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Abstract

Let L ⊂ A × I be a link in a thickened annulus. We show that its sutured annular
Khovanov homology carries an action of sl2(∧), the exterior current algebra of sl2.
When L is an m-framed n-cable of a knot K ⊂ S3, its sutured annular Khovanov
homology carries a commuting action of the symmetric group Sn. One therefore obtains
a ‘knotted’ Schur–Weyl representation that agrees with classical sl2 Schur–Weyl duality
when K is the Seifert-framed unknot.

1. Introduction

Knot homologies, like the quantum knot polynomials they categorify, are intimately connected to
the representation theory of Lie algebras and quantum groups. Khovanov homology, the first of
these homology theories, can be constructed by categorifying a part of the representation theory
of Uq(sl2). Roughly speaking, the idea is to lift the Reshetikhin–Turaev graphical calculus of
Uq(sl2)-intertwiners one level on the categorical ladder.

1.1 Tangle invariants and link homologies from Uq(sl2) categorification
Let T be a tangle in D2× I connecting n points in D2×{0} to m points in D2×{1}. The most
basic of the Reshetikhin–Turaev tangle invariants assigns to T a Uq(sl2) homomorphism

ψ(T ) : V ⊗n(1) −→ V ⊗m(1) ,

where V(1) is the defining two-dimensional representation of the quantum group Uq(sl2).
To categorify the Reshetikhin–Turaev tangle invariant, one replaces the C(q) vector spaces

V ⊗n(1) by a graded category C(n) with Grothendieck group K0(C(n)) ∼= V ⊗n(1) ; the linear map ψ(T )

is then upgraded to a functor

Ψ(T ) : C(n) −→ C(m),

with K0(Ψ(T )) = ψ(T ). A fascinating aspect of the story is that the category C(n) can be chosen
from a number of mathematical subjects. The category C(n) could be a category of coherent or
constructible sheaves on an algebraic variety, a Fukaya category of a symplectic manifold, a
category of modular representations of a finite group, a category of matrix factorizations, or a
category of modules over a finite-dimensional algebra [SS06, CK08, KR08, Str05, Web16, Sus07,
CK14, BS11]. The choice which is most directly relevant for the current paper is due to Chen and
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Khovanov [CK14] and independently Brundan and Stroppel [BS11], who define finite-dimensional
algebras An and take C(n) to be the derived category of left An modules. The functor-valued
tangle invariant Ψ(T ) is then given by tensoring with a complex of (An, Am) bimodules specified
by a cube of resolutions of the tangle T .1

Given an (n, n) tangle T , it is natural to study its closure, T̂ , as a link in the thickened annulus
A× I. To obtain a topological invariant of this closure, one can then take the derived self-tensor
product (Hochschild homology) of the (An, An) bimodule described above. Alternatively, one
can consider its sutured annular Khovanov homology SKh(T̂ ), defined by Asaeda, Przytycki
and Sikora [APS04].2 Sutured annular Khovanov homology is defined using an explicit chain
complex coming from a cube of resolutions, much in the spirit of Khovanov’s original definition
of a homology theory for links in S3.

In fact, these two invariants were expected to agree when the present work first appeared
(cf. [AGW15, Conjecture1.1]) and now we know they do [AGW15, BPW16]:

HH∗(Ψ(T )) ∼= SKh(T̂ ).

Note that for fixed n ∈ Z+, Chen–Khovanov and Brundan–Stroppel introduced a further grading
C(n) =

⊕n
k=0 C(n, k) on the category C. A more precise version of the statement relates the

Hochschild homology of the bimodule associated to the category C(n, k) with a graded summand
SKh(L;−n + 2k) ⊆ SKh(L). In [AGW15], the conjecture is proved in the k = 1 case and in
[BPW16] the conjecture is proved for all values of k.

The fact that sutured annular Khovanov homology arises as Hochschild homology of
bimodules from Uq(sl2) categorification indicates that the annular homology groups SKh(L)
themselves should carry rich structure of representation-theoretic interest. On the other hand,
this structure is cumbersome to describe concretely from that point of view. The goal of the
present work is to describe some of this structure directly, in down-to-earth terms, without
appealing to either Hochschild homology or higher representation theory.

1.2 Representation theory and sutured annular Khovanov homology
The most basic of the representation-theoretic structures enjoyed by SKh(L) is a linear action
of sl2. We define this sl2 action directly on the chain level and check that it commutes with
the annular boundary maps. We further show that this sl2 action is diagram-independent and
hence an invariant of the underlying annular link. An amusing corollary of this fact is that the
sutured Khovanov homology of an annular link is trapezoidal with respect to the sl2 weight
space grading (Corollary 1). One conceptual explanation for the sl2 action comes from the
conjecture (now proven) that SKh can be realized as Hochschild homology of bimodules in
Uq(sl2) categorification (see § 1.3 below).

It turns out that SKh(L) has somewhat more symmetry than that provided by the sl2 action.
The Lie algebra sl2 is the tangent space to the identity of the Lie group SL2, but if we consider
the action of SL2 on itself by conjugation, then the quotient stack SL2//SL2 also has a ‘tangent
space’, which is actually a complex of sheaves. The fiber of this complex over the identity has the

1 The construction of this functor-valued tangle invariant is made more explicit in [CK14] than in [BS11], whose
focus is on a relationship between the algebras An and the category O.
2 Asaeda, Przytycki and Sikora [APS04] in fact introduced a version of Khovanov homology for links in thickened
oriented surfaces F × I. The annular case F = A was explored further by Roberts in [Rob13], who related it
to Heegaard Floer knot homology as in [OS05] (see § 3). This annular theory has come to be known as sutured
annular Khovanov homology because of a relationship (cf. [GW10b, GW10a]) with Juhász’s sutured version of
Heegaard Floer homology [Juh06].
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structure of a Z-graded Lie superalgebra, which we refer to in this paper as the exterior current
algebra of sl2, and denote sl2(∧). As a graded vector space, we have

sl2(∧) = sl2 ⊕ sl2[1],

with the Lie bracket given essentially by the adjoint action of sl2 on itself (see § 2.2 for a precise
definition). The exterior current algebra has appeared and been studied in a number of different
contexts, and is sometimes known as a Takiff Lie algebra (see, for example, [GM17] and references
therein). Our main result is the following.

Theorem 1. Let L ⊂ A × I be an annular link. Then the exterior current algebra sl2(∧) acts
linearly on SKh(L), and the isomorphism class of this representation is an annular link invariant.

The proof of this theorem is direct, as we define the action of the generators of sl2(∧) at
the chain level and check that the defining relations hold up to homotopy. An interesting point
is that the check of relations uses fundamentally the compatibility of the Khovanov differential
and the Lee deformation [Lee05], both with each other and with the additional annular grading
of the chain complex. In contrast to the sl2 action on SKh(L), a more conceptual explanation for
the appearance of the exterior current algebra from categorified quantum groups and Hochschild
homology is missing at the moment.

Given Theorem 1, it is reasonable to reformulate annular Khovanov homology as a functor
from the category of annular links (with morphisms the annular link cobordisms) to the category
of finite-dimensional graded representations of sl2(∧). It follows from this description that the
sl2(∧)-module structure on SKh(L) is an annular link invariant and that annular link cobordisms
induce sl2(∧)-module homomorphisms. An important special case is when L is the cable of a
knot, as in this case the sl2(∧)-module endomorphisms induced by annular link cobordisms have
additional structure. We prove the following result, a more precise version of which is stated
in § 7.

Theorem 2. Let K ⊂ S3 be a knot and let L = Kn,nm ⊂ A × I denote its m-framed n-cable.
Then SKh(L) carries commuting actions of sl2(∧) and of the symmetric group Sn.

When K is the unknot and L = Kn,0 is its Seifert-framed n-cable, the positive-degree part
of sl2(∧) acts trivially, so the sl2(∧) action reduces to an sl2 action, and the commuting actions
of sl2 and Sn then recover the usual Schur–Weyl representation on the nth tensor power of the
defining representation of sl2 (cf. § 9.1). Thus, Theorem 2 may be viewed as a generalization
of the Schur–Weyl representation to arbitrary framed knots, with the sl2 action in Schur–Weyl
duality upgraded to an action of the exterior current algebra.

The topological implications of the exterior current algebra action certainly merit further
exploration. We content ourselves here with recalling that the (filtered) annular Khovanov
complex is particularly well suited to studying braid conjugacy classes [BG15] and transverse
links with respect to the standard tight contact structure on S3 [Pla06]. In particular, it
distinguishes braid closures from the closures of other tangles [GN14] and detects the trivial
n-braid among all n-braids [BG15]. Moreover, by embedding the solid torus in S3 in the standard
way, one obtains a spectral sequence from the sutured annular Khovanov homology of L to the
ordinary Khovanov homology of L. Although Plamenevskaya’s construction predates annular
Khovanov homology, her transverse link invariant [Pla06] is a compelling character in the story
described here. Hunt, Keese and Morrison recently wrote a computer program which computes
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both the sutured annular Khovanov homology of braid closures as well as the spectral sequence

to Khovanov homology. A user’s guide to that program, along with some example computations,

can be found in the companion paper [HKLM15].

1.3 The sl2 action on SKh(L) via categorified quantum groups

Conjecturally, SKh(L) can be realized as HH∗(Ψ(T )), where Ψ(T ) is a complex of bimodules over

the Chen–Khovanov/Brundan–Stroppel algebras. This expectation gives rise to one conceptual

explanation for the existence of an sl2 action on SKh(L). Namely, on the derived category

Db(C(n)), one should be able to define directly an action of the categorified quantum group U(sl2)

defined by Lauda in [Lau10].3 The defining 1-morphisms E,F in Lauda’s 2-category are left and

right adjoints to one another, and the adjunction 2-morphisms give rise to endomorphisms

e, f : HH∗(Y ) −→ HH∗(Y ),

where Y can be taken to be any complex of (An, An) bimodules which commutes with the

functors E and F . (The endomorphisms e, f are sometimes referred to as Bernstein trace maps

[Ber90].) The further structure in Lauda’s 2-category then implies that the maps e, f, h = [e, f ]

will satisfy the defining relations of the Lie algebra sl2 [BHLZ17]. In particular, if one takes the

functor Y to be Ψ(T ) for an (n, n) tangle T , one should obtain in this way an sl2 action on

HH∗(Ψ(T )). At the moment, it is not clear to us how to use the categorified quantum group

to obtain an action of the exterior current algebra directly on HH∗(Ψ(T )). However, we should

note that the closely related polynomial current algebra of sl2 does appear in [BHLZ17].

In fact, the entire story above can be generalized from sl2 to sln using other representations

of Khovanov–Lauda–Rouquier’s categorified quantum groups. The details of this generalization,

including a definition of annular sln homology and an explicit description of the action of sln on

the annular homology of any link, have been carried out in recent interesting work of Queffelec

and Rose [QR15]. The existence of an sl2 action on the annular Khovanov homology of a link

also clarifies the relationship between this homology and the skein module of A× I. Namely, the

skein module of a 3-manifold M is isomorphic (at least at q = 1) to the coordinate ring of the

SL2-character variety of π1(M) [PS00]. In the case when M = A× I, this description essentially

reduces to an identification between the skein module of A × I and the W -invariants in the

coordinate ring of T , where here W = S2 is the Weyl group of SL2 and T ⊂ SL2 is the associated

maximal torus. Thus, the skein module of A × I is isomorphic to W -invariant functions on T ,

which in turn may be identified with the Grothendieck group of the category of representations

of sl2. From this point of view, the precise relationship between SKh and the skein module of

the annulus naturally involves the representation theory of sl2. This precise relationship between

annular Khovanov homology appears as the n = 2 case in the Queffelec and Rose work [QR15,

Proposition 5.9].

1.4 Organization

The organization of the paper is as follows.

• In §§ 2 and 3, we recall the definition of sutured Khovanov homology (SKh) for annular

links and review some basic facts about the representation theory of sl2 and sl2(∧).

3 The existence of such an action follows formally from Koszul duality, since there is an explicit categorical action
of Uq(sl2) on the Koszul dual of C(n) (see [Web16] and references therein). It would be desirable to describe the
action of the generating 2-morphisms of Lauda’s 2-category on Db(C(n)) directly, though to our knowledge that
has not been done yet.
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• In § 4, we define the sl2 action on the chain level and prove that the action commutes
with the sutured differential and hence induces an action on homology that is diagram-
independent. To do this, we reinterpret SKh of an annular link in terms of Bar-Natan’s
cobordism category, first extending the Khovanov bracket to the annular setting and then
rephrasing the sutured annular Khovanov chain complex CKh as a functor from the annular
Bar-Natan cobordism category to a category of graded representations of sl2 (Proposition 1).

• In § 5, we describe some basic properties of sutured annular Khovanov homology as an sl2
representation. In particular, we prove that it is trapezoidal with respect to the k grading,
show its functoriality (up to sign) under annular link cobordisms, and explain how the sl2
action at the chain level can be understood via the standard action by marked points.

• In § 6, we enlarge the action of sl2 on SKh(L) to that of the Lie superalgebra sl2(∧),
and prove that annular link cobordisms induce well-defined morphisms of sl2(∧) modules
(Proposition 7). Theorem 1 follows.

• In § 7, we prove Theorem 2. We also introduce the inductive limits SKheven(K) and
SKhodd(K), which are infinite-dimensional invariants of the knot K ⊂ S3.

• In § 8, we give a quiver description of the category of finite-dimensional representations of
sl2(∧), showing directly that these categories are governed by finite-dimensional quadratic
(in fact Koszul) algebras.

• In § 9, we include some example computations and conjectures.
• In the Appendix, we state and prove the annular version of the Carter and Saito theorem

[CS93] needed for the functoriality statements in § 5.

2. Representation-theoretic preliminaries

2.1 sl2 and its finite-dimensional representations
We work over C throughout. Accordingly, we will denote the Lie algebras glk(C) and slk(C) by
glk and slk, respectively.

We recall some elementary facts about the finite-dimensional representation theory of the
Lie algebra sl2. The Lie algebra sl2 has a C-vector space basis given by the set {e, f, h}

h =

(
1 0

0 −1

)
, e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
,

with Lie brackets
[e, f ] = h, [h, e] = 2e, [h, f ] = −2f. (2.1)

As a C-vector space, any finite-dimensional representation, U , of sl2 decomposes into weight
spaces, i.e., into eigenspaces for the action of h. Explicitly,

U :=
⊕
λ∈Z

U [λ],

where
U [λ] := {v ∈ U hv = λv}.

The bracket relations tell us that the generators e (respectively, f) act on the weight spaces as
raising (respectively, lowering) operators eλ : U [λ]→ U [λ+2] (respectively, fλ : U [λ]→ U [λ−2]).

Each finite-dimensional irreducible representation of sl2 is determined by its highest weight,
N ∈ Z>0. Explicitly, for each N ∈ Z>0, one constructs an (N + 1)-dimensional irreducible
representation, V(N), with

V(N) := SpanC{v, fv, . . . , fNv}
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and hv = Nv (and, hence, h(f i(v)) = (N − 2i)f i(v)). All finite-dimensional sl2 irreducible
representations arise in this manner. The defining two-dimensional irreducible representation
V(1) of sl2, which plays a central role in what follows, will simply be denoted V .

2.2 The Lie superalgebra sl2(∧)
A Lie superalgebra is a Z2-graded vector space V equipped with a bilinear Lie superbracket
[·, ·] : V × V −→ V which satisfies Z2-graded versions of usual Lie algebra axioms:
• (Super skew symmetry) [x, y] = (−1)|x||y|[y, x];
• (Super Jacobi identity) [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]].

A Z-graded Lie superalgebra is a Lie superalgebra V with a Z grading V =
⊕

n∈Z V (n)
compatible with both the Lie superbracket, so that for x ∈ V (n) and y ∈ V (m), [x, y] ∈ V (n+m),
and with the Z2 grading on V , so that the subspaces V (2n) are in the degree-0 part of the Z2

grading, while the subspaces V (2n+ 1) are in degree 1.
We now describe the exterior current algebra sl2(∧), which is a Z-graded Lie superalgebra,

by generators and relations. We have

sl2(∧) ∼= sl2 ⊕ sl2,

with the first summand in degree 0 and the second in degree 1 for the Z (and Z2) gradings. We
fix the standard {e, f, h} basis of sl2; in order to distinguish the two distinct sl2 summands in
sl2(∧) from each other, we will write the standard basis of the degree-1 summand as {v2, v−2, v0}.
In this basis, the adjoint action of sl2 is

e(v2) = 0, e(v0) = −2v2, e(v−2) = v0,

f(v2) = −v0, f(v0) = 2v−2, f(v−2) = 0.

Thus, in the basis {e, f, h, v2, v−2, v0}, the Lie superalgebra sl2(∧) has defining relations:
• [e, f ] = h;
• [h, e] = 2e;
• [h, f ] = −2f ;
• [e, v2] = 0;
• [e, v0] = −2v2;
• [e, v−2] = v0 = −[f, v2];
• [f, v0] = 2v−2;
• [f, v−2] = 0;
• [h, v2] = 2v2;
• [h, v0] = 0;
• [h, v−2] = −2v−2;
• [vi, vj ] = 0 for i, j ∈ {2, 0,−2}.

The Z and Z2 gradings on sl2(∧) induce Z and Z2 gradings on its enveloping algebra U(sl2(∧)).

3. Topological preliminaries

3.1 Sutured annular Khovanov homology and Lee homology
Let A be a closed, oriented annulus and I = [0, 1] the closed, oriented unit interval. Via the
identification

A× I = {(r, θ, z) | r ∈ [1, 2], θ ∈ [0, 2π), z ∈ [0, 1]} ⊂ (S3 = R3 ∪∞),
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any link, L ⊂ A × I, may naturally be viewed as a link in the complement of a standardly
embedded unknot, (U = z–axis ∪∞) ⊂ S3. Such an annular link L ⊂ A× I admits a diagram,
P(L) ⊂ A, obtained by projecting a generic isotopy class representative of L onto A×{1/2}, and
from this diagram one can construct a triply graded chain complex, CKh(P(L)), using a version
of Khovanov’s original construction [Kho00] due to Asaeda, Przytycki and Sikora [APS04] and
Roberts [Rob13] (see also [GW10a]), briefly recalled here.

View P(L)⊂ A instead as a diagram on S2−{X,O}, where X (respectively, O) are base points
on S2 corresponding to the inner (respectively, outer) boundary circles of A. If we temporarily
forget the data of X, we may view P(L) as a diagram on R2 = S2 − {O} and form the ordinary
bigraded Khovanov complex

CKh(P(L)) =
⊕

(i,j)∈Z2

CKhi(P(L); j),

as described in [Kho00].
Recall that the generators of CKh(P(L)) correspond to oriented Kauffman states (cf. [GW11,

§ 4.2]). That is, in the language of [Bar05], we identify a ‘v+’ (respectively, a ‘v−’) marking on a
component of a Kauffman state with a counterclockwise (respectively, clockwise) orientation on
that component. We now obtain a third grading on the complex by defining the ‘k’ grading of a
generator (up to an overall shift) to be the algebraic intersection number of the corresponding
oriented Kauffman state with a fixed oriented arc γ from X to O that misses all crossings of P(L).
Note (see [Rob13, § 2]) that component circles of a Kauffman state are either trivial (intersect
the arc γ from X to O in an even number of points) or non-trivial (intersect γ in an odd
number of points). Roberts proved (see [Rob13, Lemma 1]) that the Khovanov differential, ∂,
is non-increasing in this extra grading. Decomposing ∂ = ∂0 + ∂− into its k-grading-preserving
and k-grading-decreasing parts, we obtain a triply graded chain complex (CKh(P(L)), ∂0) whose
homology,

SKh(L) :=
⊕

(i,j,k)∈Z3

SKhi(L; j, k),

is an invariant of L ⊂ A× I, called the sutured annular Khovanov homology of L. More can be
said, as shown in the following lemma.

Lemma 1. Let CKh(P(L)) be the triply graded vector space associated to a diagram of an
annular link, L ⊂ A × I as above, and let ∂ = ∂0 + ∂− be the decomposition of the Khovanov
differential in terms of the k grading. Then (CKh(P(L)), ∂0, ∂−) is a bicomplex.

Proof. The operator ∂0 is homogeneous of degree 0 (respectively, ∂− is homogeneous of
degree −2) in the k grading. Decomposing ∂2 = 0 into its k-homogeneous summands, it follows
that ∂2

− = 0 and ∂0∂− + ∂−∂0 = 0. 2

One therefore obtains a spectral sequence converging to Kh(L) whose E1 page is SKh(L).
Each page of this spectral sequence is an invariant of L ⊂ A× I (cf. [Rob13]).

The reader is warned that the other spectral sequence associated to this bicomplex (whose
E1 page is the homology of (CKh(P(L), ∂−)) is not an invariant of the annular link L).

Remark 1. In [Rob13], the complex CKh(P(L)) is considered as a filtered complex, with the
filtration induced by the k grading. This filtration agrees with the standard one associated to
the bicomplex described above.
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Remark 2. In what follows it will be convenient for us to replace Khovanov’s original ‘j’
(quantum) grading with a ‘ j′ ’ (filtration-adjusted quantum) grading. If x ∈ CKh(P(L)) is a
generator, j′(x) := j(x)− k(x). The sutured differential, ∂0, has degree (1, 0, 0) with respect to
the (i, j′, k) grading, while the endomorphism ∂− has degree (1, 2,−2).

The chain complex CKh(P(L)) also comes equipped with a natural involution Θ, defined in
the following lemma (cf. [AGW14, Proposition 7.2(3)]).

Lemma 2. Let L ⊂ (A× I) ⊂ S3 be an annular link,

P(L) ⊂ (S2 −O− X) ⊂ (S2 −O) ∼ R2

a diagram for L, and

P ′(L) ⊂ (S2 − X−O) ⊂ (S2 − X) ∼ R2

the diagram obtained by exchanging the roles of O and X. The corresponding map

Θ : CKh(P(L), ∂0)→ CKh(P ′(L), ∂0)

is a chain isomorphism inducing an isomorphism SKhi,j
′
(L; k) ∼= SKhi,j

′
(L;−k) for all

(i, j′, k) ∈ Z3.

Proof. Recall that the generators of the sutured Khovanov complex are identified with enhanced
(oriented) Kauffman states. Therefore, the result of preserving the orientation on S2 but
exchanging the roles of O and X is that:
• the orientation on the arc γ is reversed; and
• a counterclockwise (respectively, clockwise) orientation on a non-trivial circle is now viewed

as a clockwise (respectively, counterclockwise) orientation.
On the other hand, orientations on all trivial components are preserved. In the language of
[Rob13] and [GW11], v+ and v− labels are exchanged on non-trivial components but preserved
on trivial components of an oriented Kauffman state. Since the sutured Khovanov differential,
∂0, is symmetric with respect to v± labelings on non-trivial circles (cf. [Rob13, § 2]), Θ is a
chain map.

Moreover, Θ ◦Θ = 1, so it is a chain isomorphism. That it preserves the homological (i) and
new quantum (j′) gradings but changes the sign of the weight space (k) grading is immediate
from the definition. 2

Let Φ denote Lee’s deformation of Khovanov’s differential, defined in [Lee05, § 4]. Explicitly,
for an elementary merge cobordism, Φ maps a v− ⊗ v− marking to a v+ marking on the circles
involved in the cobordism, and every other labeling is mapped to 0. Similarly, for an elementary
split cobordism, Φ maps a v− marking to v+ ⊗ v+ and every other labeling is mapped to 0. Lee
proved that:
• Φ2 = 0;
• ∂Φ + Φ∂ = 0.

As with the Khovanov differential above, we may write the Lee deformation as a sum

Φ = Φ0 + Φ+,

where this time Φ0 has (i, j′, k) degree (1, 4, 0), while Φ+ has degree (1, 2, 2).
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One may check directly along the various split and merge maps in the cube that Θ commutes
with ∂0 and Φ0, and that conjugation by Θ exchanges ∂− and Φ+. This observation, together
with the equations that arise by writing the k-homogeneous components of the equations ∂2 = 0,
(Φ)2 = 0, and ∂Φ + Φ∂ = 0, result in a number of relations involving ∂0, ∂−,Φ0,Φ+, and Θ. We
collect these relationships in the following.

Lemma 3. The endomorphisms ∂0, ∂−,Φ0,Φ+, and Θ of CKh(P(L)) satisfy the following:

(1) ∂2
0 = (Φ0)2 = 0;

(2) ∂2
− = (Φ+)2 = 0;

(3) Θ∂0 = ∂0Θ;

(4) ΘΦ0 = Φ0Θ;

(5) Θ∂− = Φ+Θ;

(6) ∂−∂0 + ∂0∂− = 0;

(7) Φ+Φ0 + ∂0Φ+ = 0;

(8) Φ+∂0 + ∂0Φ+ = 0;

(9) ∂−Φ0 + Φ0∂− = 0;

(10) ∂0Φ0 + Φ0∂0 + ∂−Φ+ + Φ+∂− = 0.

4. A sutured annular Khovanov bracket and sl2

4.1 Khovanov bracket for annular links
Let L ⊂ A× I be an annular link and P(L) ⊂ A a diagram for L, as in the previous subsection.
Following Bar-Natan [Bar05, §§ 2 and 11], one can define an abstract chain complex

[P(L)] =
(
· · · −→ [P(L)]i−1 −→ [P(L)]i −→ [P(L)]i−1 −→ · · ·

)
by constructing a resolution cube for P(L) and then formally taking direct sums of resolutions
that sit in the same ‘i’ degree. The differential in this complex is defined in terms of (signed)
saddle cobordisms associated to the edges of the resolution cube, and the resulting complex,
[P(L)], is viewed as an object in the category Kom/h(Mat(Cob3/`(A))), defined below.

Definition 1. Let Cob3(A) denote the category whose objects are closed, unoriented 1-manifolds
in A, and whose morphisms between two objects C0 and C1 are unoriented 2-cobordisms S ⊂A×I
satisfying ∂S = (C0 × {0}) q (C1 × {1}), considered up to isotopy rel boundary. Let Cob3/`(A)

denote the category which has the same objects as Cob3(A) and whose morphisms are formal
C-linear combinations of morphisms in Cob3(A), considered modulo the S, T , and 4Tu relations
described in [Bar05, § 4.1].

Definition 2. For a pre-additive category A, we denote by Mat(A) the additive closure of A.
If A is an additive category, then we denote by Kom/h(A) the bounded homotopy category of A.

We will use the shorthand notation Kob/h(A) := Kom/h(Mat(Cob3/`(A))), and we will

write Kob/±h(A) for the (non-additive) category obtained from Kob/h(A) by identifying each
morphism with its negative. Bar-Natan proved in [Bar05] that the homotopy type of the complex
[P(L)] is invariant under Reidemeister moves, and thus the object [P(L)] ∈ Kob/h(A) provides
an invariant for the annular link L ⊂ A × I when considered up to isomorphism in Kob/h(A).
We will see in Proposition 4 below that [P(L)] also has good functoriality properties.
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Remark 3. The category Cob3/`(A) can be transformed into a graded category by replacing objects

of Cob3/`(A) by pairs (C, j′), where C ∈ Cob3/`(A) and where j′ is an integer, to be thought of as

a formal grading shift. In the remainder of this paper, we will implicitly assume that Cob3/`(A)

is this graded category, and that [P(L)] is the graded version of the annular Khovanov bracket
(defined as in [Bar05, § 6]).

4.2 CKh as a TQFT valued in representations of sl2
Let gRep(sl2) denote the category of Z-graded representations of sl2. An object of gRep(sl2) is
a direct sum

Y =
⊕
n∈Z

Y (n),

where each Y (n) is a finite-dimensional representation of sl2. An object Y ∈ gRep(sl2) is
sometimes naturally regarded as a bigraded vector space, where the component gradings are the
Z grading above and the sl2 weight space grading. These component gradings will be referred to
as the j′ and k gradings, respectively (in particular, k grading means sl2-weight-space grading).
For m ∈ Z, we will denote by {m} the grading shift operator which acts on objects of gRep(sl2)
by raising the j′ grading by m. That is, if Y is an object of gRep(sl2), then Y {m} denotes the
object with components (Y {m})(n+m) := Y (n).

We will define a (1 + 1)-dimensional annular TQFT with values in gRep(sl2) (where by a
(1+1)-dimensional annular TQFT, we here mean any sufficiently nice functor from the category
Cob3(A) to a category of vector spaces, possibly equipped with extra structure). In order to
define this annular TQFT, we will need to use three particular graded representations of sl2.
• Let

V := SpanC{v+, v−}
denote the two-dimensional defining representation of sl2. The bigrading on V is j′(v±) = 0
and k(v±) = ±1; in particular, v+ is a highest-weight vector and v− = f ·v+ a lowest-weight
vector.

• Let
V ∗ := SpanC{v+, v−}

denote the dual representation to V , where v− is the dual vector to v+ and v+ is the dual
vector to v−. The bigrading on V ∗ is j′(v±) = 0 and k(v±) = ±1.

• Let
W := SpanC{w+, w−}

be the trivial two-dimensional representation of sl2, graded with j′(w±) = ±1 and
k(w±) = 0.

Of course, the objects V and V ∗ are isomorphic in gRep(sl2). However, the matrices for the
action of the standard basis {e, f, h} with respect to the bases {v±} on V and {v±} on V ∗ are
different; explicitly, the actions on V and V ∗ are given by

e · v− = v+, f · v+ = v−, e · v+ = f · v− = 0, h · v± = ±v±
and

e · v− = −v+, f · v+ = −v−, e · v+ = f · v− = 0, h · v± = ±v±.
(Note also that Khovanov’s ‘j’ grading used in [Rob13] is the sum of the ‘j′’ and the ‘k’ gradings.
See Remark 2.)

We will now define an additive functor

F : Cob3/`(A) −→ gRep(sl2).
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4.2.1 F on objects. We refer to a compact, connected 1-manifold embedded in A as a trivial

circle if it represents 0 in H1(A,Z), and refer to it as a non-trivial circle otherwise. Thus, any

unoriented 1-manifold embedded in A is a disjoint union of trivial circles and non-trivial circles.

Let C ∈ Cob3/`(A) be an unoriented 1-manifold C ⊂ A, with `n non-trivial circles and `t trivial

circles. Enumerate the circles of C as C1, . . . , C`n+`t , and regard C as a submanifold of S2−X−O,

where X (respectively, O) is a base point on S2 corresponding to the inner (respectively, outer)

boundary of A, as in § 3.1. For a non-trivial circle Ci, we denote by X(Ci) ∈ {0, . . . , `n − 1} the

number of non-trivial circles of C which lie in the same component of S2 −Ci as the base point

X, and we define

ε(Ci) := (−1)X(Ci).

We now set

F(C) :=

( ⊗
ε(Ci)=1

V

)
⊗
( ⊗
ε(Ci)=−1

V ∗
)
⊗
( `t⊗
s=1

W

)
.

Thus, non-trivial circles Ci are assigned either V or V ∗, depending on the sign ε(Ci), and trivial

circles are assigned W .

4.2.2 F on morphisms. To define F on morphisms, we use that morphisms of Cob3/`(A)

are generated by elementary Morse cobordisms: cup cobordisms creating a trivial circle, cap

cobordisms annihilating a trivial circle, and saddle cobordisms, which either merge two circles

into one or split one circle into two. To saddle cobordisms, we now assign the merge/split maps

defined by Roberts in [Rob13, § 2]; to cup cobordisms, we assign the map ι : C→ W given by

ι(1) := w+; to cap cobordisms, we assign the map ε̃ : W → C given by ε̃(w+) := 0 and ε̃(w−) := 1.

There are two points about the above definition that require explanation. The first is that the

above assignment to cups, caps, and saddles induces a well-defined linear map on any annular

cobordism. To see this, note that ι and ε̃ are precisely the unit and co-unit maps defined by

Khovanov in [Kho00]. Roberts further shows that his merge/split maps can be viewed as the

degree-0 parts (with respect to the ‘k’ filtration) of Khovanov’s multiplication/comultiplication

maps. More precisely, let φ be a linear map between graded vector spaces which is filtered for the

filtration induced by the grading (so that the matrix of φ is block upper-triangular when written

in a basis consisting of graded-homogeneous vectors).4 Let G(φ) be the degree-0 part of φ. Note

that the degree-0 part of a filtered map φ between graded vector spaces V and W depends only

on the map φ and on the gradings on V and W . In particular, if two filtered maps φ and ψ

between graded vector spaces V and W are equal to each other as linear maps, then so, too, are

their degree-0 parts equal. Moreover, taking the degree-0 part of a filtered map is an operation

which commutes with composition. The assignment φ 7→ G(φ) is thus a functor from filtered

linear maps between graded vector spaces to linear maps between vector spaces. It now follows

from what Roberts shows that F can be written as F = G ◦ FKh, where FKh is Khovanov’s

(1 + 1)-dimensional TQFT [Kho00], viewed as a functor from Cob3/`(A) to the category of graded

vector spaces and filtered linear maps between graded vector spaces (graded by the k grading).

Since the latter functor is well defined, it follows that F is well defined as well. In particular,

this argument shows that the map F(S) associated to a cobordism S is independent of how S

is decomposed into elementary cobordisms (cups, caps, and saddles).

4 Here by a filtered map we mean a map between graded vector spaces which is non-increasing with respect to the
gradings. Being filtered is thus a property of a map, not an additional structure.
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The second point is to observe that the linear maps that F assigns to generating morphisms
of Cob3/`(A) (cup, cap, and saddle cobordisms in A × I) are maps of sl2-modules, so that the

functor F can be regarded as taking values in gRep(sl2). For cup and cap cobordisms in A× I,
this is obvious, because the ‘non-identity parts’ of these cobordisms only involve trivial circles,
and hence the ‘non-identity parts’ of the associated linear maps only involve W factors, on which
the sl2 action is trivial. For saddle cobordisms in A× I, we have the following lemma.

Lemma 4. With the above assignment of sl2-module structures to the vector spaces F(C), each
merge/split map (defined as in [Rob13, § 2]):

W ⊗W ←→W,

W ⊗ V ←→ V,

W ⊗ V ∗←→ V ∗,

V ⊗ V ∗←→W

is an sl2-module map of (j′, k)-bidegree (−1, 0).

Proof. Since W is a direct sum of trivial sl2-modules, there is nothing to check for line (1). Lines
(2) and (3) have essentially the same proof. For example, in line (2) we have

V ∗⊗x ⊗ V ⊗y ⊗ (V ⊗W )⊗W⊗z
1⊗···1⊗(Φ)⊗1
−−−−−−−−→ V ∗⊗x ⊗ V ⊗y ⊗ (V )⊗W⊗z,

where Φ is either the merge or split map, depending on the direction of the arrow, and

V ⊗W := V {−1} ⊕ V {1}

is a direct sum of two irreducible graded representations of sl2.
If C (respectively, C ′) is the non-trivial circle involved in the merge/split before (respectively,

after) the merge/split, then ε(C) = ε(C ′) because the number of non-trivial circles in the same
component of S2 − C as X is unchanged by merging/splitting with a trivial circle.

It follows that the Roberts merge (respectively, split) map is precisely the canonical degree-
(0, 0) projection of sl2 representations:

V {−1} ⊕ V {1} −→ V {1}

(respectively, inclusion):
V {0} −→ V {0} ⊕ V {2}.

For line (4), we have

V ∗⊗x ⊗ V ⊗y ⊗ (V ⊗ V ∗)⊗W⊗z
1⊗···1⊗(Φ)⊗1
−−−−−−−−→ V ∗⊗x ⊗ V ⊗y ⊗ (W )⊗W⊗z,

where Φ again denotes the merge or split, depending on the direction of the arrow, and

V ⊗ V ∗ := V(0) ⊕ V(2)

is the decomposition into the irreducible trivial (V(0)) and adjoint (V(2)) sl2 representations. Let
C1 and C2 denote the two non-trivial circles involved in the merge; then, since C1 is adjacent to
C2, we have −ε(C1) = ε(C2). Moreover, with respect to the chosen bases of V, V ∗, we have

V(0) = SpanC{v+ ⊗ v− + v− ⊗ v+} ⊂ V ⊗ V ∗.
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We conclude that the merge and split maps are non-zero scalar multiples of the composition of
inclusion and projection maps

V(0)←→ V ⊗ V ∗.

We have shown that each vector space F(C) can be given the structure of a graded sl2-
module, and that the maps associated to morphisms of Cob3/`(A) intertwine the sl2 actions.

Hence, F lifts to a functor with values in gRep(sl2), as desired. 2

Remark 4. In fact the functor F can take values in the category of graded representations of gl2,
after declaring V to be the defining two-dimensional representation of gl2, V ∗ the linear dual,
and W the trivial two-dimensional representation. In some sense, the distinction between V and
V ∗ in the construction is more natural when F takes values in gRep(gl2), since V and V ∗ are no
longer isomorphic as gl2 representations. On the other hand, the exterior current algebra which
appears later in the paper is that of sl2, not gl2.

We now have the following.

Proposition 1. The sutured annular Khovanov complex can be obtained from the annular
Khovanov bracket by applying the functor F :

(CKh(P(L)), ∂0) ∼= F([P(L)]).

Proof. This follows immediately from the definition and properties of F and from the definitions
of [P(L)] and (CKh(P(L)), ∂0) given in [Bar05] and [Rob13], respectively. 2

The above proposition implies that the sutured annular Khovanov complex of P(L) can be
viewed as a complex in the category gRep(sl2). We can refine this result by introducing the Schur
algebra

S(2, n) := im(ρn),

where ρn : U(sl2) → EndC(V ⊗n(1) ) denotes the usual representation of U(sl2) on the nth tensor

power of the defining representation of sl2.

Proposition 2. If there exists an essential arc γ ⊂ A intersecting P(L) ⊂ A transversely in
exactly n points, none of which are crossings of P(L), then the sl2 action on CKh(P(L)) factors
through the Schur algebra S(2, n).

Proof. Suppose that there is an arc γ as in the proposition. Then the number `n of non-trivial
circles in any given resolution C of P(L) satisfies

0 6 `n 6 n and `n ≡ n (mod 2)

and hence the representation

V ⊗n(1) = V ⊗`n(1) ⊗ V
⊗(n−`n)

(1)

contains a copy of the representation V ⊗`n(1) because V
⊗(n−`n)

(1) contains a copy of the trivial

representation. It therefore follows that elements of ker(ρn) ⊂ U(sl2) act trivially on V ⊗`n(1) .

Now, as abstract sl2 representations, the spaces V and V ∗ used in the definition of CKh(P(L))
satisfy V ∼= V ∗ ∼= V(1); thus, as an abstract sl2 representation, F(C) ∼= V ⊗`n⊗W⊗`t is isomorphic

to a direct sum of 2`t copies of V ⊗`n(1) , and it follows that the sl2 action on F(C) factors through

U(sl2)/ker(ρn) ∼= im(ρn) = S(2, n). 2
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Passing to homology, Propositions 1 and 2 immediately imply the following.

Proposition 3. We have SKhi(P(L)) ∼= Hi(F([P(L)])) ∈ gRep(sl2) for all i, so that SKh(P(L))
is a bigraded representation of sl2. The isomorphism type of this bigraded representation is an
invariant of the isotopy class of the annular link L. The action of sl2 on SKh(L) factors through
the Schur algebra S(2, n), where n is the wrapping number of L.

Here the wrapping number of an annular link L ⊂ A × I is defined as the smallest integer
n > 0 such that there exists an arc γ ⊂ A as in Proposition 2, where the minimum is taken over
all diagrams P(L) ⊂ A representing the annular link L.

The above proposition will be strengthened by enlarging the action of sl2 to an action of
sl2(∧) in Proposition 7, which implies Theorem 1.

5. Basic properties of SKh as an sl2 representation

The fact that the sutured Khovanov homology of an annular link is an sl2 representation has
the following immediate consequence.

Corollary 1. Let L ⊂ A× I be an annular link. Then

dimC(SKh(L; k)) > dimC(SKh(L; k′))

whenever k ≡ k′mod 2 and |k| 6 |k′|.

Proof. The sl2 action of Proposition 3 on SKh(L) has the property that the sl2 weight space
grading on SKh(L) agrees with the k (filtration) grading. The statement of the corollary is
therefore just a restatement of the inequalities that hold between weight space dimensions of
arbitrary finite-dimensional sl2 representations. 2

The above corollary says that the dimensions of the k-graded components of SKh(L) are a
trapezoidal sequence of positive integers.

Moreover, the sl2 representation structure on the sutured Khovanov homology of an annular
link gives an alternative way to understand its symmetry (Lemma 2) with respect to the k
grading. Indeed, the following lemma is readily seen from the chain-level definitions of the raising
operator e, the lowering operator f , and the involution Θ on the sutured chain complex associated
to an annular link.

Lemma 5. Let L ⊂ A × I be an annular link and let e, f,Θ be the endomorphisms on SKh(L)
described above. Then e = ΘfΘ.

5.1 Functoriality for annular link cobordisms
The sl2 representation structure is functorial with respect to annular link cobordisms. To state
this precisely, we must first introduce the following closely related topological categories.

Definition 3. Let Cob4/i(A) denote the category of annular link cobordisms. The objects of

Cob4/i(A) are oriented annular links in general position (i.e., the projection to A × {1/2} is

a diagram). A morphism between links L0 and L1 is a smoothly embedded oriented surface,
F ⊂ (A × I) × I, satisfying ∂F = −(L0 × {0}) q (L1 × {1}), considered modulo isotopy rel
boundary.
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Definition 4. Let Comb4(A) denote the category of combinatorial annular link cobordisms. The
objects of Comb4(A) are annular link diagrams, considered up to planar isotopy. The morphisms
are Carter–Saito movies [CS93], specified by finite sequences of link diagrams, each related to
the next by a Reidemeister move, an elementary Morse move, or a planar isotopy in A.

We have a canonical functor L : Comb4(A)→ Cob4/i(A) obtained by lifting each annular link
diagram to a specific annular link in general position and each Carter–Saito movie to a specific
annular link cobordism with Morse decomposition described by the movie. The following is an
annular version of [Bar05, Theorem 4].

Proposition 4. The assignment P(L) 7→ [P(L)] extends to a functor

[−] : Comb4(A) −→ Kob/h(A).

Up to signs, this functor factors through the category Cob4/i(A) via the canonical functor

L : Comb4(A)→ Cob4/i(A). In particular, [−] descends to a functor Cob4/i(A)→ Kob/±h(A).

Proof. On generating morphisms of Comb4(A), we define the functor [−] as follows.
• To movies representing Reidemeister moves, we assign the homotopy equivalences

constructed in [Bar05] within the proof of the invariance theorem (see [Bar05, Theorem 1]).
• To movies representing elementary Morse cobordisms, we assign the chain maps obtained

by interpreting these Morse cobordisms as the corresponding generating morphisms of
Cob3/`(A).

• For movies representing planar isotopies in A, we use an analogous definition.
In the Appendix, we adapt the Carter–Saito theorem [CS93] to the annular setting. That is,

we show that every (smooth) annular link cobordism can be presented by an annular Carter–Saito
movie, and that two annular Carter–Saito movies represent isotopic annular link cobordisms if
and only if they can be transformed one to the other by a finite sequence of annular Carter–Saito
movie moves. Bar-Natan already proved [Bar05] that the chain maps associated to Carter–Saito
movies are invariant under movie moves when considered up to sign and homotopy5 and so it
follows that the functor [−] descends to a functor Cob4/i(A)→ Kob/±h(A), as desired. 2

5.2 The sl2 action via marked points
Let P(L) ⊂ S2−O−X be a diagram of a link L ⊂ A×I ⊂ S3 and suppose that p1, . . . , pn ⊂ P(L)
is a collection of n distinct marked points on P(L) in the complement of a neighborhood of the
crossings. Temporarily forgetting the data of the base point X, recall [Kho00, Kho03, HN13] that
we have an action of

An := C[x1, . . . , xn]/(x2
1, . . . , x

2
n)

on the chain complex CKh(P(L)) defined as follows.
Let P ′(L) denote the diagram obtained from P(L) by placing, for each i ∈ {1, . . . , n}, a tiny

trivial circle Ci in a region adjacent to pi. We then have

CKh(P ′(L)) ∼= CKh(P(L))⊗An

along with a map
m : CKh(P(L))⊗An→ CKh(P(L))

5 The up-to-sign functoriality can be fixed by working with an appropriate model of Khovanov homology, e.g.,
[CMW09].
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realized as the composition of the n (commuting) multiplication maps associated to merging
P(L) with C1, . . . , Cn at p1, . . . , pn.

Proposition 5. Suppose that L ⊂ A × I ⊂ S3 is an annular link with diagram P(L) ⊂ S2 −
O− X ⊂ S2 −O. Let γ be any arc from X to O that misses all crossings of P(L) and intersects
P(L) transversely in n points p1, . . . , pn (whose ordering is determined by the orientation of γ).
Consider the action of An := C[x1, . . . , xn]/(x2

1, . . . , x
2
n) on CKh(P(L)) induced by the marked

points p1, . . . , pn.

(1) Let f : CKh(P(L))→ CKh(P(L)) be the lowering operator of the sl2 action described in
§ 4.2. Then

f =
n∑
i=1

(−1)i−1xi.

(2) Let e : CKh(P(L)) → CKh(P(L)) be the raising operator of the sl2 action described in
§ 4.2. Then

e = Θ

( n∑
i=1

(−1)i−1xi

)
Θ,

where Θ is the involution described in Lemma 2.

Proof. We verify statement (1) by showing that the chain-level map
∑n

i=1(−1)i−1xi corresponding
to any arc γ from X to O agrees with the chain-level map f described in § 4.2.

To see this, let PI(L) be a resolution of P(L). Recall from § 4.2 that the action of the
lowering operator f on the vector space associated to PI(L) is the standard tensor product
representation of the actions of f on the vector spaces associated to each circle of the resolution
considered separately.

Now suppose that C is a non-trivial circle of PI(L). Any arc γ as above will then intersect C
in an odd number of points pi1 , . . . , pik according to their order of intersection with the oriented
arc γ. As the actions of xi1 , . . . , xik on the vector space associated to PI(L) all agree, we then
have

k∑
j=1

(−1)ij−1xij = (−1)i1−1xi1 .

Since i1 differs, mod 2, from the number of non-trivial circles separating C from X (i.e., using
the terminology of § 4.2, we have i1−1 ≡ ε(C) mod 2), the above agrees with the action of f on
the vector space associated to C described in § 4.2. Similarly, if C is a trivial circle of PI(L), any
arc γ will intersect C in an even number of points pi1 , . . . , pik , so the action of

∑k
j=1(−1)ij−1xij

on C is 0, agreeing with the action from § 4.2. This concludes the proof of statement (1), and
statement (2) now follows from Lemma 5. 2

Remark 5. The reader is warned that although the chain-level maps xi commute with the
ordinary Khovanov differential ∂, they do not commute with the sutured Khovanov differential
∂0. On the other hand, their alternating sum commutes with ∂0, as does the involution Θ, but
Θ does not commute with ∂. See Lemma 3.

Remark 6. Recall that it is shown in [HN13, Proposition 2.2] that the chain-level action of An
described above induces a well-defined action (modulo signs) of

A` := C[X1, . . . , X`]/(X
2
1 , . . . , X

2
` )
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on the ordinary Khovanov homology of an `-component link (one need only ensure that each
link component contains at least one marked point). In particular, Xi denotes the map induced
on the ordinary Khovanov homology of L by (any one of) the base point(s) marking the ith
component of L.

Recalling that there is a spectral sequence relating SKh(L ⊂ A × I) to Kh(L ⊂ S3), it is
tempting to conclude that the map induced by the lowering operator f on Kh(L) agrees with
g =

∑n
i=1 εiXi for some choices εi ∈ {±1}.

However, the E∞ page of the spectral sequence is the associated graded grKh(L) of Kh(L)
with respect to the induced filtration. As a result, we can only conclude the weaker statement
that the highest-degree terms of the maps agree. More precisely, noting that f is a filtered map
of degree −2 on the filtered complex described in Remark 1, we can regard f as a filtration-
preserving map

f : CKh(L)→ CKh(L){{2}},

where in the above {{n}} is the operator that shifts k gradings (and hence the induced filtration)
up by 2. Let f∞ denote the map induced by f on the E∞ page of the spectral sequence associated
to the k filtration, and decompose g = g−2 +g−4 + · · · into its k-homogeneous terms with respect
to the induced k grading on the E∞ page. Then

f∞ = g−2.

6. SKh and the current algebra sl2(∧)

In this section we extend the action of sl2 on SKh(L) to an action of the exterior current algebra,
sl2(∧). Note that, in contrast to the sl2 action, the sl2(∧) relations hold at the chain level only
up to homotopy. In what follows, we will construct an action of a slightly larger Lie superalgebra,
sl2(∧)dg, on the sutured annular chain complex and then show that it induces an action of sl2(∧)
on the homology. To make these statements precise, we first review some algebra.

6.1 Chain complexes and Lie superalgebras

Let (C•, ∂) be a Z-graded chain complex. The Z grading C• =
⊕

i∈ZC
i induces a Z2 grading

C = Ceven ⊕ Codd,

where

Ceven =
⊕
n∈Z

C2n and Codd =
⊕
n∈Z

C2n+1

and hence the structure of a super vector space. In fact, as we now explain, C• is naturally a

representation of its endomorphism space, which itself may be regarded as a Lie superalgebra.

Let End(C•) denote the hom complex of C•, which is a Z-graded super vector space in its

own right:

End(C•) =
⊕
n∈Z

Endn(C•),

Endn(C•) = {f : C•→ C•+n}.

Elements of Endn(C•) are linear maps of homological degree n, and are not required to intertwine

the differential ∂. In fact the differential ∂ ∈ End(C•) is itself a degree-one endomorphism of C•.
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We endow End(C•) with the structure of a Lie superalgebra by declaring, for f ∈ Endn(C•)
and g ∈ Endm(C•),

[f, g] = fg − (−1)nmgf.

The superalgebra End(C•) is also a chain complex, with differential

D : End(C•) −→ End(C•+1), D(f) = [∂, f ].

Let H(End(C•)) be the homology of End(C•). Then there is a canonical morphism of Lie
superalgebras

H(End(C•)) −→ End(H(C•)).

Explicitly, if θ ∈ End(C•) and x ∈ C• are cycles representing homology classes [θ] and [x],
respectively, then one makes the well-defined assignment

[θ]([x]) := [θ(x)].

Note that the cycles in (Endn(C•),D) are precisely the chain maps (or skew-chain maps,
depending on the parity of n):6

C•→ C•[n],

and the boundaries are precisely those chain maps that are chain homotopic to 0. Informally,
one views the image of H(End(C•)) under the canonical morphism above as the collection of
(graded) chain maps on C•, modulo homotopy.

6.2 The Lie superalgebra sl2(∧)dg
We now describe a Z-graded Lie superalgebra sl2(∧)dg that is closely related (cf. Lemma 7) to
the Lie superalgebra sl2(∧) defined in § 2.2.

The underlying Z-graded super vector space of sl2(∧)dg is generated (as a Lie superalgebra)
by {e, f, h, v2, v−2, d,D}, with the generators {e, f, h} in degree 0 and {v2, v−2, d,D} in degree
1. The Z2 grading on sl2(∧) is induced from the Z grading, and the defining super commutation
relations are as follows:
• [e, f ] = h;
• [h, e] = 2e;
• [h, f ] = −2f ;
• [e, v2] = 0;
• [e, v−2] = −[f, v2];
• [f, v−2] = 0;
• [h, v2] = 2v2;
• [h, v−2] = −2v−2;
• [d, y] = 0 for all y ∈ {e, f, h, v2, v−2};
• [D, y] = 0 for all y ∈ {e, f, h, v2, v−2};
• [d, d] = [D,D] = [v2, v2] = [v−2, v−2] = 0;
• [v2, v−2] + [d,D] = 0.

Let ṽ0 = [e, v−2] x = [v2, v−2]. One may check using the above relations and the super Jacobi
identity that ṽ0 = −[f, v2] and that x = −[d,D] = 1

2 [ṽ0, ṽ0]. Then we have the following.

Lemma 6. The set {e, f, h, v2, v−2, ṽ0, d,D, x} is a basis of sl2(∧)dg.

6 Here ‘[n]’ is the height shift operator on a chain complex: C[n]• := C•−n.
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Proof. A straightforward computation shows that the degree-2 subspace of sl2(∧)dg is at most one
dimensional, spanned by [v2, v−2]− [d,D]; from this it follows easily that the set {e, f, h, v2, v−2,
ṽ0, d,D, x} spans sl2(∧)dg. The linear independence of this set follows from the representation
on the annular chain complex constructed in § 4. 2

It is clear from the above description that sl2(∧)dg is closely related to sl2(∧). Indeed, we
may regard sl2(∧)dg as a chain complex by declaring the adjoint action of d to be the differential,
as described in the previous subsection. We have the following.

Lemma 7. The homology of sl2(∧)dg taken with respect to the differential [d, ·] is isomorphic to
the direct sum of sl2(∧) and the trivial Lie super algebra:

H(sl2(∧)dg, [d, ·]) ∼= sl2(∧)⊕ C.

Moreover, if (C•, d) is a Z-graded sl2(∧)dg representation, regarded as a chain complex with
differential given by the action of d, then the canonical map

H(sl2(∧)dg)→ End(H(C•, d))

factors through sl2(∧).

Proof. Referring to the bracket relations and Lemma 6, we see that the kernel of [d, ·] is spanned
by {e, f, h, v2, ṽ0, v−2, d, x}, while the image is spanned by x. The obvious map H(sl2(∧)dg,
[d, ·])→ sl2(∧) which takes e, f, h to e, f, h, v2, v−2 to v2, v−2, ṽ0 to v0, and d to 0 is therefore
surjective, with one-dimensional kernel. Moreover, if C• is any sl2(∧)dg representation, then
[d] ∈ H(sl2(∧)dg, [d, ·]) will act trivially on H(C•, d). 2

6.3 The current algebra sl2(∧) and its action on SKh(L)
We are now ready to extend the action of sl2 on CKh(L) to an action of sl2(∧)dg by defining

Φ : sl2(∧)dg −→ End(CKh(L))

via:
• v2 7→ Φ+;
• v−2 7→ ∂−;
• d 7→ ∂0;
• D 7→ Φ0.

Proposition 6. The above assignment defines a homomorphism of Lie superalgebras

Φ : sl2(∧)dg −→ End(CKh(L)).

Proof. The sl2 relations involving only {e, f, h} were established in the course of proving
Proposition 3. The relations involving commutators between pairs of degree-one elements {v−2,
v2, d,D} follow immediately from the relations in Lemma 3.

The mixed relations involving commutators of one of {e, f, h} with one of {v−2, v2, d,D}
follow from a straightforward case-by-case check along the three possible types of edges in the
cube of resolutions.
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For example, consider the relation [e, v−2] = [v2, f ] along an edge in which two non-trivial
circles merge to form a single trivial circle. Recalling that v−2 is identified with ∂− (respectively,
v2 is identified with Φ+), one computes in this case that

(∗)⊗ (v− ⊗ v−) 7−→ 0,

(∗)⊗ (v+ ⊗ v+) 7−→ 0,

(∗)⊗ (v− ⊗ v+) 7−→ −(∗)⊗ w+,

(∗)⊗ (v+ ⊗ v−) 7−→ (∗)⊗ w+,

under both the map e∂− − ∂−e and the map Φ+f − fΦ+, where in the above we are denoting
by (∗) a fixed marking on the circles in the resolution uninvolved in the merge cobordism. 2

Passing to homology and using Lemma 7, we arrive at the following proposition, which
completes the proof of Theorem 1 from the introduction.

Proposition 7. The homomorphism of Lie superalgebras Φ : sl2(∧)dg −→ End(CKh(L))
induces a homomorphism of Lie superalgebras

Ψ : sl2(∧) −→ End(SKh(L)).

This action of sl2(∧) is functorial for annular link cobordisms.

Before proving this proposition, we prove a useful lemma involving the involution Θ defined
in Lemma 2.

Lemma 8. Let P(L),P(L′) be annular link diagrams whose underlying links are connected by
an annular link cobordism F , let

m0 : CKh(L, ∂0)→ CKh(L′, ∂0)

be the chain map induced on the annular Khovanov chain complex by any decomposition of F
into elementary cobordisms and Reidemeister moves, and let Θ be the involution on P(L),P(L′)
defined in Lemma 2. Then we have Θm0 = m0Θ.

Proof. We need only show that Θ commutes with the k-grading-preserving part of the map on
the Khovanov complex associated to each:
• elementary annular cobordism of index 0, 1, or 2; and
• Reidemeister move.

The fact that Θ commutes with the annular chain map induced by an elementary annular
saddle (index-1) cobordism follows from Lemma 3, part (3), noting that (up to a grading shift)
the k-grading-preserving part of the Khovanov map induced by an annular cobordism agrees
with the annular differential on crossing-less link diagrams.

The fact that Θ commutes with the annular chain map associated to an annular index-0
(cup) or index-2 (cap) cobordism is immediate from the definition of Θ and the fact that an
annular cup (respectively, cap) cobordism introduces (respectively, deletes) a trivial circle.

Now the fact that Θ commutes with the maps induced by annular Reidemeister moves
follows from the observation that each of these maps can be expressed as a composition of linear
combinations of the maps described above (cf. [Bar05, § 4.3]). 2
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Proof of Proposition 7. Since the generator d of sl2(∧)dg is sent to the annular differential ∂0,
the homology of sl2(∧)dg taken with respect to d acts on SKh(L). By Lemma 7, the action of
this homology factors through the current algebra sl2(∧).

What remains is to show that any annular link cobordism commutes (up to homotopy) with
the operators v2, v−2. To see this, let m be the chain map induced on the ordinary Khovanov
chain complex by an annular link cobordism. Write m = m0 + m−, where m0 preserves the
annular k grading and m− is a linear combination of components of negative k degree. The
claim is that m0 and v−2(= ∂−) commute up to homotopy. Since m is a chain map, Khovanov’s
differential ∂ = ∂0 + ∂− commutes with m and it follows that

m0∂− − ∂−m0 +m−∂0 − ∂0m− = 0.

Thus, m− provides a homotopy between [m0, ∂−] and 0, as desired. The analogous statement
for v2 follows from the above, combined with the observations that Φ+ = Θ∂−Θ (Lemma 3) and
that Θ commutes with m0 (Lemma 8). 2

Remark 7. A curious point to note in the proof of Proposition 7 is that most of the proof
works equally well if we use the annular Lee deformation Φ0 in place of the usual annular
differential ∂0: the commutation relations that held on the nose at the chain level still hold,
and the differential/homotopy roles of ∂0 and Φ0 are simply exchanged. (This is the symmetry
between d and D in sl2(∧)dg.) Indeed, one quickly checks that Lemma 7 holds equally well with
‘D’ replacing ‘d’ everywhere in the statement and the proof. Thus, the current algebra sl2(∧)
also acts on the homology of CKh(P(L)) taken with respect to the differential Φ0. On the other
hand, the homology with respect to Φ0 is neither functorial for annular link cobordisms nor is it
an annular link invariant.

The observant reader may now wonder whether the sl2(∧)dg action on the sutured annular
chain complex CKh(L) gives rise to any interesting new actions on Khovanov or Lee homology.
Sadly, the answer is no, as we see in Lemmas 9 and 10. In what follows, let L denote the
two-dimensional abelian Lie superalgebra with a single degree-0 generator, y0, and a single
degree-1 generator, y1.

Lemma 9. The homology H(sl2(∧)dg, [d + v−2, ·]) has a codimension-one direct summand
isomorphic to L. Moreover, if (C•, d+ v−2) is any Z-graded sl2(∧)dg representation, regarded as
a chain complex with differential d+ v−2, then the canonical map

H(sl2(∧)dg)→ End(H(C•, d+ v−2))

factors through L.

Proof. The set {[f ], [v2 +D], [d]} is a basis for H(sl2(∧)dg, [d+ v−2, ·]), and we calculate that all
pairwise brackets are nullhomologous. The map

H(sl2(∧)dg, [d+ v−2, ·])→ L

sending [f ] 7→ y0, [v2 + D] 7→ y1, and [d] 7→ 0 is a Lie superalgebra homomorphism, and [d] =
[d+ v−2] will act trivially on the homology of any sl2(∧)dg representation. 2

In particular, the action of sl2(∧)dg on the annular chain complex CKh(L) induces two
commuting endomorphisms of Kh(L), one of which can be described in terms of the standard
action by base points on Khovanov homology (compare § 5.2) and the other of which can be
described in terms of the Lee deformation.
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Lemma 10. The homology H(sl2(∧)dg, [d + v−2 + D + v2, ·]) has a codimension-one direct
summand isomorphic to L. Moreover, if (C•, d + v−2 + D + v2) is any Z-graded sl2(∧)dg
representation, regarded as a chain complex with differential d+v−2 +D+v2, then the canonical
map

H(sl2(∧)dg)→ End(H(C•, d+ v−2 +D + v2))

factors through L.

Proof. The proof is similar to that of Lemma 9. In this case, the set {[e+ f ], [d+ v−2], [d+ v−2 +
D + v2]} is a basis for the homology. 2

Thus, the action of sl2(∧)dg on the annular chain complex CKh(L) induces two commuting
endomorphisms of the Lee homology of L. It is straightforward to verify (e.g., by using
the canonical generators described in [Ras10, § 2.4]) that each Lee homology class associated
to an orientation of L is an eigenvector for the endomorphism represented by [e+ f ]. The
endomorphism represented by [d+ v−2] increases homological grading by 1 and hence must act
trivially, since Lee homology is supported in even homological gradings [Lee05, Proposition 4.3].

7. The symmetric group and the homology of cables

In this section we explore the further symmetry exhibited by the sutured annular Khovanov
homology of a cable.

In what follows, let TLn(1) denote the endomorphism algebra7 of the nth tensor product of
the defining sl2 representation:

TLn(1) := EndU(sl2)(V
⊗n).

The standard presentation of TLn(1) has generators {ei}n−1
i=1 and relations

e2
i = −2ei, eiej = ejei for i 6= j ± 1, eiei±1ei = ei.

In the well-known tangle presentation of TLn(1), the generator ei is drawn as the tangle Ei of
Figure 2. The main goal of this section is to establish the following theorem.

Theorem 2. Let K ⊂ S3 be a knot and let L = Kn,nm ⊂ A × I denote its m-framed n-cable.
Then there is an action of the symmetric group Sn on the sutured annular Khovanov homology,
SKh(L). This Sn action enjoys the following properties:

(1) it commutes with the sl2(∧) action;

(2) it preserves the (i, j′, k) tri-grading on SKh(L);

(3) it is natural with respect to smooth annular framed link cobordisms;

(4) it factors through the Temperley–Lieb algebra TLn(1).

Since the Sn action will be defined using annular link cobordisms, the fact that such an
action commutes with the sl2(∧) action and preserves the tri-grading is immediate. Thus, the
rest of this section will be devoted to establishing the last two claims.

7 The notation emphasizes that we are taking the q = 1 specialization of TLn(q), the endomorphism algebra of
the nth tensor product of the defining Uq(sl2) module.
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Figure 1. Schematic depiction of a tangle T ⊂ D2 × I (left) and the associated surface of
revolution S1×T ⊂ S1×D2× I (right). The cobordism KT : Kn

→ Kn is obtained from S1×T
by applying the embedding ι : S1 ×D2 × I → A× I × I.

7.1 Cobordism maps associated to tangles
Let K be a smooth framed oriented knot in A× I and

ι : S1 ×D2 −→ A× I

an embedding which sends the circles S1×{0} and S1×{1} respectively to K and to a longitude
of K specifying the framing, where D2 is the closed unit disk in C and S1 := ∂D2. Moreover,
let Pn ⊂ int(D2) be a collection of n evenly spaced points on the real axis. In this situation, the
n-cable of K can be defined as follows.

Definition 5. The n-cable of K is the n-component link Kn := ι(S1 × Pn).

Now suppose that T is a smooth (n, n) tangle, i.e., a smooth properly embedded 1-manifold
T ⊂ D2× I such that ∂T = Pn× ∂I. To T , we can associate the ‘surface of revolution’ S1×T ⊂
S1 ×D2 × I.

Definition 6. The T -cable cobordism of K is the link cobordism KT : Kn
→ Kn defined by

KT := ι(S1 × T ), where ι : S1 ×D2 × I → A × I × I denotes the embedding given by ι(θ, z, t)
:= (ι(θ, z), t) (see Figure 1).

Remark 8. If T represents the elementary braid group generator σi, then KT can alternatively
be described as the link cobordism traced out by an isotopy of Kn which exchanges the ith and
the (i+1)st strands of Kn by moving these two strands around each other. Explicitly, this isotopy
can be defined by Kn

t = ι(S1×Pn,t), where Pn,t is an isotopy of Pn which exchanges the ith and
the (i + 1)st points of Pn by moving these two points around each other in a counterclockwise
motion. (Similarly, σ−1

i would be obtained by a clockwise exchange.)

Since the formal Khovanov bracket of annular links is functorial with respect to smooth
annular link cobordisms (by Proposition 4), the T -cable cobordism of K induces a chain map

[KT ] : [Kn] −→ [Kn],

which is well defined up to sign and homotopy. Likewise, KT induces maps

φKT : SKh(Kn) −→ SKh(Kn) and φ′KT : Kh′(Kn) −→ Kh′(Kn),

where Kh′(Kn) denotes the Lee homology of Kn (viewed as a link in R3). Note that the latter
maps are well defined up to sign.
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Figure 2. The tangles Ei (left) and Σi (right).

7.2 Fixing the sign ambiguity

In the following, let Ei, Σi, and Σ−1
i denote (n, n) tangles which represent respectively the

generator ei of the Temperley–Lieb algebra TLn(a), the generator σi of the braid group Bn, and
the inverse of the generator σi ∈ Bn (see Figure 2).

The goal of this subsection is to pin down the sign in the definition of the maps [KT ], φKT ,
and φ′

KT for the case where T is one of the above tangles. We will need the following theorem,
due to Rasmussen.

Theorem 3 (Rasmussen [Ras05, Proposition 3.2]). The Lee homology group Kh′(L) has a
canonical basis whose vectors correspond bijectively to possible orientations on L. Furthermore,
if S : L→ L′ is a smooth link cobordism with no closed components, then the matrix entries of
S relative to the canonical bases of Kh′(L) and Kh′(L′) satisfy

(φ′S)o′o = 2−χ(S)

{
εo′o if o ∪ o′ extends over S,

0 else

for any two orientations o and o′ on L and L′, where εo′o ∈ {±1}.

Remark 9. The canonical basis vectors referred to in this theorem are rescaled versions of the
basis vectors introduced by Lee in [Lee05] and used by Rasmussen in [Ras10].

The above theorem implies that if T = Σi or T = Σ−1
i , then

(φ′KT )opop ∈ {±1},

where op denotes the parallel orientation of Kn, i.e., the orientation for which all strands of Kn

are oriented parallel to the orientation of K. Likewise, the theorem implies that if K = Ei, then

(φ′KT )oaoa ∈ {±1},

where oa denotes the alternating orientation of Kn, i.e., the orientation for which the strands
of Kn are alternatingly oriented parallel and antiparallel to K, in such a way that the left-most
strand of Kn (corresponding to the left-most point of Pn ⊂ int(D2) ∩ R) is oriented parallel to
K.

Now note that

φKT = F([KT ]) and φ′KT = F ′([KT ]),

where F is the functor defined in § 4 and F ′ denotes Lee’s TQFT [Ras10]. Since F and F ′ are
additive functors, it follows that any sign choice for [KT ] induces corresponding sign choices for
φKT and φ′

KT , and we can therefore pin down the sign of [KT ] (and hence of φKT ) by imposing
the following conventions.
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Convention 1. For T = Σi or T = Σ−1
i , define the sign of [KT ] to be such that the corresponding

map on Lee homology satisfies (φ′
KT )opop = +1.

Convention 2. For T = Ei, define the sign of [KT ] to be such that the corresponding map on
Lee homology satisfies (φ′

KT )oaoa = −1.

Remark 10. Note that here we are not using the spectral sequence from Khovanov homology
to Lee homology, but only the fact that annular Khovanov homology and Lee homology can be
obtained from the annular Khovanov bracket by applying additive functors.

Convention 1 immediately implies the following result.

Proposition 8. The assignments σi 7→ [KΣi ] and σ−1
i 7→ [KΣ−1

i ] define a representation
ρ : Bn → EndC([K

n]) of the braid group Bn, where C denotes the bounded homotopy category
of Bar-Natan’s cobordism category Mat(Cob3

/`(A)).

Proof. Since the cobordism maps induced on the formal Khovanov bracket are isotopy invariants

when considered up to sign and homotopy, it is clear that the maps [KΣi ], [KΣ−1
i ] ∈ EndC([K

n])
satisfy the braid group relations up to possible signs. In order to determine these signs, it suffices
to compute the actions of [KΣi ][KΣi+1 ][KΣi ] and [KΣi+1 ][KΣi ][KΣi+1 ] on a single non-zero vector.

Now Rasmussen’s theorem together with Convention 1 implies that

(φ′
KΣi

)oop = (φ′
KΣ−1

i
)oop =

{
1, o = op,

0, o 6= op,

and so the canonical basis vector associated to the orientation op is an eigenvector for φ′
KΣi

and for φ′
KΣ−1

i

for the eigenvalue 1. Thus, when applied to this vector, [KΣi ][KΣi+1 ][KΣi ] and

[KΣi+1 ][KΣi ][KΣi+1 ] are equal. Consequently, it follows that the maps [KΣi ] and [KΣ−1
i ] satisfy

the braid group relations. 2

7.3 Temperley–Lieb algebra relations for cobordism maps
We will now show that the representation ρ described in Proposition 8 factors through the
symmetric group Sn. This will in turn imply that the corresponding braid group action on
SKh(Kn) (given by σi 7→ φKΣi and σ−1

i 7→ φ
KΣ−1

i
) factors through Sn, and thus the main

statement of Theorem 2 will follow.
Specifically, we will prove the following proposition, which holds under the assumption of

Conventions 1 and 2, and which shows that [KΣi ], [KΣ−1
i ] = [KΣi ]−1, and [KEi ] satisfy the

symmetric group relation σi = σ−1
i and the Kauffman bracket skein relations σi = a+ a−1ei and

σ−1
i = a−1 + aei at a = 1.

Proposition 9. The endomorphisms [KΣi ], [KΣ−1
i ], [KEi ] ∈ EndC([K

n]) satisfy

[KΣi ] = id[Kn] +[KEi ] = [KΣ−1
i ].

Instead of proving this proposition directly, we break it into two lemmas.

Lemma 11. There exist signs εij ∈ {±1}, i = 1, . . . , n− 1, j = 1, . . . , 4, such that

[KΣi ] = εi1 id[Kn] +εi2[KEi ] and [KΣ−1
i ] = εi3 id[Kn] +εi4[KEi ].
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Lemma 12. εij = +1 for all i, j.

The proof of Lemma 11 will be deferred to § 7.4.

Proof of Lemma 12. By Lemma 11, we have

[KΣi ] = εi1 id[Kn] +εi2[KEi ]

for εi1, εi2 ∈ {±1} and hence the corresponding maps in Lee homology satisfy

φ′
KΣi

= εi1 id +εi2φ
′
KEi

.

By considering the matrices of the above maps relative to the basis of Theorem 3 and comparing
the diagonal entries corresponding to the parallel orientation op, we thus obtain

1 = εi1 + 0

and hence εi1 = 1, where we have used Convention 1 and Theorem 3 to conclude that
(φ′
KΣi

)opop = 1 and (φ′
KEi

)opop = 0. Similarly, by comparing the diagonal entries corresponding
to the alternating orientation oa, we obtain

0 = εi1 − εi2 = 1− εi2

and hence εi2 = 1, where we have used Theorem 3 and Convention 2 to conclude that
(φ′
KΣi

)oaoa = 0 and (φ′
KEi

)oaoa = −1. The proof of εi3 = εi4 = 1 is analogous. 2

We can now use Proposition 9 to prove the following proposition, which implies that the
endomorphisms [KEi ] satisfy the Temperley–Lieb algebra relations:

(1) e2
i = −(a2 + a−2)ei;

(2) eiei±1ei = ei;

(3) eiej = ejei whenever |i− j| > 2

at a = 1.

Proposition 10. The endomorphisms [KEi ] ∈ EndC([K
n]) satisfy:

(1) [KEi ] ◦ [KEi ] = −2[KEi ];

(2) [KEi ] ◦ [KEi±1 ] ◦ [KEi ] = [KEi ];

(3) [KEi ] ◦ [KEj ] = [KEj ] ◦ [KEi ] whenever |i− j| > 2,

where all relations hold in EndC([K
n]).

Proof. (1) By Proposition 9, we have [KEi ] = [KΣi ]− id[Kn] and hence

[KEi ]2 = ([KΣi ]− id[Kn])
2 = 2 id[Kn]−2[KΣi ] = −2[KEi ],

where in the second equality we have used that [KΣi ] squares to id[Kn] because [KΣi ]−1 =

[KΣ−1
i ] = [KΣi ] by Propositions 8 and 9.
(2) Since the chain maps induced by annular link cobordisms are isotopy invariants when

considered up to sign and homotopy and since the tangles Ei ◦ Ei±1 ◦ Ei and Ei are isotopic, it
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is clear that (2) holds up to an overall sign. It is therefore clear that the induced maps in Lee
homology satisfy

φ′
KEi
◦ φ′

KEi±1
◦ φ′

KEi
= εφ′

KEi

for an ε ∈ {±1}. To conclude that ε = 1, we now use Proposition 9 to write the right-hand side
of the above equation as

ε(φ′
KΣi
− id)

and the left-hand side as

(φ′
KΣi
− id) ◦ (φ′

KΣi±1
− id) ◦ (φ′

KΣi
− id) = φ′

KΣi
◦ φ′

KΣi±1
◦ φ′

KΣi
− 2 id +δ,

where δ := −φ′
KΣi
◦ φ′

KΣi±1
− φ′

KΣi±1
◦ φ′

KΣi
+ 2φ′

KΣi
+ φ′

KΣi±1
. This yields

φ′
KΣi
◦ φ′

KΣi±1
◦ φ′

KΣi
− 2 id +δ = ε(φ′

KΣi
− id)

and, by considering the matrices of the above maps relative to the basis of Theorem 3 and
comparing the diagonal entries corresponding to the alternating orientation oa, we obtain the
equation

(φ′
KΣi
◦ φ′

KΣi±1
◦ φ′

KΣi
− 2 id +δ)oaoa = ε(φ′

KΣi
− id)oaoa .

It is now straightforward to check that the alternating orientation oa is compatible with the
cobordism KΣi ◦ KΣi±1 ◦ KΣi , but not with the cobordisms KΣi ◦ KΣi±1 , KΣi±1 ◦ KΣi , KΣi ,
and KΣi±1 . Indeed, by Remark 8, one can think of these cobordisms in terms of isotopies which
permute the strands of Kn; and while the permutation corresponding to KΣi ◦KΣi±1 ◦KΣi takes
the alternating orientation to itself, the permutations corresponding to the other cobordisms do
not. By Theorem 3, we thus have

(φ′
KΣi
◦ φ′

KΣi±1
◦ φ′

KΣi
)oaoa = ε′ and (δ)oaoa = (φ′

KΣi
)oaoa = 0

for a sign ε′ ∈ {±1} and, inserting these expressions into the above equation, we get

ε′ − 2 + 0 = ε(0− 1).

However, since ε, ε′ ∈ {±1}, the equation ε′ − 2 = −ε can only hold if ε′ = ε = 1, and hence (2)
follows.

(3) Relation (3) follows because [KEi ] can be written as [KEi ] = [KΣi ] − id[Kn] (by

Proposition 9) and because the [KΣi ] satisfy the braid group relations (by Proposition 8). 2

7.4 Proof of Lemma 11
In this subsection we will assume that the knot K ⊂ A × I is represented by a diagram on A
such that the framing of K is the blackboard framing. In the relevant figures, the hole of the
annulus A will be represented by an X. The annulus itself will not be shown.

To prove Lemma 11, we will proceed in two steps: we will first prove the lemma in the special
case where K is a 0-framed unknot, and then generalize our arguments to the case where K is
an arbitrary framed oriented knot in A× I. We will only prove that

[KΣi ] = εi1 id[Kn] +εi2[KEi ]

for εi1, εi2 ∈ {±1}, as the proof of the second equation in Lemma 11 is nearly identical.
Special case. In the case where K is a 0-framed unknot, the cobordism KΣi can be represented

by the movie MΣi shown in Figure 3. The first two diagrams in this movie (henceforth denoted
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Figure 3. Movie MΣi for the cobordism KΣi : Kn
→ Kn for the case where K is a 0-framed

unknot. In this figure, we have only depicted the ith and the (i+1)st strands of Kn, as the other
strands remain unchanged over the course of the movie.

D1 and D2) differ by a Reidemeister II move, and the last two diagrams (henceforth denoted D3

and D4) differ by an inverse Reidemeister II move. The middle two diagrams differ by a planar
isotopy which slides crossing 2 around the annulus in the direction of the dashed arrow while
fixing crossing 1, so that at the end of the isotopy crossing 2 comes to lie above crossing 1.

The chain map [KΣi ] : [D1]→ [D4] induced by MΣi is thus given by

[KΣi ] = G ◦Ψ ◦ F,

where F denotes the chain map associated to the Reidemeister II move between D1 and D2, Ψ
denotes the chain map induced by the isotopy between D2 and D3, and G denotes the chain
map associated to the inverse Reidemeister II move between D3 and D4. Recalling the definition
of F and G from [Bar05, § 4.3], it thus follows that, up to possible signs, [KΣi ] is given by the
rightward pointing arrows in the following diagram:

In this diagram, the four columns represent the 0th chain groups of the formal Khovanov
brackets of Dj for j = 1, . . . , 4, and the arrows labeled f , ψ, and g represent morphisms given
by cobordisms in A × I. It turns out that, up to possible signs, f , ψ, and g are precisely the
morphisms induced by moves between consecutive diagrams in the movie MEi , which is shown
in Figure 4. In this movie, we intentionally left out two intermediate diagrams, one between the
first two diagrams of the movie and one between the last two diagrams, to make Figure 4 look
similar to Figure 3. Explicitly, the first two diagrams in Figure 4 differ by a saddle move followed
by a creation of a small circle, and the last two diagrams differ by an annihilation of a small
circle followed by a saddle move. The middle two diagrams differ by an isotopy which moves
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Figure 4. Movie MEi for the cobordism KEi : Kn
→ Kn for the case where K is a 0-framed

unknot.

Figure 5. Movie MΣi for the cobordism KΣi : Kn
→ Kn.

Figure 6. Movie MEi for the cobordism KEi : Kn
→ Kn.

the interior of the small box containing the resolution of crossing 2 around the annulus in the
direction of the dashed arrow, and which thereby turns the small circle in the second diagram
into the elongated component in the third diagram, and vice versa.

It now follows from the above diagram that there exist εi1, εi2 ∈ {±1} such that

[KΣi ] = εi1(id ◦ id ◦ id) + εi2(g ◦ ψ ◦ f) = εi1 id[Kn] +εi2[KEi ],

as desired.
General case. Now suppose that K is an arbitrary framed oriented knot in A×I. In this case,

the cobordisms KΣi and KEi can be described by the movies MΣi and MEi shown in Figures 5
and 6, respectively.

Note that these movies differ from the ones in Figures 3 and 4 in two ways: firstly each
diagram in Figures 5 and 6 contains a ‘knotted’ part, which is represented by a box labeled
K. Explicitly, this box stands for an n-cable diagram of a tangle whose closure is the knot K.
Secondly, the movies in Figures 5 and 6 contain intermediate diagrams, which are represented
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Figure 7. Sliding the small box across other strands.

in the figures by dots between the second and the second-to-last diagrams. These intermediate
diagrams arise because one has to use Reidemeister moves of type III (in the case of Figure 5)
and type II (in the case of Figure 6) to move the small box across possible over- and understrands
located in the box labeled K. Local pictures of such Reidemeister moves are shown in Figure 7.

The chain map [KΣi ] : [Kn]→ [Kn] associated to the movie MΣi is now given by

[Kn] = G ◦Ψ` ◦ · · · ◦Ψ2 ◦Ψ1 ◦ F,

where F and G are as in the case where K is a 0-framed unknot, and Ψ1,Ψ2, . . . ,Ψ` are the

chain maps induced by the Reidemeister III moves. To describe the maps Ψj : →

explicitly, we use that the Khovanov brackets of and can be viewed as mapping cones

of chain maps

ϕj : −→ and ϕj+1 : −→

given by saddle cobordisms. The codomains of these two chain maps are both isotopic to

, and both domains deformation retract to subcomplexes isomorphic to . One can

further show that, on these subcomplexes, ϕj and ϕj+1 restrict to the same map

ϕ′j : −→ ,

so it follows from [Bar05, Lemma 4.5] that the mapping cones of ϕj and ϕj+1 are both homotopy
equivalent to the mapping cone of ϕ′j and hence to each other (see [Bar05, § 4.3] for more details).
By tracing through the proof of [Bar05, Lemma 4.5], one can further show that the resulting

homotopy equivalence Ψj : → is given explicitly by three components, which are

labeled id, ψj , and νj in the following diagram:
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In this diagram, ψj is the chain map induced by two consecutive Reidemeister II moves. The
definition of the map νj will not be relevant for the rest of this proof, but it will be important

that the chain map Ψj does not have a component going from to . That this is so

follows from the fact that the top right entries in the matrices for G̃r0 and F̃ r0 in [Bar05, Figure 8]
are zero.

The chain map [KΣi ] associated to the movie MΣi is thus given by the composition of the
rightward pointing arrows in the following diagram, in which f and g are as in the case where
K is a 0-framed unknot:

The lemma now follows from the following claim.

Claim. The maps ν1, ν2, . . . , ν` do not contribute to [KΣi ]. That is, there are signs εi1, εi2ı{±1}
such that

[KΣi ] = εi1(id ◦ · · · ◦ id) + εi2(g ◦ ψ` ◦ · · · ◦ ψ1 ◦ f) = εi1 id[Kn] +εi2[KEi ],

as desired.

Proof of the claim. Let D1, . . . , D`+3 be the link diagrams that appear in the movie MΣi . We
will say that a crossing of Dj has type 1 (respectively, type 2) if it is one of the crossings that were
already present in D1 (respectively, if it is one of the two crossings labeled 1 and 2 in Figures 5
and 7). Moreover, we will regard [Dj ] as a bicomplex, where the first and the second differentials
in the bicomplex are given by all edge maps in the resolution cube of Dj which correspond to
crossings of type 1 and type 2, respectively. Corresponding to the two differentials, there are
two cohomological gradings, denoted i1 and i2, whose sum is equal to the total cohomological
degree on [Dj ]. (Explicitly, these two gradings are defined by im := km−nm−, where km denotes
the number of 1-resolutions at crossings of type m, and nm− denotes the number of negative
crossings of type m, with respect to a fixed orientation for Kn.)

Now note that each νj raises the i2-degree by 1 (and hence lowers the i1-degree by 1). Indeed,
this follows because νj turns a 0-resolution at the crossing labeled 2 into a 1-resolution while
leaving the resolution at the crossing labeled 1 unchanged. (Here we assume that crossings are
labeled as in Figures 5 and 7.) Moreover, it is easy to see that all other maps in the above diagram
preserve the i1- and the i2-degrees. It thus follows that the chain map [KΣi ] : [D1]→ [D`+3] can
be written as

[KΣi ] = [KΣi ]0 + [KΣi ]+,

where [KΣi ]0 preserves the i2-degree and [KΣi ]+ strictly raises the i2-degree. But since [D1] and
[D`+3] are supported in i2-degree 0 (essentially by definition of the i2-degree), it follows that
[KΣi ]+ has to be zero and hence the νj cannot contribute to [KΣi ] because they could only
contribute to [KΣi ]+. 2
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Proposition 11. If S : K1→ K2 is a framed annular knot cobordism, then there is an induced

homomorphism of Sn representations SKh(Kn
1 )→ SKh(Kn

2 ).

Proof. Let S : K1→ K2 be a framed knot cobordism. Then the n-cable of S (defined by taking

n parallel copies of S) is a link cobordism Sn : Kn
1 → Kn

2 and hence there is an induced map

SKh(Kn
1 ) −→ SKh(Kn

2 ).

To show that this map commutes with the Sn actions, we first note that if Σi is one of the

generators shown in Figure 2, then the maps

[Sn] ◦ [KΣi
1 ] and [KΣi

2 ] ◦ [Sn]

agree up to an overall sign because the cobordisms

Sn ◦KΣi
1 and KΣi

2 ◦ S
n

are isotopic.

Now let op and o′p denote the parallel orientations of Kn
1 and Kn

2 (i.e., the orientations for

which all strands of the n-cable are oriented parallel to the orientation of the original knot). Since

the orientations op and o′p are consistent with the parallel orientation of Sn, Theorem 3 implies

that the matrix entry (φ′Sn)o′pop of the induced map in Lee homology is non-zero. Moreover,

Convention 1 implies that the matrix entries (φ′
K

Σi
1

)opop and (φ′
K

Σi
2

)o′po′p are equal to 1, and

Theorem 3 shows that all other entries in the same row and the same column of the matrices of

φ′
K

Σi
1

and φ′
K

Σi
2

are 0. Now a direct calculation shows that

(φ′Sn ◦ φ′
K

Σi
1

)o′pop and (φ′
K

Σi
2

◦ φ′Sn)o′pop

are both equal to (φ′Sn)o′pop and, since (φ′Sn)o′pop is non-zero, this means that the signs of φ′Sn◦φ′
K

Σi
1

and φ′
K

Σi
2

◦ φ′Sn have to be the same.

Finally, since Lee homology and sutured Khovanov homology can be obtained from the

formal Khovanov bracket by applying additive functors, the same result remains true for the

maps [Sn]◦ [KΣi
1 ] and [KΣi

2 ]◦ [Sn] and for the induced maps in sutured Khovanov homology. 2

7.5 Direct limits

Let K be an oriented, framed knot in A × I. There is a natural Temperley–Lieb cobordism

S
[n,n+2]
k from the n-cable Kn to the (n+ 2)-cable Kn+2, defined by

S
[n,n+2]
k := K∪n,n+2 = τ(S1 × ∪n,n+2),

where ∪n,n+2 is the cup tangle shown in the left half of Figure 8, and τ is the embedding

τ : S1 ×D2 × I → A× I × I introduced in Definition 6.

Lemma 13. The map induced by S
[n,n+2]
k gives an injection

SKh(Kn) ↪→ SKh(Kn+2).
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Figure 8. Tangles ∪n,n+2 and ∩n+2,n.

Proof. Dually to S
[n,n+2]
k , we have a cobordism S

[n+2,n]
k := K∩n+2,n , where ∩n+2,n is the tangle

shown in the right half of Figure 8. The composition

SKh(Kn)→ SKh(Kn+2)→ SKh(Kn)

of the maps induced by S
[n,n+2]
k and S

[n+2,n]
k is ±2id. Thus, the first map SKh(Kn)→ SKh(Kn+2)

is injective. 2

As a result, we may form the direct limits

SKheven(K) = lim−→n
SKh(K2n),

SKhodd(K) = lim−→n
SKh(K2n+1).

These spaces are invariants of the framed knot K, and we expect them to have interesting
symmetry. In particular, note that both SKheven(K) and SKhodd(K) have commuting actions of
sl2(∧) and the infinite symmetric group S∞ = lim−→Sn. Commuting actions of sl2 and the infinite
symmetric group have appeared in the literature recently in connection with the representation
theory of infinite-dimensional Lie algebras (see, for example, [TV14] and the references therein).
We therefore pose the following question.

Question 1. Can one construct actions of the infinite-dimensional affine Lie algebra ŝl2 or the
Virasoro algebra on the homology groups SKheven(K) and SKhodd(K)?

7.6 Colored SKh
Let K be an oriented, framed knot in A×I. We define the n-colored sutured Khovanov homology
of K as the subspace

SKhn(K) := SKh(Kn)Sn ⊂ SKh(Kn)

of Sn invariants inside SKh(Kn). This definition is motivated by the following result, which
holds for ordinary Khovanov homology of n-cables of knots in R3 and which will be proven in a
forthcoming paper by Beliakova, Putyra and the third author.

Theorem 4. Let K be an oriented, framed knot in R3. Then the subspace of Sn invariants inside
the Khovanov homology of Kn (with coefficients in a field of characteristic 0) is isomorphic to
Khovanov’s categorification of the non-reduced n-colored Jones polynomial of K [Kho05].

8. The category of finite-dimensional representations of sl2(∧)

Let rep(sl2(∧)) denote the category of finite-dimensional graded representations of sl2(∧). In this
section we give a quiver description of the category rep(sl2(∧)), which is seen to be equivalent to
the category of finitely generated graded representations of a finite-dimensional Koszul algebra.
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Let Γ denote the quiver with vertex set N = {0, 1, 2, . . . } and a single oriented edge from
vertex i to each of the vertices i − 2, i, and i + 2. (Thus, the underlying graph of Γ has two
connected components, one of which contains the odd vertices and the other of which contains
the even vertices.) We denote the individual edges of Γ by αi, βi, and εi, as in the picture below.

Proposition 12. The category rep(sl2(∧)) is equivalent to the category of representations of
the quiver Γ with the following relations. For all i ∈ N, we have:
• αi+2αi = 0;
• βi−2βi = 0;
• εi+2αi + αiεi = 0;
• εiβi + βiεi+2 = 0;
• βiαi + αi−2βi−2 + ε2i = 0; and
• βiαi + (i2/4(i+ 3))ε2i = 0.

By convention, we take αi = βi = εi = 0 in the above relations when i < 0.

Proof. We describe the functor Q from sl2(∧) representations to Γ representations which gives
the equivalence. Let M be a finite-dimensional representation of sl2(∧) and, for i ∈ N, let
Ei = {m ∈ M : h(m) = im and e(m) = 0} denote the space of highest-weight vectors of M
regarded as a finite-dimensional representation of sl2. Then the commutation relations between
e and vj , j = 2, 0,−2, give:
• v2 : Ei→ Ei+2;
• v0 : Ei→ Ei ⊕ f(Ei+2); and
• v−2 : Ei→ Ei−2 ⊕ f(Ei)⊕ f2(Ei+2).

Moreover, for m ∈ Ei, we may write

v0(m) = pi(m)− 2

i+ 2
fv2(m)

and

v−2(m) = qi−2(m) +
1

i
fpi(m)− 1

(i+ 1)(i+ 2)
f2v2(m),

where pi(m) ∈ Ei and qi−2(m) ∈ Ei−2.
Now, setting

αi = (i+ 3)v2 : Ei −→ Ei+2,

εi =
1

i
pi : Ei −→ Ei

and

βi =
1

i+ 2
qi : Ei+2 −→ Ei,
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the defining relations [vk, vl] = 0 for k, l ∈ {2, 0,−2} give rise to the relations given in the theorem.
The inverse functor Q−1 takes a representation E of the quiver Γ and declares the vector space
Ei to be the space of highest-weight vectors of weight i; in other words, as an sl2 representation,
we have

Q−1(E) ∼=
⊕
i

V(i) ⊗ Ei.

The action of v2, v0, v−2 on highest-weight vectors is then determined by the representation of
the quiver, together with

v0(m) = pi(m)− 2

i+ 2
fv2(m)

and

v−2(m) = qi−2(m) +
1

i
fpi(m)− 1

(i+ 1)(i+ 2)
f2v2(m),

and the commutation relations between sl2 and v2, v0, v−2 determine the action on the rest of⊕
i V(i) ⊗ Ei. It is then clear from this that Q and Q−1 are inverse equivalences. 2

Remark 11. An analog of the theorem above for the (non-super) current Lie algebra sl2(V(1)),
where V(1) is the two-dimensional irrep of sl2, is due to Loupias [Lou72]; see also [HK01].

9. Examples

9.1 Schur–Weyl representation and trivial braid closures
Recall that if V = C2 is the defining representation of sl2, then we have a natural action of Sn

on the n-fold tensor product, extended linearly from:

σ(v1 ⊗ · · · ⊗ vn) := vσ−1(1) ⊗ · · · ⊗ vσ−1(n)

for σ ∈ Sn, vi ∈ V . We also have the induced tensor product action of sl2, extended C-linearly
from:

x(v1 ⊗ · · · ⊗ vn) :=
n∑
i=1

v1 ⊗ · · · ⊗ x(vi)⊗ · · · ⊗ vn

for x ∈ sl2. These actions commute. We will refer to the resulting action of sl2 ×Sn on V ⊗n as
the Schur–Weyl representation.

Remark 12. In what follows we will be considering the Schur–Weyl representation on V ⊗dn/2e⊗
(V ∗)⊗bn/2c (where the order of the terms in the tensor product alternates between V and V ∗).
If {v±} is the standard basis of V and {v̄±} is the standard basis of V ∗, then the isomorphism
φ : V → V ∗ is a diagonal matrix with entries in ±1: φ(v±) = ±v̄±. As a consequence, the formulas
for the action of the transposition (i j) ∈ Sn on a tensor product of standard basis vectors will
also carry the sign (−1)i−j .

Proposition 13. Let 1n denote the trivial n-strand braid and 1̂n its closure, understood as the
0-framed n-cable of the unknot.

(1) The actions of v−2, v0, v2 ∈ sl2(∧) on SKh(1̂n) are trivial and hence the action of sl2(∧) on
SKh(1̂n) reduces to an action of sl2.

(2) The commuting actions of sl2 and Sn on SKh(1̂n) agree with the Schur–Weyl representation.
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Proof. Using the functor F described in § 4.2 applied to the crossing-less diagram for 1̂n, we see
that as an sl2 representation, SKh(1̂n) ∼= V ⊗dn/2e ⊗ (V ∗)⊗bn/2c ∼= V ⊗n and is concentrated in
(i, j′) grading (0, 0). It follows that the actions of v−2, v0, v2 ∈ sl2(∧) are trivial, as each shifts
the i grading by 1.

We would now like to see that the action of Sn on SKh(1̂n) agrees with the standard
commuting action of Sn in the Schur–Weyl representation. If we regard a standard basis element
of SKh(1̂n), i.e., one of the form

v± ⊗ v̄± ⊗ · · · v̄± ⊗ v± ∈ V ⊗ V ∗ ⊗ · · · ⊗ V ∗ ⊗ V

(in the odd-n case), as a labeling of the corresponding circles of the (unique) resolution by pluses
and minuses, this amounts to verifying that the transposition ti = (i i+ 1) ∈ Sn exchanges the
markings on the ith and (i+ 1)st strands and multiplies the resulting vector by −1. This follows
by appealing to Proposition 9. In particular, the cobordism map associated to ti is id+ui, where
ui is the Temperley–Lieb map described by the cobordism in Figure 4 (using Conventions 1 and 2
to pin down signs). One quickly computes that the map ui is 0 on any standard basis vector
whose ith and (i+ 1)st labels agree. If the ith and (i+ 1)st labels disagree, one computes

ui(· · · ⊗ (v± ⊗ v̄∓)⊗ · · ·) = (· · · ⊗ (−v± ⊗ v̄∓ − v∓ ⊗ v̄±)⊗ · · ·).

We conclude that the action of ti = 1 + ui agrees with the Sn action in the Schur–Weyl
representation, as desired. 2

9.2 Positive stabilizations of the non-trivial annular unknot
Let

β̂n := the n-fold positive stabilization of the non-trivial unknot

= the annular closure of the braid βn := σ1σ2 · · ·σn ∈ Bn+1,

V(m) := the (m+ 1)-dimensional irreducible representation of sl2.

Proposition 14. For all n > 0, we have

SKhi(β̂n) ∼=


V(n+1){n} if i = 0,

V(n−1){n+ 2} if i = 1,

0 else,

where {m} denotes the grading-shift functor which raises the j′ := (j − k) degree by m ∈ Z
and preserves the k degree. As a module over sl2(∧), SKh(β̂n) is indecomposable, with module
structure determined by the sl2 decomposition above together with the fact that the generator
v−2 of sl2(∧) takes a highest-weight vector in V(n+1) to a highest-weight vector in V(n−1).

Proof. The proof goes by induction on n. For n = 0, we have

SKhi(β̂0) = SKhi(non-trivial annular unknot) =

{
V(1){0} if i = 0,

0 else

and hence the statement of the proposition is satisfied because V(−1) = 0. For n = 1, the sutured

annular Khovanov complex of β̂n is isomorphic to

0 −→
V(2){1}
⊕

V(0){1}

δ0−→
V(0){3}
⊕

V(0){1}
−→ 0,
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where

δ0 =

[
0 0
0 1

]
and so the proposition holds in this case as well.

To prove the proposition for n > 1, we use that the sutured annular Khovanov complex of
β̂n, denoted C(β̂n), can be written as a mapping cone8

C(β̂n) ∼= Cone
(
C(β̂n;0){1} f−−→ C(β̂n;1){2}

)
,

where β̂n;0 (respectively, β̂n;1) denotes the annular link diagram obtained from β̂n = ̂σ1 · · ·σn by
replacing the unique crossing in σn by its 0-resolution (respectively, its 1-resolution) and f is the
chain map induced by a saddle cobordism between the 0- and the 1-resolutions of this crossing.
It follows from the properties of the mapping cone that there is a short exact sequence of chain
complexes

0 −→ C∗−1(β̂n;1){2} −→ C∗(β̂n) −→ C∗(β̂n;0){1} −→ 0,

which induces a long exact sequence in homology:

· · · −→ SKhi−1(β̂n;1){2} −→ SKhi(β̂n) −→ SKhi(β̂n;0){1} −→ SKhi(β̂n;1){2} −→ · · · .

Looking at β̂n;0 and β̂n;1, one further sees that these diagrams represent the same annular

links as the diagrams ̂βn−1 × 1 and β̂n−2, respectively, and hence one can write the above long
exact sequence as

· · · −→ SKhi−1(β̂n−2){2} −→ SKhi(β̂n) −→ SKhi(β̂n−1)⊗ V(1){1} −→ · · · ,

where we have used that SKhi( ̂βn−1 × 1) = SKhi(β̂n−1) ⊗ V(1) as sl2 modules. (The existence

of an isomorphism SKhi( ̂βn−1 × 1) = SKhi(β̂n−1) ⊗ V(1) of k-graded vector spaces implies the
existence of an isomorphism as sl2 modules, since the sl2-module structure is determined up to
isomorphism by its weight space decomposition, which is just its k-graded dimension.)

We now use induction on n and the fact that V(m) ⊗ V(1)
∼= V(m+1) ⊕ V(m−1) to write the

non-trivial part of the above long exact sequence as

0 // SKh0(β̂n) // V(n+1){n} ⊕ V(n−1){n}
c0

rr
V(n−1){n} // SKh1(β̂n) // V(n−1){n+ 2} ⊕ V(n−3){n+ 2}

c1

rr
V(n−3){n+ 2} // SKh2(β̂n) // 0,

where c0 and c1 are connecting homomorphisms.

8 The diagram β̂n;0 does not inherit a consistent orientation from β̂n. However, it turns out that because of the

particular form of β̂n, one can choose an orientation for β̂n;0 which almost agrees with the orientation of β̂n, in the
sense that it differs from the latter orientation only along a crossing-less arc. The grading shifts in the mapping

cone description of C(β̂n) arise because, in the construction of Khovanov homology, the j degree is shifted by
r + n+ − 2n−, where r denotes the number of 1-resolutions and n+/n− denotes the number of positive/negative
crossings.
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Lemma 14. c0 and c1 are non-zero.

Proof. Let gn−1 ∈ C0(β̂n−1){1} denote the element obtained by labeling all circles in the all-

0-resolution of β̂n−1 by v−. Moreover, let Rn−1(`) denote the resolution of β̂n−1 obtained by

choosing the 1-resolution at the `th crossing of β̂n−1 and the 0-resolution at all other crossings.

Further, let g′n−1(`) ∈ C1(β̂n−1){1} be the element given by labeling the trivial circle in Rn−1(`)
by w+ and each non-trivial circle in Rn−1(`) by v−. Define

g′n−1 :=
n−1⊕
`=1

g′n−1(`) ∈ C1(β̂n−1){1}.

We now leave it to the reader to verify that

c0([gn−1 ⊗ v+]) = [gn−2] and c1([g′n−1 ⊗ v+]) = [g′n−2].

Using the same sign conventions as in [Bar05], one can further see that the elements gn−1,
g′n−1, gn−2, g

′
n−2 are cycles, and that none of them is a boundary. It follows that c0 and c1 are

non-zero. 2

The inductive step in the proof of Proposition 14 now follows from the above long exact
sequence and from Lemma 14, coupled with the facts that (a) an sl2-module map between two
non-isomorphic irreducible sl2-modules is necessarily zero, and (b) an sl2-module map between
two isomorphic irreducible sl2-modules is either zero or an isomorphism.

The claim about the action of sl2(∧) is now a straightforward computation, which we leave
as an exercise. 2

9.3 Annular (2,−n)-torus links for n > 0
Let

T2,−n := the annular (2,−n)-torus link

= the annular closure of the braid σ−n1 ∈ B2.

In the case where n is even, we assume that both components of T2,−n are oriented parallel
to each other, in direction of the braid σ−n1 .

Proposition 15. For all n > 1, we have

SKhi(T2,−n) ∼=



V(2){−n} if i = 0,

V(0){2i− n} if −n 6 i 6 −1 and i odd,

V(0){2i+ 2− n} if −n+ 1 6 i 6 −2 and i even,

V(0){−3n+ 2} ⊕ V(0){−3n} if i = −n and n even,

0 else.

The sl2(∧)-module structure on SKh(T2,−n) is completely determined by the fact that the
generator v2 of sl2(∧) takes a highest-weight vector of the summand V(0){−n− 2} to a highest-
weight vector of V(2){−n} and annihilates all other V(0) summands. Thus, SKh(T2,−n) is an
indecomposable sl2(∧) module if and only if n = 1.
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Proof. The proof goes by induction on n and is similar to the proof of Proposition 14. For n = 1,
the complex C(T2,−n) is isomorphic to

0 −→
V(0){−1}
⊕

V(0){−3}

δ−1−−→
V(2){−1}
⊕

V(0){−1}
−→ 0,

where

δ0 =

[
0 0
1 0

]
,

and hence the proposition is satisfied in this case.
To prove the proposition for n > 1, we write C(T2,−n) as a mapping cone

C(T2,−n) ∼= Cone(C(T2,−n;0){−3n+ 1}[−n]
g−−→ C(T2,−n;1){−1}[−1]),

where [m] denotes a shift of the homological grading by m ∈ Z, and T2,−n;0 (respectively, T2,−n;1)

denotes the diagram obtained from T2,−n = σ̂−n1 by replacing the crossing in the last σ−1
1 in σ−n1

by its 0-resolution (respectively, by its 1-resolution).9 As in the proof of Proposition 14, we obtain
a long exact sequence

· · · −→ SKhi(T2,−n;1){−1} −→ SKhi(T2,−n) −→ SKhi+n(T2,−n;0){−3n+ 1} −→ · · ·

and, by observing that T2,−n;0 represents a trivial annular unknot, and T2,−n;1 represents
T2,−(n−1), we can write this long exact sequence as

· · ·→ SKhi(T2,−(n−1)){−1}→ SKhi(T2,−n)→ SKhi+n(trivial unknot){−3n+ 1}
ci+n
→ · · · ,

where
ci+n : SKhi+n(trivial unknot){−3n+ 1} −→ SKhi+1(T2,−(n−1)){−1}

is the connecting homomorphism.

Lemma 15. ci+n is zero unless n is odd and i+ n = 0. Moreover, if n is odd, then

c0 : SKh0(trivial unknot){−3n+ 1} −→ SKh−n+1(T2,−(n−1)){−1}

is conjugate to the map
V(0){−3n+ 2}

⊕
V(0){−3n}

c′0−→
V(0){−3n+ 4}

⊕
V(0){−3n+ 2}

given by

c′0 =

[
0 0
1 0

]
,

where we have used that the graded sl2-module SKh−n+1(T2,−(n−1)){−1} is isomorphic to
V(0){−3n+ 4} ⊕ V(0){−3n+ 2} by induction.

To prove Lemma 15, we need the following claim.

9 The diagram T2,−n;0 does not inherit a consistent orientation from T2,−n. One therefore has to choose an
orientation for T2,−n;0 ‘by hand’.
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Claim 1. For n > 1, the isomorphism

φ : SKh(trivial unknot) −→ SKh(T2,−n;0)

induced by a sequence of n− 1 consecutive Reidemeister I moves is given by

φ(w+) =
n∑
`=1

(−1)`+1w
⊗(`−1)
− ⊗ w+ ⊗ w⊗(n−`)

− ,

φ(w−) = w⊗n− ,

where the terms on the right-hand side live in the vector space associated to the all-0-resolution
of T2,−n;0. (Here we assume that the order of the tensor factors corresponds to the order in which
the circles of the all-0-resolution appear as one travels around the annulus.)

The proof of the claim is an easy computation and therefore omitted.

Proof of Lemma 15. Since SKh(trivial unknot) is supported in homological degree 0, it is clear
that ci+n is zero unless i+ n = 0. By observing that c0 is induced by the chain map

g : C(T2,−n;0){−3n+ 1}[−n] −→ C(T2,−n;1){−1}[−1]

that appears in the mapping cone description of C(T2,−n), it is further easy to see that c0 can
be written as

c0 = (M ◦ φ)∗,

where φ is as in the claim, and M is the map

C0(T2,−n;0){−3n+ 1} = W⊗n{−2n} M−−−→W⊗(n−1){−2n+ 1} = C−n+1(T2,−(n−1)){−1}

given by M(w1 ⊗ w2 ⊗ · · ·wn−1 ⊗ wn) := m(w1 ⊗ wn) ⊗ w2 ⊗ · · · ⊗ wn−1, with m denoting
Khovanov’s multiplication map. We thus obtain c0([w−]) = [M(φ(w−))] = 0 and

c0([w+]) = [M(φ(w+))] =

{
0 if n is even,

[2w
⊗(n−1)
− ] if n is odd.

Now observe that 2w
⊗(n−1)
− ∈ C−n+1(T2,−(n−1)){−1} cannot be a boundary because it sits in

lowest possible homological degree. Hence, c0([w+]) is non-zero whenever n is odd and, by looking
at the gradings, one can see that c0([w+]) lives in V(0){−3n+ 2} ⊂ SKh−n+1(T2,−(n−1)){−1}. It
is now evident that c0 has the desired form. 2

The inductive step in the proof of Proposition 15 now follows from Lemma 15 and from the
long exact sequence stated before Lemma 15.

The action of v−2 is now an easy computation, which is left to the reader. 2

Remark 13. Comparing Proposition 15 to the computations in [Kho00, § 6], we see that the
ranks of SKh(T2,−n) and Kh(T2,−n) agree in all homological degrees except degrees 0 and 1.

Remark 14. As pointed out to us by one of the referees, a much shorter proof of Proposition 15
can be given by using the fact that the Bar-Natan complex associated to an annular braid
closure has a particularly simple representative in its homotopy class. For this we refer to
[MN08, Theorem 6.2], which is stated for sl3 link homology but which also should describe the
Bar-Natan complex in the sl2 case without change. Starting from this explicit representative,
the computation of the annular Khovanov homology is significantly easier than starting from
C(T2,−n), as we have done above.
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Appendix

In the following, let z = {(0, 0, z) z ∈ R} ⊂ R3 denote the z-axis in R3, and I = [0, 1].

Definition A.1. An (oriented) annular link cobordism Σ between (oriented) links L0 ⊂ R3\z =
(R3\z)×{0} and L1 ⊂ (R3\z) = (R3\z)×{1} is a smooth, compact (oriented) surface embedded
in (R3\z)× I satisfying:
• ∂Σ = L0 q L1; and
• there exists some ε > 0 such that the intersection of Σ with (R3\z)× ([0, ε]q [1− ε, 1]) can

be identified with the product embedding (L0 × [0, ε])q (L1 × [1− ε, 1]).

An annular link cobordism Σ is said to be generic if the projection map p : (R3\z)× I → I
restricted to Σ is Morse with distinct critical values.

Definition A.2. An annular movie of a link cobordism is a smooth, one-parameter family of
curves, Dt ⊂ (R2\0), t ∈ [0, 1], called annular stills, satisfying:
• for all but finitely many t ∈ [0, 1], Dt is a link diagram;
• at each of the finitely many critical levels t1, . . . , tk, the diagram undergoes a single

elementary string interaction (i.e., a birth, saddle, death, or Reidemeister move) localized
to a disk in R2\0.

Remark A.1. Since annular cobordisms are assumed compact, we can (and shall) consider all
annular cobordisms to be embedded in (A× I)× I ⊂ (R3\z)× I. Accordingly, an annular movie
may be viewed upon A ⊂ R2\0.

Lemma A.1. Any annular link cobordism Σ can be represented by an annular movie.

Proof. Let Σ be an annular link cobordism. Composing with the inclusion (R3\z)→ R3 produces
a traditional link cobordism (cf. [Jac04, Definition 5]), which can be perturbed in a small open
neighborhood (hence, in the complement of z × I) to a generic (annular) link cobordism. The
image of Σ under the projection map,

π × id : R3
(x,y,z) × I → R2

(x,y) × I,

is then an annular broken surface diagram, an immersed surface in (R2\0) × I whose points of
self-intersection are generic double points, triple points, or branch points (cf. [CKS04, § 1.4]).
After a possible further perturbation of Σ (which can, again, be performed in the complement of
z× I), the intersections of the annular broken surface diagram with the level sets (R2\0)× {t}
yield an annular movie of the link cobordism, as desired. 2
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Lemma A.2. Let Σ be an annular link cobordism represented by two different annular movies
MΣ and M′

Σ. Then MΣ and M′
Σ are related by a finite sequence of Carter–Saito movie moves

(see [CS93, Figures 23–37]), each of which is localized to a disk in R2\0.

Proof. As before, Σ ⊆ (R3\z)×I ⊆ R3×I can be viewed as a traditional link cobordism, and the
isotopy joining the representatives of Σ giving rise to MΣ and M′

Σ, respectively, can be viewed
as an isotopy in R3 × I. Carter–Saito’s movie move theorem [CS93, Theorem 7.1] then implies
that there exists some finite sequence of movie moves, each localized to a disk in R2, relating M
and M′.

We claim that each movie move can, in fact, be localized to a disk in R2\0. But this follows
because if any of the movie moves is localized to a disk which cannot be made disjoint from
0, then in the course of the movie move, there exists some still whose curve intersects 0. The
corresponding cobordism it represents must therefore intersect z×I, which is a contradiction. 2
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