further directions. There are multiple directions in which one might seek extensions of our results. The most obvious is to drop the requirement that D be a fundamental discriminant. However, as was observed by Nakagawa, no simple relation appears to hold even for $\ell = 3$. Examining a table of cubic fields suggests that any result along these lines would need to account for more subtle information than simply counts of field discriminants.

Similarly, one could attempt to allow additional factors of ℓ in our counts for D_ℓ-fields. This might involve generalizations of the results in §3, some of which are carried out in [CT13b, §8], along with further study of the sizes of various groups appearing in these results.

Motivated by Nakagawa’s results, one might try to prove a result counting ring discriminants. In this context, Ohno and Nakagawa did obtain beautiful and simple relations among all discriminants, by considering (equivalently): cubic rings (including reducible and nonmaximal rings); binary cubic forms up to $\text{SL}_2(\mathbb{Z})$-equivalence; or the Shintani zeta functions associated to this lattice of binary cubic forms.

The equivalences between these objects do not naturally generalize to $\ell > 3$, and in particular there is no naturally associated zeta function which is known (to the authors, at least) to have good analytic properties. Therefore, it seems that the Ohno–Nakagawa relations for cubic rings may be special to the prime $\ell = 3$. However, it is not out of the question that our work could be extended to an Ohno–Nakagawa relation counting appropriate subsets of the set of rings of rank ℓ. In any case, work of Nakagawa [Nak96] and Kaplan et al. [KMTB13] (among others) suggests that enumerating such rings is likely to be quite difficult.

Remark 1.6. As F. Calegari explained to us, alternative proofs of our results can also be given in the language of cohomology and Galois representations, as a consequence of Poitou–Tate duality [Poi67, Tat63] and a formula of Greenberg [Gre89] and Wiles [Wil95] (see also [DDT97, Theorem 2.18]).

Methods of proof and summary of the paper. The proofs involve the use of class field theory and Kummer theory, along the lines developed by the first author and a number of collaborators (see, e.g., [CDyDO06, Coh04, CM11, CT14, CT13a, CT13b]) to enumerate fields with fixed resolvent. Especially relevant is the work [CT13b] of the first and third authors, which gives an explicit formula for the Dirichlet series $\sum_K |\text{Disc}(K)|^{-s}$, where the sum is over all D_ℓ-fields K with a fixed quadratic resolvent. The results of the present paper (or, for the $\ell = 3$ case, of Nakagawa) are required to put this formula into its most explicit form, as a sum of Euler products indexed by F_ℓ-fields. Our main theorem precisely determines the indexing set of F_ℓ-fields, and yields the constant term in the main identity of [CT13b].
Our work has an antecedent in the proof of the Scholz reflection principle, as presented in Washington’s book [Was97], for instance. Let \(K, K_\mathfrak{a} \) and \(K' \) be as described previously. The technical heart of this paper is the Kummer pairing of Corollary 3.2, together with its consequence, Proposition 3.5. Our variant of the pairing relates the ray class group \(\operatorname{Cl}_b(K_\mathfrak{a})/\operatorname{Cl}_b(K_\mathfrak{a})^\ell \) (for an ideal \(b \) to be described) to a subgroup of \(K_\mathfrak{a}^x/(K_\mathfrak{a}^x)^\ell \) known as an \textit{arithmetic Selmer group}. Applying a theorem of Hecke will allow us to conclude, in contrast to the situation in [Was97], that this pairing is perfect.

The pairing is also Galois equivariant, so we can isolate pieces of the ray class group and Selmer group which ‘come from’ subfields of \(K_\mathfrak{a} \): the Selmer group comes from \(K \) (Proposition 3.4), and the ray class group comes from \(K' \) (Proposition 3.6). In Proposition 3.7 we see directly that this ray class group counts \(F_\ell \)-fields. On the Selmer side, our argument is less direct: computations from previous work yield Proposition 3.5, relating the size of this Selmer group to \(|\operatorname{Cl}(K)/\operatorname{Cl}(K)^\ell| \). This latter class group counts the \(D_\ell \)-fields enumerated in our main theorems, as we recall in Lemma 2.8.

In § 2 we establish a variety of preliminary results on the arithmetic of \(D_\ell \) and \(F_\ell \)-extensions. The most involved result is Theorem 2.12, which guarantees that the Galois closure \(\bar{E} \) of each \(F_\ell \)-field \(E \) that we count contains \(K' \), as required for our main theorems to make sense.

In § 3 we study the Kummer pairing as described above. We wrap up the proofs in § 4; essentially the only part remaining is to compute the discriminants of the \(F_\ell \)-fields being counted. Finally, in § 5 we describe some numerical tests of our results, accompanied by a comment on the \textsc{Pari/GP} program (available from the third author’s website) used to generate them.

2. Preliminaries

In this section we introduce some needed machinery and notation, and prove a number of results about the \(D_\ell \) and \(F_\ell \)-fields counted by our theorems. Throughout, \(\ell \) is a fixed odd prime.

2.1 Group theory

We write \(C_r \) for the cyclic group of order \(r \) and \(D_r \) for the dihedral group of order \(2r \). When \(r = \ell \) is an odd prime, we write \(F_\ell \) for the Frobenius group defined in (1.2). The Frobenius group may be realized as the group of affine transformations \(x \mapsto ax + b \) over \(\mathbb{F}_\ell \) with \(a \in \mathbb{F}_\ell^\times \) and \(b \in \mathbb{F}_\ell \). The subgroup generated by \(\sigma \) (equivalently, the subgroup of translations) is normal, and all nontrivial proper normal subgroups contain \(\langle \sigma \rangle \).

The following results are standard and easily checked (granting the basic results of class field theory), so we omit their proofs.

Lemma 2.1. Suppose that \(K \subset K' \subset K'' \) is a tower of field extensions, with \(K'/K \), \(K''/K' \) and \(K''/K \) all Galois, and write \(\tau \) and \(\sigma \) for elements of \(\operatorname{Gal}(K'/K) \) and \(\operatorname{Gal}(K''/K') \), respectively. Then the following hold.

(i) \(\operatorname{Gal}(K'/K) \) acts on \(\operatorname{Gal}(K''/K') \) by conjugation; for \(\tau \in \operatorname{Gal}(K'/K) \) and \(\sigma \in \operatorname{Gal}(K''/K') \), the action is defined by \(\tau \sigma \tau^{-1} := \bar{\tau} \sigma \bar{\tau}^{-1} \) for an arbitrary lift \(\bar{\tau} \) of \(\tau \) to \(\operatorname{Gal}(K''/K) \).

(ii) If, further, \(K'' \) corresponds via class field theory to an \(\ell \)-torsion quotient \(\operatorname{Cl}_b(K')/B \) of a ray class group of \(K' \), on which \(\tau \in \operatorname{Gal}(K'/K) \) acts by \(\tau(x) = x^a \) for some \(a \in \mathbb{F}_\ell^\times \), then the conjugation action of \(\operatorname{Gal}(K'/K) \) on \(\operatorname{Gal}(K''/K') \) is given by \(\tau \sigma \tau^{-1} = \sigma^a \).

2.2 Background on conductors

We recall some basic facts about conductors of extensions of local and global fields, following [Ser67].
Definition 2.2. Let \(L/K \) be a finite abelian extension of local fields. Let \(p \) be the maximal ideal of \(\mathbb{Z}_K \). We define the local conductor \(f(L/K) \) to be the smallest integer \(n \) such that
\[
1 + p^n \subseteq N_{L/K}(L^\times).
\]

The local conductor thus gives us information about the ramification type of \(L/K \). In particular, we have the following result.

Proposition 2.3. (i) \(L/K \) is unramified if \(f(L/K) = 0 \), tamely ramified if \(f(L/K) = 1 \), and wildly ramified if \(f(L/K) > 1 \).

(ii) If \(M/L/K \) is a tower of extensions of local fields with \(M/K \) abelian and \(L/K \) unramified, then \(f(M/K) = f(M/L) \).

If \(K = \mathbb{Q}_p \), we will sometimes write \(f(L) \) rather than \(f(L/\mathbb{Q}_p) \). Also, if \(L/K \) is an abelian extension of global fields, \(\mathfrak{p} \) is a prime of \(K \) and \(\mathfrak{P} \) is a prime of \(L \) above \(\mathfrak{p} \), we will sometimes write \(f_\mathfrak{p}(L/K) \) for \(f(L \mathfrak{P}/K \mathfrak{p}) \), since this does not depend on \(\mathfrak{P} \). Here, \(L \mathfrak{P} \) and \(K \mathfrak{p} \) denote the \(\mathfrak{P} \)-adic and \(\mathfrak{p} \)-adic completions of \(L \) and \(K \), respectively.

Definition 2.4. Let \(L/K \) be a finite abelian extension of global fields, set
\[
f_0(L/K) = \prod_{\mathfrak{p}} f_\mathfrak{p}(L/K),
\]
and let \(f_\infty(L/K) \) denote the set of real places of \(K \) ramified in \(L \). The global conductor of \(L/K \) is defined to be the modulus \(f(L/K) = f_0(L/K)f_\infty(L/K) \).

Proposition 2.5. If \(L/\mathbb{Q} \) is a finite abelian extension, then \(f_0(L/\mathbb{Q}) \) is the ideal of \(\mathbb{Z} \) generated by the smallest number \(n \) such that \(L \subseteq \mathbb{Q}(\zeta_n) \).

Proposition 2.6. If \(L/K \) is a quadratic extension of global fields, then \(f_0(L/K) = \text{Disc}(L/K) \).

2.3 The field diagram

We fix a primitive \(\ell \)th root of unity \(\zeta_\ell \) and a primitive root \(g \) (mod \(\ell \)). Let \(\ell^* = (-1)^{(\ell-1)/2} \ell \), so that \(\mathbb{Q}(\sqrt{\ell^*}) \) is the unique quadratic subfield of \(\mathbb{Q}(\zeta_\ell) \).

Let \(D \) be a fundamental discriminant, and let \(K = \mathbb{Q}(\sqrt{D}) \), where we assume that \(D \neq \ell^* \) (although we could presumably handle this case as well).

Write \(K_2 = K(\zeta_\ell) \), with \([K_2 : \mathbb{Q}] = 2(\ell-1) \) and \(\Gamma = \text{Gal}(K_2/\mathbb{Q}) \cong C_2 \times \mathbb{Z}/\ell \mathbb{Z} \). By Kummer theory, degree-\(\ell \) abelian extensions of \(K_2 \) are all of the form \(\mathbb{Q}(\zeta_\ell, \alpha^\ell) \) for some \(\alpha \in K_2 \). Write \(\tau \) and \(\tau_2 \) for the elements of \(\Gamma \) fixing \(K \) and \(\mathbb{Q}(\zeta_\ell) \), respectively, with \(\tau(\zeta_\ell) = \zeta_\ell^2 \) and \(\tau_2 \) nontrivial on \(K \). We also write
\[
T = \{ \tau - g, \tau_2 + 1 \}, \quad T^* = \{ \tau - 1, \tau_2 + 1 \} \subseteq \mathbb{F}_\ell[\Gamma].
\](2.1)

The mirror field \(K' \) of \(K \) is the fixed field of \(\tau_2 \tau^{(\ell-1)/2} \); more explicitly,
\[
K' = \mathbb{Q}(\zeta_\ell - \zeta_\ell^{-1}) = \mathbb{Q}(\zeta_\ell + \zeta_\ell^{-1})\left(\sqrt{-D(4 - (\zeta_\ell + \zeta_\ell^{-1})^2)}\right).
\](2.2)

In particular, \(K' \) is a quadratic extension of the maximal totally real subfield of \(\mathbb{Q}(\zeta_\ell) \), it is cyclic of degree \(\ell - 1 \) over \(\mathbb{Q} \), with Galois group generated by the restriction of \(\tau \) to \(K' \), and its unique quadratic subfield is equal to \(\mathbb{Q}(\sqrt{\ell^*}) \) if \(\ell \equiv 1 \) (mod 4) and equal to \(\mathbb{Q}(\sqrt{DE^*}) \) if \(\ell \equiv 3 \) (mod 4).
We therefore have the following diagrams of fields in the $\ell \equiv 1 \pmod{4}$ and $\ell \equiv 3 \pmod{4}$ cases, respectively.

$$
\begin{align*}
\text{Q}(\sqrt{D\ell^*}) & \quad K = \text{Q}(\sqrt{D}) & \quad \text{Q}(\sqrt{D*}) \\
\text{Q}(\sqrt{D\ell^*}) & \quad K = \text{Q}(\sqrt{D}) & \quad \text{Q}(\sqrt{D*})
\end{align*}
\quad \tau^2 \quad \tau
$$

The mirror field of $\text{Q}(\sqrt{D\ell^*})$ is fixed by $(\tau^2)^{(\ell-1)/2}\tau_2$, which equals $\tau^{(\ell-1)/2}$ if $\ell \equiv 1 \pmod{4}$ and equals $\tau^{(\ell-1)/2}$ if $\ell \equiv 3 \pmod{4}$. Hence, if $\ell \equiv 1 \pmod{4}$ then the fields K and $\text{Q}(\sqrt{D\ell^*})$ share the same mirror field, and if $\ell \equiv 3 \pmod{4}$ then they do not. If $\ell = 3$, then $K' = \text{Q}(\sqrt{D\ell^*})$ and $\text{Q}(\zeta_3) = \text{Q}(\sqrt{3})$, so the second row of the diagram should be identified with the third.

Notation for splitting types. We write (as is fairly common) that a prime p of a field K has splitting type $(f_1 f_2^e \cdots f_9^g)$ in L/K if $p\mathcal{O}_L = \mathfrak{P}_1^{f_1} \mathfrak{P}_2^{f_2^e} \cdots \mathfrak{P}_9^{f_9^g}$ with $f_i(f_i, p) = f_i$ for each i.

2.4 Selmer groups of number fields
In §3 our results will be phrased in terms of the ℓ-Selmer group, which measures the failure of the local–global principle for local ℓth powers to be global ℓth powers. We recall the relevant terminology here; see also [Coh00, §5.2.2].

Definition 2.7. Let L be a number field. The group of ℓ-virtual units $V_\ell(L)$ consists of all $u \in L^\times$ for which $u\mathcal{O}_L = \mathfrak{a}^\ell$ for some fractional ideal \mathfrak{a} of L, or, equivalently, all $u \in L^\times$ for which $v_p(u)$ is divisible by ℓ for all primes p of L. The ℓ-Selmer group is the quotient $S_\ell(L) = V_\ell(L)/L^\times/\ell$.

If $L = K_z$, then the ℓ-Selmer group is a finite ℓ-group, and it fits into a split exact sequence

$$1 \to \frac{U(K_z)}{U(K_z)^\ell} \to S_\ell(K_z) \to \text{Cl}(K_z)[\ell] \to 1$$

of $\mathbb{F}_\ell[\Gamma]$-modules.

In addition, we write $b = (1 - \zeta_\ell)^\ell\mathcal{O}_{K_z}$, and for each Γ-invariant ideal \mathfrak{c} of \mathcal{O}_{K_z} dividing b we write

$$R_\mathfrak{c} = \text{Cl}(K_z)/\text{Cl}(K_z)^\ell, \quad G_\mathfrak{c} = R_\mathfrak{c}[T],$$

where T has been defined above. (For any $\mathbb{F}_\ell[\Gamma]$-module M, $M[T]$ denotes the subgroup annihilated by all the elements of T.) Because ℓ is totally ramified in K_z, any such \mathfrak{c} must be of the form $(1 - \zeta_\ell)^a\mathcal{O}_{K_z}$ for some integer $a \leq \ell$.

2.5 The arithmetic of D_ℓ-extensions
Our main theorems relate counts of D_ℓ- and F_ℓ-extensions of a given discriminant. These fields will be constructed as subfields of their Galois closures, and our next results (and Proposition 3.7) establish the connection between these two ways of counting fields.
Lemma 2.8. Let D be a fundamental discriminant. Then the set of $D_ℓ$-fields of discriminant $D^{(ℓ−1)/2}$ is equal to the set of degree-$ℓ$ subfields of unramified cyclic degree-$ℓ$ extensions $L/\mathbb{Q}(√D)$, and each prime dividing $ℓ$ has splitting type $(1^{21}2^{1})$ in each such $D_ℓ$-field.

In particular, if $k = \mathbb{Q}(√D)$, then up to isomorphism there are $|\text{Cl}(k)/\text{Cl}(k)^{\prime}|/(ℓ − 1)$ of them.

Recall that our convention of writing discriminants in the form $\text{Disc}(F) = (−1)^{r_2(F)}|\text{Disc}(F)|$ specifies the number of complex embeddings of each such field.

Proof. This can be extracted from [Coh00, Theorem 9.2.6, Proposition 10.1.26 and Theorem 10.1.28].

Remark 2.9. Our lemma does not count $D_ℓ$-fields of discriminant $(4D)^{(ℓ−1)/2}$ arising from degree-$ℓ$ extensions of $\mathbb{Q}(√D)$ which are ramified at 2. An example of such a field is the field generated by a root of $x^3 − x^2 − 3x + 5$ of (non-fundamental) discriminant $−2^267$.

Related considerations also occur on the $F_ℓ$ side; for example, the F_5-field generated by a root of $x^5 − 2x^4 + 4x^3 + 12x^2 − 24x + 10$, with discriminant $−1)^22^45^553^2$, in which 2 is totally ramified is a non-example of a field counted by our results.

2.6 The arithmetic of $F_ℓ$-extensions
We now study the arithmetic of $F_ℓ$-extensions as well as the mirror fields $K′$. This section concludes with Theorem 2.12, which states that if E is an $F_ℓ$-field of appropriate discriminant, then its Galois closure must contain $K′$.

Lemma 2.10. Let $D ≠ 1, ±ℓ$ be a fundamental discriminant, and let $K′$ be the mirror field of $K := \mathbb{Q}(√D)$. Then

\[e_ℓ(K′/\mathbb{Q}) = \begin{cases} ℓ − 1 & \text{if } ℓ \nmid D \text{ or } ℓ \equiv 1 \pmod{4}, \\ (ℓ − 1)/2 & \text{if } ℓ \mid D \text{ and } ℓ \equiv 3 \pmod{4}, \end{cases} \]

\[\text{Disc}(K′) = \begin{cases} ℓ^{−2}(−D)^{(ℓ−1)/2} & \text{when } ℓ \nmid D, \\ \ell^{−2}(−D/ℓ)^{(ℓ−1)/2} & \text{when } ℓ \mid D \text{ and } ℓ \equiv 1 \pmod{4}, \\ \ell^{−3}(−D/ℓ)^{(ℓ−1)/2} & \text{when } ℓ \mid D \text{ and } ℓ \equiv 3 \pmod{4}, \end{cases} \]

and $e_p(K′/\mathbb{Q}) = 2$ for each prime $p ≠ ℓ$ dividing D.

Proof. Any prime $p \neq ℓ$ dividing D is unramified in both K_ℓ/K and $K_\ell/K′$, so the formula for $v_p(\text{Disc}(K′))$ follows by transitivity of the discriminant.

If $ℓ \nmid D$, primes above $ℓ$ are totally ramified in $\mathbb{Q}(ζ_ℓ)/\mathbb{Q}$, hence in K_ℓ/K, hence not in $K_\ell/K′$, and hence in $K′/\mathbb{Q}$. If $ℓ \mid D$ and $ℓ \equiv 1 \pmod{4}$, this argument with K replaced by $\mathbb{Q}(√ℓ^1D)$ yields the same result. Finally, if $ℓ \mid D$ and $ℓ \equiv 3 \pmod{4}$, then $\mathbb{Q}(√ℓ^2D)$ is unramified at $ℓ$ and is a subextension of $K′$, so $e_ℓ(K′/\mathbb{Q}) = (ℓ − 1)/2$. In each of these cases, $v_ℓ(\text{Disc}(K′))$ is uniquely determined by (2.5) below.

The power of $−1$ in $\text{Disc}(K′)$ follows from the formula $K′ = \mathbb{Q}(ζ_ℓ − ζ_ℓ^{−1})\sqrt{D}$; since $K′$ is Galois, it is either totally real or totally complex.

Lemma 2.11. Suppose that F/\mathbb{Q} is a $C_{ℓ−1}$-field, with $|\text{Disc}(F)|$ equal to $|D|^{(ℓ−1)/2}$ times some (positive or negative) power of $ℓ$ for a fundamental discriminant D. Then F is equal to the mirror field of $\mathbb{Q}(√D)$ or $\mathbb{Q}(√ℓ^2D)$, with discriminant given by Lemma 2.10.
Identities for field extensions

In other words, if F has the same discriminant and signature as a mirror field K', then $F \cong K'$. If local exceptions are allowed at ℓ and infinity, then F must be one of the fields K' enumerated in Lemma 2.10, and knowing the discriminant and signature suffices to determine which.

Proof. First of all, we claim that $e_p(F/Q)$ is uniquely determined by $\text{Disc}(F)$ for each prime p. If $p \neq 2$, then p is not wildly ramified in F, and $e_p(F/Q)$ can be determined from the formula

$$v_p(\text{Disc}(F)) = (\ell - 1) \left(1 - \frac{1}{e_p(F/Q)}\right).$$

(2.5)

If $p = 2$ is ramified in F, then $v_2(\text{Disc}(F))$ equals either $\ell - 1$ or $3(\ell - 1)/2$ and the ramification is wild. There is a unique intermediate field $Q \subseteq F' \subseteq F$ with $[F : F'] = 2$ that contains the inertia field. We claim that $v_2(\text{Disc}(F')) = 0$: if not, then by transitivity of the discriminant we would have $v_2(\text{Disc}(F')) = (\ell - 1)/4$, which would imply that 2 is ramified in F' with $e_2(F'/Q) = 2$ by the analogue of (2.5), but this is absurd as $2 \mid [F' : Q]$. Therefore $v_2(\text{Disc}(F')) = 0$ and $e_2(F/Q) = 2$.

We also note that any other prime $p \not\in \{2, \ell\}$ which ramifies in F satisfies $e_p(F/Q) = 2$ and p is unramified in F'.

The inertia groups generate $\text{Gal}(F/Q)$ because they generate a subgroup of $\text{Gal}(F/Q)$ whose fixed field is everywhere unramified. If $\ell \equiv 1 \pmod{4}$, the inertia group at ℓ must therefore be all of $C_{\ell - 1}$. If $\ell \equiv 3 \pmod{4}$, the inertia group could be the full Galois group or its index-2 subgroup, and these two cases may be distinguished by the analogue of (2.5), but this is absurd as $2 \mid [F' : Q]$. Therefore $v_2(\text{Disc}(F')) = 0$ and $e_2(F/Q) = 2$.

Write $D_1 = \ell|D|$ if $\ell' \nmid D$ and $D_1 = |D|$ if $\ell \mid D$. By Proposition 2.5 we have $F \subseteq Q(\zeta_{D_1})$, as we see by computing local conductors: each prime $p \neq \ell$ is unramified in F', so by Propositions 2.3 and 2.6 and transitivity of the discriminant we have $\text{f}_p(F) = v_p(\text{Disc}(F_p/F_p)) = v_p(D)$, where p and Q are primes of F' and F above p and p, respectively. Moreover, the prime ℓ is tamely ramified in F, so that $f_\ell(F) = 1$ by Proposition 2.3.

Write $\text{Gal}(Q(\zeta_{D_1})/Q)$ as $\prod_{p \mid |D_1}(\mathbb{Z}/p^{e_p})^\times$ and $\text{Gal}(Q(\zeta_{D_1})/F) = A \subset \text{Gal}(Q(\zeta_{D_1})/Q)$. For each p, $A \cap (\mathbb{Z}/p^{e_p})^\times$ is the inertia group of primes above p in $Q(\zeta_{D_1})/F$, so multiplicativity of ramification degrees implies that $[(\mathbb{Z}/p^{e_p})^\times : A \cap (\mathbb{Z}/p^{e_p})^\times] = e_p(F/Q)$.

Write $B_p := (\mathbb{Z}/p^{e_p})^\times$ and $B'_p := A \cap B_p$ for each p. For $p \not\in \{2, \ell\}$, B'_p is the unique index-2 subgroup of B_p, and B'_ℓ is either trivial or the unique order-2 subgroup of B_ℓ, as determined above by $v_\ell(\text{Disc}(F))$. Now B'_2 is of index 2 in B_2: if $4 \mid D$ then B'_2 is uniquely determined, and if $8 \mid D$ there are two possibilities for B'_2. We claim that this information uniquely determines A, except in the $8 \mid D$ case where both possibilities can occur. Since the mirror fields of Lemma 2.10 satisfy all the same properties, this claim establishes the lemma.

The claim is easily checked: there is a unique subgroup $B \subseteq \prod_{p \neq \ell} B_p$ of index 2 that contains $\prod_{p \neq \ell} B'_p$: it consists of vectors $(b_p)_{p \neq \ell}$ for which $b_p \neq B'_p$ for an even number of p. Moreover, B_ℓ contains a unique element b_ℓ of order 2. If $e_\ell = \ell - 1$, then A must consist of $\{1\} \times B$ and $\{b_\ell\} \times \prod_{p \neq \ell} B_p - B$. If $e_\ell = (\ell - 1)/2$, then $A = \{1, b_\ell\} \times B$; to see that no other ℓ-component is possible, we use the fact that $\ell \equiv 3 \pmod{4}$ to show that B_ℓ contains no elements of order 4. \hfill \Box

At this point we highlight the Brauer relation (see [FT93, Theorems 73 and 75]): if E/Q is a degree-ℓ extension with Galois closure E' such that $\text{Gal}(E'/Q) \cong F_\ell$, and if F is the $C_{\ell - 1}$ subextension of E', then

$$\zeta(s)^{\ell - 1}\zeta_{E'}(s) = \zeta_E(s)^{\ell - 1}\zeta_F(s),$$

(2.6)
which implies that
\[\text{Disc}(E') = \text{Disc}(E)^{\ell - 1} \text{Disc}(F). \] (2.7)
(This relation also holds for the infinite place.) This follows from a computation involving the characters of \(F_\ell \).

The above relation also implies that \(\text{Disc}(E) = \text{Disc}(F) N(f(E'/F)) \), where \(f(E'/F) \) is the conductor of the abelian extension \(E'/F \).

We can now conclude that, given suitable conditions on \(\text{Disc}(E) \), \(F \) must be a mirror field. Later we will apply this result to count these \(F_\ell \)-fields using class field theory.

Theorem 2.12. Suppose that \(E/\mathbb{Q} \) is an \(F_\ell \)-field with \(\text{Disc}(E) \) equal to \((-D)^{(\ell-1)/2} \) times an arbitrary power of \(\ell \) for a fundamental discriminant \(D \). Let \(E' \) be the Galois closure of \(E \), and let \(F'/\mathbb{Q} \) be the unique subextension of degree \(\ell - 1 \).

Then \(E'/F \) is unramified away from the primes dividing \(\ell \), and \(F \) is equal to the mirror field \(K' \) of \(\mathbb{Q}(\sqrt{D}) \).

Proof. For the first claim, it suffices to prove that no prime \(p \neq \ell \) can totally ramify in \(E/\mathbb{Q} \). This is immediate for primes \(p \notin \{2, \ell\} \), as \(v_p(E) < \ell - 1 \). However, the \(p = 2 \) case is more subtle: Remark 2.9 illustrates that it cannot be treated by purely local considerations.

So suppose to the contrary that 2 is totally ramified in \(E \), so that 4 \(\parallel \) \(D \). We first claim that 2 is unramified in \(E/E' \) and therefore (because \(\ell \) and \(\ell - 1 \) are coprime) also in \(F/\mathbb{Q} \). To see this, we work locally. Any totally and tamely ramified extension of \(\mathbb{Q}_2 \) is of the form \(\mathbb{Q}_2(\alpha) \), where \(\alpha \) is a root of \(x^e - \pi \), with \(\pi \) being a uniformizer of \(\mathbb{Q}_2 \) (see [Lan94, Proposition 12 in II, §5]). Such extensions do not ramify further when we pass to the Galois closure.

For every other prime \(p \neq 2, \ell \) dividing \(D \), primes above \(p \) are unramified in \(E'/F \); so (2.6) and (2.5) imply that \(e_p(F/\mathbb{Q}) = 2 \).

Therefore, \(|\text{Disc}(F)| \) equals \(|D|/4 \)^{(\ell-1)/2} times a power of \(\ell \), so that \(\text{Disc}(F) \) is determined by Lemma 2.11. In particular, since \(-D/4 \) is a fundamental discriminant and \(D/4 \) is not, \(F \) is totally real if \(-(-D/4) = D/4 \) is positive and totally imaginary if \(D \) is negative. However, the condition for \(\text{Disc}(E) \) implies that \(E' \), and hence \(F \), is totally real if and only if \(-D \) is positive. We therefore have a contradiction.

Now we conclude from (2.7) that \(\text{Disc}(E) = \ell^c \text{Disc}(F) \) for some \(c \geq 0 \), so that \(F \) satisfies the conditions of Lemma 2.11. This implies the second claim; when \(\ell \equiv 3 \pmod{4} \), the possibility that \(K' \) is the mirror field of \(\mathbb{Q}(\sqrt{\ell^c D}) \) is ruled out because the signature of \(E \) determines that of \(F \).

\[\square \]

3. The Kummer pairing and \(F_\ell \)-fields

In this section we introduce the Kummer pairing and use it to obtain two different expressions for the size of the group \(G_b \) (introduced at the end of §2.4), each of which corresponds to one of the field counts in the main theorems. Ideas for this section were contributed by Hendrik Lenstra, and we thank him for his help.

We begin with the following consequence of a classical result of Hecke.

Proposition 3.1. Suppose that \(N_z = K_z(\sqrt{\alpha}) \). Then \(f(N_z/K_z) \) \(\mid b \) if and only if \(\alpha \) is an \(\ell \)-virtual unit.

Proof. See [Coh00, Theorem 10.2.9].

\[\square \]

Identities for field extensions

Corollary 3.2. Let μ_ℓ denote the group of ℓth roots of unity. There exists a perfect, Γ-equivariant pairing of $\mathbb{F}_\ell[\Gamma]$-modules

$$R_b \times S_\ell(K_z) \to \mu_\ell.$$

Proof. This is simply the Kummer pairing: let M/K be the abelian ℓ-extension corresponding by class field theory to R_b, which is the compositum of all cyclic degree-ℓ extensions of K_z with conductors dividing b. If $\overline{a} \in R_b$, as usual we denote by $\sigma_a \in \text{Gal}(M/K)$ the image of a under the Artin map. Thus, by the above proposition, if $\overline{a} \in S_\ell(K_z)$ and a is a virtual unit representing \overline{a}, we have $K_z(\sqrt{\alpha}) \subset M$ and we define the pairing by

$$(\overline{a}, \overline{\alpha}) \mapsto \sigma_a(\sqrt{\alpha})/\sqrt{\alpha} \in \mu_\ell,$$

which does not depend on any choice of representatives. It is classical and immediate that this pairing is perfect and Γ-equivariant, i.e. that $(\langle \tau_1(\overline{a}), \tau_1(\overline{\alpha}) \rangle) = \tau_1((\overline{a}, \overline{\alpha}))$ for any $\tau_1 \in \Gamma$. \square

Corollary 3.3. We have a perfect pairing

$$G_b \times S_\ell(K_z)[T^*] \to \mu_\ell.$$

In particular,

$$|G_b| = |S_\ell(K_z)[T^*]|.$$

Proof. Applying the Γ-equivariance of the pairing of the preceding corollary, and recalling that $\tau(\zeta_\ell) = \zeta_\ell^b$, for any j we obtain a perfect pairing

$$R_b[\tau - g^j] \times S_\ell(K_z)[\tau - g^{1-\ell}] \to \mu_\ell.$$

Taking $j = 1$ yields a perfect pairing between $R_b[\tau - g]$ and $S_\ell(K_z)[\tau - 1]$; similarly, since τ_2 leaves ζ_ℓ fixed, we obtain a perfect pairing between $G_b = R_b[\tau - g, \tau_2 + 1]$ and $S_\ell(K_z)[\tau - 1, \tau_2 + 1]$. \square

Proposition 3.4. We have $S_\ell(K_z)[T^*] \simeq S_\ell(K)$.

Proof. We have an evident injection

$$S_\ell(K) \hookrightarrow S_\ell(K_z)[\tau - 1],$$

which is also surjective: if $a \in K_z$ satisfies $\tau(a)/a = \gamma^\ell$ for some $\gamma, x \in K_z$, then $N_{K_z/K}(\gamma) = N_{K_z/K}(\gamma^\ell) = 1$ (since $\ell \not\equiv 0 \pmod{K}$). By Hilbert 90 applied to K_z/K, there exists $\beta \in K_z$ with $\gamma = \beta/\tau(\beta)$; hence $\tau(\alpha\beta^\ell)/(\alpha\beta^j) = 1$, and so $a = \alpha\beta^\ell$ is a virtual unit of K_z and also of K because $([K_z : K], \ell) = 1$.

Therefore $S_\ell(K_z)[T^*] = S_\ell(K_z)[\tau - 1, \tau_2 + 1] \simeq S_\ell(K)[\tau_2 + 1]$. On the other hand, we have that trivially

$$S_\ell(K) = S_\ell(K)[\tau_2 + 1] \oplus S_\ell(K)[\tau_2 - 1],$$

and we claim that $S_\ell(K)[\tau_2 - 1]$ is trivial: if $a \in K$ satisfies $\tau_2(a)/a = \alpha\gamma^\ell$ for some $\gamma \in K$, then by applying τ_2 again we deduce that $(\gamma\tau_2(\gamma))^\ell = 1$ and hence $\gamma\tau_2(\gamma) = 1$, so that by a trivial case of Hilbert 90 we have $\gamma = \tau_2(\beta)/\beta$ for some $\beta \in K$ and hence $\tau_2(\alpha/\beta^\ell) = \alpha/\beta^\ell$. Thus α/β^ℓ is a virtual unit of \mathbb{Q} equivalent to α, and since $S_\ell(\mathbb{Q})$ is trivial, this proves our claim and hence the proposition. \square

We therefore have the equality $|G_b| = |S_\ell(K)|$, which we use to obtain the following result.

Proposition 3.5. We have

$$|G_b| = \begin{cases} |Cl(K)/Cl(K)| & \text{ if } D < 0, \\ |\ell Cl(K)/Cl(K)| & \text{ if } D > 0. \end{cases} \quad (3.1)$$

2069
Proof. By the exact sequence (2.3) and [CDyDO02, Proposition 2.12], the proofs of which can be adapted to K without change, and since $\dim_{\mathbb{F}_2}(U(K)/U(K)^\ell) = 1 - r_2(D)$, where (as usual) $r_2 = 1$ if $D < 0$ and $r_2 = 0$ if $D > 0$, we obtain
\[|S_\ell(K)| = \ell^{1-r_2(D)}|\text{Cl}(K)/\text{Cl}(K)^\ell|, \]
yielding the proposition. \qed

Note that the last statement generalizes [CM11, Proposition 7.7].

By Lemma 2.8 it thus follows that D_ℓ-fields can be counted in terms of G_b. We now show that the same is true of F_ℓ-fields. We begin by showing that G_b can be ‘descended’ to K', generalizing [CT14, Proposition 3.4].

Proposition 3.6. Let $\epsilon = (1 - \zeta_{\ell})^n \mathbb{Z}_{K}$ be any Γ-invariant ideal dividing b.

(i) There is an isomorphism
\[\frac{\text{Cl}_{\ell}(K_2)}{\text{Cl}_{\ell}(K_2)^\ell} \to \frac{\text{Cl}_{\ell}(K')}{{\text{Cl}_{\ell}(K')}^{\ell}}[\tau - g], \]
where K' is the mirror field of $K = \mathbb{Q}(\sqrt{D})$ and $\epsilon' = \epsilon \cap K'$.

(ii) We have:

(a) ϵ' is unramified in K or $\ell \equiv 1 \pmod{4}$, where p is the unique prime of K' above ℓ;

(b) $\epsilon' = p^{[a/2]}$ if ℓ is ramified in K and $\ell \equiv 3 \pmod{4}$, where $q = p$ or $q = pp'$ depending on whether there is a unique prime p or two distinct primes p and p' of K' above ℓ.

Proof. Since τ_2 and $\tau_{(\ell-1)/2}$ each act by -1 on G_ℓ, $\tau_{(\ell-1)/2}\tau_2$ acts trivially. Writing $e = (1 + \tau_2\tau_{(\ell-1)/2})/2$, decomposing 1 as $e + (1 - e) = (1 + \tau_2\tau_{(\ell-1)/2})/2 + (1 - \tau_2\tau_{(\ell-1)/2})/2$ in $\mathbb{F}_\ell[\Gamma]$ and noting that G_ℓ is annihilated by $1 - e$, we see that the elements of G_ℓ are exactly those elements of $\text{Cl}_{\ell}(K_2)/\text{Cl}_{\ell}(K_2)^\ell$ that can be represented by an ideal of the form $a\tau_2\tau_{(\ell-1)/2}(a)$, which we check is of the form $\alpha'\mathbb{Z}_{K_2}$ for some ideal α' of K'.

As we check, we obtain a well-defined, injective map $G_\ell \to (\text{Cl}_{\ell}(K')/\text{Cl}_{\ell}(K')^\ell)[\tau - g]$. To see that it is surjective, observe that any class in $(\text{Cl}_{\ell}(K')/\text{Cl}_{\ell}(K')^\ell)[\tau - g]$ is represented by $I \sim I^1 + \ell$ for some ideal I of $\mathbb{Z}_{K'}$, and with $a = I^{1+\ell}/2$ we have $I^{1+\ell}\mathbb{Z}_{K_2} = a\tau_2\tau_{(\ell-1)/2}(a)$.

For (ii)(a), recall that ℓ is totally ramified in K' by Lemma 2.10, so we must show that $c \cap K' = p^a$. As ℓ is unramified in $\mathbb{Q}(\sqrt{D})$, we have $e_{\ell}(K_2/\mathbb{Q}) = \ell - 1$, and if p is a prime of K_2 above p, then $v_p(x) = v_{b'}(x)$ for any $x \in K'$, hence the result.

For (ii)(b), Lemma 2.10 implies that ℓ has ramification index $(\ell - 1)/2$ in K', and hence each prime of K' above ℓ has ramification index 2 in K_2/K'; that is, $2v_p(x) = v_{b'}(x)$, and the result follows. \qed

We can now obtain the desired bijection for F_ℓ-fields, adapting [CT14, Proposition 4.1].

Proposition 3.7. For each Γ-invariant ideal $c \mid b$, there exists a bijection between the following two sets:

- the set of subgroups of index ℓ of $G_\ell = (\text{Cl}_{\ell}(K_2)/\text{Cl}_{\ell}(K_2)^\ell)[T]$;
- the set of degree-ℓ extensions E/\mathbb{Q} (up to isomorphism) for which the Galois closure E' has Galois group F_ℓ and contains K', with the conductor $f(E'/K')$ dividing $c' = c \cap K'$, such that $\tau \sigma \tau^{-1} = \sigma^\alpha$ for any generator σ of $\text{Gal}(E'/K')$.

Remark 3.8. Recall that the element $\tau \sigma \tau^{-1} \in \text{Gal}(E'/K')$ is well-defined by Lemma 2.1. Also, note that $f(E'/K')$ is Γ-invariant, because E' is fixed by τ_2, courtesy of Proposition 3.6.
Identities for field extensions

Proof. By Proposition 3.6, it suffices to exhibit a bijection between the set of field extensions as above and subgroups of index \(\ell\) of \(G'_{c'} := (\text{Cl}_c(K')/\text{Cl}_c(K'))^\dagger[\tau - g]\), where \(c' = \tau \cap K\).

Given such a subgroup, we produce a degree-\(\ell\) extension of the desired type. Write \(A' := \text{Cl}_c(K')/\text{Cl}_c(K')^\dagger\); then, decomposing \(A'\) into eigenspaces for the action of \(\tau\) (as we can, because the order of \(\tau\) is coprime to \(\ell\)), write \(A' \cong G'_{c'} \times A''\) where \(A''\) is the sum of the other eigenspaces.

Subgroups \(B \subseteq G'_{c'}\) of index \(\ell\) are in bijection with subgroups \(B' = B \times A'' \subseteq A'\) of index \(\ell\) that contain \(A''\). For each \(B'\), class field theory gives a unique extension \(E'/K'\), cyclic of degree \(\ell\), of conductor dividing \(c'\), for which the Artin map induces an isomorphism \(G'_{c'}/B' \cong \text{Gal}(E'/K')\). Furthermore, \(E'\) is Galois over \(\mathbb{Q}\) because \(G_{c'}\) and \(B'\) are \(\tau\)-stable. Each \(B\) yields a distinct \(E'\), and as the action of \(\text{Gal}(K'/\mathbb{Q})\) on the class group matches the conjugation action of \(\text{Gal}(K'/\mathbb{Q})\) on \(\text{Gal}(E'/K')\), we have \(\text{Gal}(E'/\mathbb{Q}) \simeq F_t\) with presentation as in the second set in the proposition. The extension \(E\) can be taken to be any of the isomorphic degree-\(\ell\) subextensions of \(E'\).

Finally, we note that all the steps are reversible, establishing the desired bijection. \(\square\)

Remark 3.9. We now justify the remark made after the statement of our main results concerning the notation * and the primitive roots \(\pm g\).

Suppose that \(\ell \equiv 1 \pmod{4}\), \(\ell \nmid D\), and \(\tau\) is a generator of \(\text{Gal}(K_z/K)\), so that \(\tau \tau_2\) is a generator of \(\text{Gal}(K_z/\mathbb{Q}(\sqrt{D_f}))\). Then \(K\) and \(\mathbb{Q}(\sqrt{D_f}) = \mathbb{Q}(\sqrt{D\ell})\) have the same mirror field.

Replacing \(K\) with \(\mathbb{Q}(\sqrt{D\ell})\) is equivalent to replacing \(\tau\) with \(\tau \tau_2\) and thus \(T = \{\tau - g, \tau_2 + 1\}\) with \(\{\tau_2 - g, \tau_2 + 1\}\) or, equivalently, \(\{\tau + g, \tau_2 + 1\}\). Thus, if we study \(D_f\)-extensions with resolvent \(\mathbb{Q}(\sqrt{D\ell})\), where \(\tau\) is still regarded as a generator of \(\text{Gal}(K_z/\mathbb{Q}(\sqrt{D}))\), we obtain the same results with \(g\) replaced by \(-g\). In particular, in the previous lemma we obtain field extensions \(E\) with \(\tau \sigma \tau^{-1} = \sigma^{-g}\).

We now show that the set of conductors \(f(E'/K')\) that can occur in Proposition 3.7 is quite limited.

Proposition 3.10. The conductors \(f(E'/K')\) of fields counted in Proposition 3.7 are restricted to the following values:

- if \(\ell \nmid D\), \(v^f(E'/K') \in \{0, 2\}\);
- if \(\ell \mid D\) and \(\ell \equiv 1 \pmod{4}\), \(v^f(E'/K') \in \{0, (\ell + 3)/2\}\);
- if \(\ell \mid D\) and \(\ell \equiv 3 \pmod{4}\), \(v^f(E'/K') \in \{0, 2, (\ell + 5)/2\}\).

Proof. We work with the extensions \(E''/K_z\) which correspond to the extensions \(E'/K'\) by Proposition 3.6. Unraveling the definition of \(G_{c'}\), we see that the conductor of such an extension can equal \((1 - \zeta)^a\mathbb{Z}_{K_z}\) if and only if

\[
\frac{1 + P^a}{1 + P^a + 1}[T] \neq 0,
\]

where \(P = (1 - \zeta)^a\mathbb{Z}_{K_z}\) if this ideal is prime and \(P\) is one of the two primes dividing \((1 - \zeta)\mathbb{Z}_{K_z}\) otherwise. The case \(a = 0\) is not excluded from any of the cases listed above; so assuming \(a \geq 1\), we use the inverse Artin–Hasse logarithm and exponential maps in exactly the same way as in [CDyDO02, p. 177] to conclude that

\[
\frac{P^a}{P^{a+1}}[T] \neq 0. \tag{3.2}
\]

Necessary conditions for \(3.2\) were given in Theorem 1.2 of [CDyDO03], a study of cyclotomic fields by the first author, Diaz y Diaz and Olivier. In all cases, \(P\) and \(K_z\) have the same meaning here as in [CDyDO03].
If $\ell \nmid D$, let K have the same meaning as here, and consider the $\tau-g$ eigenspace with $c(p) = 1$; then Theorem 1.2 implies that $a \equiv 2 \pmod{\ell-1}$.

- If $\ell \mid D$ and $D \equiv 1 \pmod{4}$, let K of [CDyDO03] be $\mathbb{Q}(\sqrt{D\ell})$, so that the T eigenspace lies within the $\tau-g^{(\ell+1)/2}$ eigenspace. Then Theorem 1.2 implies that $a \equiv (\ell + 3)/2 \pmod{\ell-1}$.

- If $\ell \mid D$ and $D \equiv 3 \pmod{4}$, then again K has the same meaning in [CDyDO03] as here; now $c(p) = 2$, so $a \equiv 2 \pmod{\ell - 1/2}$.

So, given that $a \leq \ell - 1$, we obtain respectively in these three cases for $f(E''/K_\Sigma)$ that $a \in \{0, 2\}$, $a \in \{0, (\ell + 3)/2\}$ and $a \in \{0, 2, (\ell + 3)/2\}$. By Proposition 3.6, the corresponding values for $f(E''/K_\Sigma)$ are a, a and $2[a/2]$; so $a \in \{0, 2\}$, $a \in \{0, (\ell + 3)/2\}$ and $a \in \{0, 2, (\ell + 5)/2\}$, respectively.

4. Proofs of the main results

Proof of Theorem 1.2. Let $K = \mathbb{Q}(\sqrt{D})$ with $D < 0$. The key to the proof is the identity $|G_0| = |\text{Cl}(K)/\text{Cl}(K\ell)|$ of Proposition 3.5. By Lemma 2.8, $(|G_0| - 1)/(\ell - 1)$ equals the number of D_ℓ-extensions with discriminant $(-1)^{(\ell-1)/2}D^{(\ell-1)/2}$. Simultaneously, Propositions 3.6 and 3.7 imply that $(|G_0| - 1)/(\ell - 1)$ is the number of F_ℓ-extensions whose Galois closure E' contains the mirror field K', with $f(E'/K') \mid b \cap K$, and with $\tau\sigma\tau^{-1} = \sigma^b$ as described there. Theorem 2.12 implies that the Galois closure of each F_ℓ-field described in the theorem must contain K', so it remains only to prove that the condition $f(E'/K') \mid b \cap K$ coincides with the discriminant conditions on the F_ℓ-fields counted in the theorem.

First, assume that $\ell \equiv 1 \pmod{4}$ or $\ell \nmid D$ (or both). Then Lemma 2.10 implies that $\text{Disc}(K') = \ell^{\ell-2}(-D)^{(\ell-1)/2}$ or $\text{Disc}(K') = \ell^{\ell-2}(-D/\ell)^{(\ell-1)/2}$ if $\ell \nmid D$ or $\ell \mid D$, respectively. Thus we have

$$v_\ell(\text{Disc}(E')) = \ell(\ell - 2) + (\ell - 1)f_\ell(E'/K'),$$

(4.1)

where p is the unique (totally ramified) ideal of K' above ℓ. Writing $k = f_\ell(E'/K')$, Propositions 3.6, 3.7 and 3.10 imply that the fields counted are precisely those with $k \in \{0, 2\}$ or $k \in \{0, (\ell + 3)/2\}$ for $\ell \nmid D$ and $\ell \mid D$, respectively, so the Brauer relation (2.7) implies that $v_\ell(\text{Disc}(E)) \in \{\ell - 2 + k\}$ with k as above.

If instead $\ell \equiv 3 \pmod{4}$ and $\ell \mid D$, then we have $\text{Disc}(K') = \ell^{\ell-3}(-D/\ell)^{(\ell-1)/2}$ and

$$v_\ell(\text{Disc}(E')) \in \{(\ell - 3) + (\ell - 1)k : k \in \{0, 2, (\ell + 5)/2\}\}$$

(4.2)

with $k \neq 2$, because the ℓ-adic valuation of the discriminant of a degree-ℓ field cannot be $\ell - 1$.

For each prime $q \neq \ell$ dividing D, E'/K' is unramified at primes over q, so by (2.7) we have $v_q(\text{Disc}(E)) = v_q(\text{Disc}(K'))$. Also, E must be totally real, because K' is and $[E' : K']$ is odd. Put together, in all cases this shows that $\text{Disc}(E)$ is equal to $D^{(\ell-1)/2}$ times a power of ℓ as prescribed in Theorem 1.2, finishing the proof.

Proof of Theorem 1.3. The proof is essentially identical, now using the $D > 0$ case of Proposition 3.5, applying the identity $\ell \cdot (\ell^a - 1)/(\ell - 1) + 1 = (\ell^{a+1} - 1)/(\ell - 1)$, and obtaining the signature of E by (2.7).

5. Numerical testing

Our work began with $\ell = 5$, by inspecting the Jones and Roberts database of number fields [JR13] and finding patterns that called for explanation. However, for $\ell > 5$, this database does not
Identities for field extensions

contain enough fields for a reasonable test, and it does not include the Galois conditions featuring in our theorems.

We therefore wrote a program using Pari/GP [PAR14] to compute the relevant number fields, the source code of which is available from the third author’s website.¹ A few comments on this program follow.

Thanks to the relation $\text{Disc}(E) = \text{Disc}(F)N(\mathfrak{f}(E'/F))$ given after (2.6), to enumerate F_ℓ-fields (possibly with certain conditions, including discriminant and/or Galois restrictions), it is enough to enumerate suitable $C_{\ell-1}$-fields F (which is very easy) and for each such field enumerate suitable conductors \mathfrak{f} of C_ℓ-extensions E'/F such that E'/\mathbb{Q} is Galois. Luckily, these Galois conditions imply that these suitable conductors are very restricted, since they must be of the form $\mathfrak{f} = na$, where n is an ordinary integer and a is an ideal of F divisible only by prime ideals of F which are above ramified primes of \mathbb{Q} and which in addition must be Galois stable.

For each conductor \mathfrak{f} of this form, we compute the corresponding ray class group, and if it has cardinality divisible by ℓ, we compute the corresponding abelian extension and then check which subfields of degree ℓ of that extension satisfy our conditions.

Note that for our purposes, we only count the F_ℓ-extensions that satisfy our conditions. Our program can also compute them explicitly, thanks to the key Pari/GP program rnfkummer, for which the algorithm is described in detail in Chapter 5 of the first author’s book [Coh00].

Our numerical testing was moderately extensive for $\ell = 5$ and $\ell = 7$, but rather limited for $\ell = 11$ and $\ell = 13$, as the complexity of our algorithms grows rapidly with ℓ. We verified our results and found F_ℓ-fields with all the powers of ℓ given in our main theorems, with the exception of 13^4. The computational complexity of our algorithm severely limited the amount of testing we could conduct with $\ell = 13$; we speculate that the power of ℓ not found is uncommon but does exist.

Acknowledgements

We would like to thank Frank Calegari, Jürgen Klüners, Hendrik Lenstra, David Roberts, John Voight, and the referees for helpful discussions and suggestions related to this work.

References

¹ http://www.math.sc.edu/~thornef/.

2073
H. Cohen, S. Rubinstein-Salzedo and F. Thorne

JR13 J. Jones and D. Roberts, Number fields (2013), http://hobbes.la.asu.edu/NFDB/.

Identities for field extensions

Simon Rubinstein-Salzedo simonr@stanford.edu
Department of Statistics, Stanford University,
390 Serra Mall, Stanford, CA 94305, USA

Frank Thorne thorne@math.sc.edu
Department of Mathematics, University of South Carolina,
1523 Greene Street, Columbia, SC 29208, USA