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SUMMABY
This paper shows that a number of models of the maintenance of poly-

morphism in a heterogeneous environment, including those of Levene and
Dempster, can be derived from a simple assumption about the way in
which the numbers and kinds of individuals emerging from a niche
depend on the number of eggs laid in it. I t is shown that for such models,
unless selective advantages per locus are large, protected polymorphism
requires that the relative niche sizes lie in a narrow range. This lack of
robustness applies also to models of stable polymorphism proposed by
Clarke and by Stewart & Levin. Excluding models relaying on habitat
selection or restricted migration, the only models which may escape this
criticism are diploid models with partial dominance with respect to
fitness, such as one proposed by Gillespie, in which in all niches the
fitness of heterozygotes is higher than the arithmetic mean of the
homozygotes.

1. INTRODUCTION

It has been known since Levene (1953) that a stable genetic polymorphism can
be maintained in a spatially heterogeneous environment, although this depends
critically on the way selection is supposed to act (Dempster, 1955). I t has less
often been realized that, unless selective advantages per locus are large, the fitness
must be nicely adjusted to the niche sizes if polymorphism is to be maintained
(Maynard Smith, 1966). To put the matter in another way, fitnesses which will
maintain polymorphism for one set of niche sizes will in general not do so if the
relative niche sizes are varied. This fact casts serious doubts on the plausibility
of this type of mechanism as an important cause of extensive polymorphism.

In section 2 of this paper we derive a range of models, including those of Levene
and Dempster, from a simple and plausible model of the 'input-output' relations
of a niche; that is, of the numbers of individuals of different genotypes emerging
from a niche as a function of the numbers of eggs laid in the niche. Although some
versions of this model do give polymorphism for a somewhat wider range of niche
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sizes than the simple Levene model, the gain in robustness is not great. In section 3
we consider a related model due to Clarke (1972) and in section 4 a model due
to Stewart & Levin (1973); neither model escapes the difficulty.

In sections 2-4 we consider models with only two phenotypes at a locus; i.e.
haploid models, or models with complete dominance. In section 5 we extend the
analysis to diploid models with intermediate dominance. If the fitness of the
heterozygote is exactly intermediate between the two homozygotes, there is little
gain in robustness. However, Gillespie (1976) has proposed a model, with some
empirical support, in which heterozygotes are intermediate in fitness but closer
to the fitter homozygote in each niche. We show that Gillespie's conditions for the
stability of his model can be derived from Levene's (1953) conditions. This model,
perhaps because it produces an overall heterozygote advantage, preserves poly-
morphism over a much wider range of environmental conditions.

We have not attempted to analyse the full range of models of a heterogeneous
environment. We do not consider any models with habitat selection or migration
between niches. We consider only models which are coarse-grained (Levins, 1962),
in the sense that selection acts on an individual only in a single niche, although in
the model of Stewart & Levin (1973) conditions in the niche change in a regular
way during the life of the individual. Finally, we take little account of temporal
variation of the environment, although we do show in section 2 that this con-
tributes nothing to the robustness of Levene's model.

2. A GENERAL MODEL LEADING TO DEMPSTER'S AND LEVENE'S MODELS

The essential features of the models of Levene (1953) and Dempster (1955) are:
(i) the adults form a single random mating population,

(ii) after mating, females lay their eggs in one of a number of' niches', in which
the selective values of the genotypes differ.

The models differ in the way in which the population is supposed to be regulated.
We therefore start with a general model of the way in which the numbers and
kinds of individuals emerging from a niche depend on the numbers and kinds of
eggs laid in it. Consider first eggs of a single genotype, laid in a single niche. Let x
be the number of eggs laid and y be the number of adults emerging. A reasonable
functional form is (see Fig. 1)

Then k = v/a is the carrying capacity of the niche, v is the non-density-depend-
ent fitness, and is related to r in the logistic equation by r = vE, where E is the
number of (female) eggs laid per adult female, v will be called the ' intrinsic fitness'.

The models analysed in this section and in sections 3 and 4 consider only two
genotypes, g and G. For each genotype on its own:

, VX . V

genotype g, y = j - ^ ; k = - ,
„ _ VX v Vgenotype G, Y = j - ^ ; K = - j .
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= o/a

I Slope v
I

Fig. 1. Number of adults produced in a niche, y, as a function of the number of eggs
laid, x.

When both genotypes are present simultaneously, an obvious functional form,
which has the necessary property that, when ax + AX <̂  1, each genotype has a
fitness unaffected by the other, is

VX_ vx • Y -
y ~ 1 + ax + A'X' ~ 1 + a'x+AX

(2)

Now consider an adult population distributing eggs of two genotypes into two
niches, indicated by subscripts.

Assume no 'habitat selection', i.e.

(3)

It will be convenient to put x1/x2 = X1/X2 = r, where r is a measure of the
relative sizes of the niches.

The basic equations then are:

Niche 1 Niche 2

v, x.
1 + ax xx + A j Xi'

genotype g, yx =

genotype G,

By varying the parameters in these equations it is possible to obtain a range of
models, including Dempster's (1955) and Levene's (1953). From (4) equations for
the gene frequencies of g and G can be derived; by linearizing these in the neigh-
bourhood of the trivial gene frequency equilibria 0 and 1, conditions for protected
polymorphism can be obtained.

Case 1. Low density in the niches

Assume ax + AX <| 1 in both niches; i.e. the density in the niche is low. The
absolute fitnesses are independent both of density and of frequency.

4 GRH 35
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The conditions for a protected polymorphism are

which cannot be satisfied. This is Dempster's model, in which polymorphism is
impossible.

Case 2. High density: genotypes identical as density-limiting factors

Assume ax + AX > 1 in both niches; i.e. the niches are at their carrying
capacities. The conditions for a protected polymorphism are

and (6)

We now assume that A[ = alt Aj = a2, a[ = Ax and a'2 = A2. Thus individuals
of the two genotypes have identical effects as density-limiting factors, although
they have different intrinsic fitnesses (v) and carrying capacities (v/a). With these
conditions, (6) cannot be satisfied, and polymorphism is impossible.

Case 3. High density: each genotype has the same limiting effect on itself as on its
competitor

Assume ax + AX > 1 in both niches and

a'x = av A[ = Alt a2 = o2, A'% = A2.

I t is convenient to consider three cases, illustrated in Fig. 2.

Case 3 (a). Carrying capacity proportional to intrinsic fitness

Assume ax = Ax and a2 = A2> so that

-+ = ^ and •=?• = -f (see Pig. 2a).

With these constraints on the o's, conditions (6) cannot be satisfied, and no
polymorphism is possible.

Case 3(6). Carrying capacity constant and independent of genotypes

Assume

kx = Kx so — = 5 1 a n d k2 = K2 so - = - ^ (see Fig. 26).

This case corresponds to Levene's model. Strictly, Levene assumes only that the
fraction of the total population produced in each niche remains constant and
and independent of genotype. However, it is hard to see how this could be so
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( a ) (b) (c)

49

Fig. 2. Three types of relationship between adults produced, y, and eggs laid, x.

unless the absolute numbers produced were constant, and that is what is now being
assumed.

Conditions (6) become:

~y~Ki+ y K2 kx + k2,
(7)

rC-i T fCo - ^ tC-t ~ r /Cn.

In Levene's notation, v1 = w2 = \,V1 = w1 and F2 = w2> and ĉ  =
Hence condition (7) becomes

?>1. (8)

which are the conditions for a stable polymorphism for Levene's model with two
genotypes (dominance, or haploid).

Case 3(c). Carrying capacity inversely related to intrinsic fitness

Assume

^ ~ vV 2 ~ vf

J? - bl v - h.
A i - vr 2 ~ v?

where b^ and b2 are constants. Then, if a > 0, the higher the intrinsic fitness of a
genotype the lower is its carrying capacity (see Fig. 2 c). (The special cases a, = — 1
and a = 0 yield cases 3 (a) and 3(6) respectively.) Conditions (6) become

In Levene's notation,
Then (9) becomes

yx = v2 = 1, Fx = «>!, F 2 = w2 and

^ > 1;
-Wi) . c2K-l)

= ct-

(10)

The first condition is identical to that for Levene's model with fixed carrying
capacity, and the second is less restrictive (for a positive). Pig. 3 compares the
range of niche sizes compatable with polymorphism for Levene's model, and for the

4-2
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0-5

Unstable

Fig. 3. Range of niche sizes, c, for which polymorphism is stable, as a function of the
selective advantage, a. The values are for a 2-niche, two-phenotypes case, for
Levene's model, and for a model with the carrying capacity inversely proportional to
intrinsic fitness (a = 1).

present model with a = 1. It is assumed that w± — 1 +s, w2 = 1 — s. For small s,
the range of niche sizes is approximately twice as broad for the present model.

Cose 4. High density: intrinsic fitnesses of genotypes identical

Assume ax + AX > 1 in both niches and vx = Vlt v2 = v2.
Conditions (6) become

Zs Zi+ZsZa+Zs > Zi+Zs,
A-y J± A A

a1
( 1 1 )

These inequalities can be met if the terms alt a2, Ax, A2 measuring the self-
limiting effects of each genotype are greater than a'v a'2, A'x, A'2 measuring the
effects of each genotype on its competitor (it is not necessary for all four compari-
sons to go this way, but the overall effect must exist). If differences of this kind
exist, it is possible to have stable polymorphism in a single niche. The biological
significance of this is discussed in the next section.

Before leaving this class of model, it is worth asking whether a temporal fluctu-
ation hi relative niche sizes is likely to make the polymorphism more robust.
We answer this question only for the two-niche Levene model shown in Fig. 3,
but it can be shown that a similar conclusion holds for the general diploid Levene
model. Thus we assume the fitness constant over time, at 1 + s: 1 in one niche and
1 — s: 1 in the other. We assume that in alternate generations the relative niche
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sizes are C1:\ — C1 and C2:1 — C2 (note that Cx and (72 are now the sizes of the
same niche in alternate generations). The conditions for a protected polymorphism
(Hoekstra, 1978) are, for the dominant case,

/ Cx 1-CA/C,
\l+5 1-5/ \1+S"' +£*' >'

a n d C(l + 8) + (lC) ( l 5 ) + C ( l + s) + ( l C 2 ) ( 1 - s ) > 2. (12)

For the haploid case, the first condition remains the same, and the second becomes

[C1(l + s) + (l-C1) (1-5)] [C2(l + 5) + ( l -C 2 ) (1-s)] > 1. (13)

Conditions (12) for the dominant are slightly less restrictive. I t can be shown that
they are somewhat more stringent than those for the Levene model. Thus for (12)
to hold, it is necessary but not sufficient that

G1 + C2 1 + 5
* 2 < 2 '

whereas for Levene 's model i t is sufficient t h a t

— -

3. CLARKE'S MODEL OF DENSITY-DEPENDENT SELECTION
Clarke (1972) considers competition between two genotypes, say g and G. If

the numbers of zygotes present are, respectively, x and X, he assumes fitnesses:

win) = klWl • W(G) =
{y> k + wx + awX' K '

These are identical to our equation (2), with wx = v, w2 = V, hy = k, k2 = K,
a, = A'k/V and /? = a'K/v. Thus Clarke is considering two genotypes competing
in a single niche. Note that one does not obtain equations of this form if one
calculates average fitnesses in two niches from (4). In our notation, Clarke's
necessary conditions for a stable equilibrium (his equations 16 and 17) become

A' v-1 a' V-l

For the special case, v = V, this reduces to A' < A and a' < a. This says that
each species has a greater limiting effect on itself than on its competitor. How
could this be so for competition in a single niche? The simplest interpretation is
that the niche contains two resources, and that the two genotypes take these
resources in different proportions.

This point seems to have been seen clearly by the founding fathers of math-
ematical ecology. Thus Clarke's use of an expression of the form of (2) and (15) was,
intentionally, related to the equations

dx/dt = vx(l-ax-A'X), \
dX/dt = VX(l-a'x-AX),f { '
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but he modified these equations to prevent the occurrence of negative fitnesses.
Volterra (1927) used equations (18) to describe competition between two species.
However, he explicitly referred to competition for a single resource, and accord-
ingly put a I A' = a! I A. With this restriction no equilibrium exists with both
species present and, equivalently, Clarke's conditions (16) cannot be satisfied.
Lotka (1932) pointed out that Volterra's restriction implies 'that the two species
consume one and the same food materials, or, if they consume a mixed diet, that
the proportion of each ingredient of the diet which they consume is the same for
both species'. He showed that, if the restriction is relaxed, stable coexistence is
possible.

4. THE MODEL OF STEWART & LEVIN
Stewart & Levin (1973) considered a model in which two 'species' can coexist in

a single type of niche on a single resource. The two species are supposed to have
population growth rates which depend on resource concentration as shown in
Fig. 4. If the rate of supply of substrate is constant (as, for example, in a chemo-
stat) then coexistence is impossible. One or other species will win, depending on
whether the equilibrium resource level is above or below the critical value Rc.
Suppose, however, that the two species enter a 'patch' with a high resource
concentration, and reproduce there without further addition of resource until it is
exhausted. The species then colonize a new patch with high resource concentration,
and the procedure is repeated indefinitely. Stewart & Levin show that there is a
range of initial resource concentrations for which stable coexistence is possible.
De Jong (1976) has reached the same conclusion for a similar model.

Clarke & Allendorf (1979) and Clarke (1979) have recently suggested that this
process is an important one in maintaining enzyme polymorphism. They argue
that, if two allozymes exist, their kinetics are likely to be such that the relative
velocities of the reactions catalysed by them vary with substrate concentration.
They do not in fact claim that the velocities would cross over, as in Fig. 4, but
they do imply that the fitnesses would do so. How plausible is this argument?

There are obvious difficulties in applying Stewart & Levin's model directly to
enzyme polymorphism. Thus in their model the reproductive rate of individuals
depends on substrate concentration, and substrate concentration in turn depends
on the abundance of the two kinds of individual. It is not clear how far their con-
clusions can be transferred, for example, to competition between Drosophila
larvae. However, our purpose here is to ask how far various models escape from
the objection that polymorphism can be maintained only for a narrow range of
environmental conditions. We will argue that Stewart & Levin's model does not
escape this objection, and hence that Clarke & Allendorf's suggestion does not do
so either.

Stewart & Levin assume that growth rate is proportional to air/(r + 6i), where
r is concentration and at, bt are constants for the ith species. They consider a
particular numerical case of two species, with at = 10, a2 = l,b1 = 5, b2 = 1/20.
Thus growth rates at low concentration, a/b, differ by a factor of 10, and at high
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Resource concentration

Fig. 4. Relation between population growth rate and resource concentration assumed
by Stewart & Levin (1973). The curves are drawn such that they also represent reaction
velocity against substrate concentration of two allozymes A and B with the following
kinetic properties: KmA = 3 x 10"4 M; KmB = 10-4 M; 7nlalA = f T/

m0IB.

1 0

0-8

§ 0-6

0-4

.2 0-2

Only type A

Only type B

I I
0001 0005 001 005

Fraction surviving
01 0-5

Fig. 5. Range of initial concentrations for which polymorphism is stable in Stewart
& Levin's (1973) model, as a function of the fraction of individuals emerging from one
patch which survive to enter the next. Population growth rates are as in Fig. 4.

concentrations by a factor of 10 in the opposite direction. Even with this very
extreme difference, the range of initial resource concentrations for which co-
existence is possible is relatively narrow, the upper and lower bounds having a
ratio of from 1-2 to 1-6 depending on another system parameter. With more
realistic values, the range is very narrow, as illustrated in Fig. 5.

5. THE MODEL OF GILLESPIE
Gillespie (1976, 1977) has proposed a model which differs from the others

described in this paper in assuming the heterozygote at a locus to be pheno-
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Table 1. Assumptions of Gillespie's (1976) model
Genotype AXAX AXA2 A2A2

Enzyme activity

Fitness

Fitness in a specific

xx

niche 1

phere 6(x) = —

~1 ' ~2

2
,(xx + xi

\ 2

l-hs X-a

Table 2. Fitnesses for Gillespie's (1976) model

Genotype ...

Enzyme activity

Enzyme activity in ith niche

AXAX

mx

l-e(

(1— e()[2-r(e

where r =
1

AXA2

mx + m2
2

2-e, + ̂
2

x

A, A,

2

1 + 5,-

(l + ̂ JP-rte,-*,);
(l + ^ ) [ 2 - { e < - ^

1 + a

typically intermediate between the two homozygotes. His assumptions are shown
in Table 1.

Thus he supposes enzyme activities to be exactly additive, but the function <j>
connecting fitness and activity to be convex. For the particular function chosen,
h = <x/(2a+s). Thus in every niche the heterozygote is fitter than the arithmetic
mean of the two homozygotes. If in some niches one homozygote is fitter, and in
other niches the other, this can give rise to a stable polymorphism.

Gillespie (1976) derives conditions for a stable polymorphism which are, (as will
be shown below) identical to those given by Levene (1953), namely

where Vt, 1, Wt are the fitnesses of Ak Ax, Ax A2, A2 A2 in the ith niche and ct is
the proportion of the population produced from the ith niche.

Table 2 gives the enzyme activities and fitnesses for Gillespie's model. Gillespie
makes the following additional assumptions:

(i) Variation in activity levels is small; hence third and higher order terms in e
and 8 can be ignored.

(ii) Mean activities mx and m2 are close to unity; hence var (mx) ~ £ci ef and
var (m2) ~ 2 ^ 8\.

(iii) var (mx) = var (ra2). Hence £cie? = 5X5?, and va,T(ei — 8i) ~ S c ^ - ^ ) 2 ;
also, var (et — 8J = var (6^ + var ( t̂).
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55

Fig. 6. Range of niche sizes, c, for which polymorphism is stable as a function of the
selective advantage, a. The values are for a 2-niche version of Gillespie's (1976) model,
and for a case in which the fitness of the heterozygote is equal to the arithmetic
mean of the fitnesses of the homozygotes.

Hence . _

With these approximations, and the fitnesses of Table 2, (17) reduces to

h I < 2 X 4 (20)

which is identical to Gillespie's condition, |Am| < 5m2, where Am is the difference
between the mean enzyme activities of the two homozygotes, and 8m2 the variance
of enzyme activity for a given homozygote between niches.

This model is much less sensitive to fluctuations in relative niche size than
those already discussed. This is best seen considering a two-niche model with
fitnesses:

Ay A-\ -"I -"2 2 2

Fitness in niche 1 1 1 — ha 1 — 8
Fitness in niche 2 1 — s 1—hs 1

Using (19), we can calculate the range of niche sizes for which polymorphism is
stable. The critical upper value of niche size is

C =

the critical lower value being 1 —c. Using data from Crow & Temin (1964) and
Mukai et al. (1972), Gillespie (1977) estimates a reasonable value of a to be 0-05,
which gives the range of niche sizes shown in Fig. 6.

Even with a value of s as low as 0-01, polymorphism is stable for 0-55 > c > 0-45.
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Table 3. Range of relative niche sizes for which a protected polymorphism exists, for
various models, for a 2-niche case with symmetric fitnesses

Selective advantage s ...
Levene model with dominance
Carrying capacity inversely proportional to
intrinsic fitness

Levene model with additive fitnesses
Gillespie's model (a. = 0-05)

001

0-50-0-505
0-50-0-51

0-4975-0-5025
0-45-0-55

0 1

0-5-0-55
0-50-0-60

0-474-0-526
0-23-0-77

However, it is important to remember that polymorphism does depend on the
non-linear relation between gene dosage and fitness. If we assume h = \ (additive
fitnesses), then the permissable range of niche sizes (Fig. 6) is similar to the range
with dominance (Fig. 3).

6. CONCLUSIONS

The model analysed in section 2 confirms the conclusion that niche differen-
tiation on its own can maintain polymorphism only if selective advantages at a
single locus are large. With moderate selective advantages (10 % or less) the range
of relative niche sizes over which polymorphism is stable is very narrow. The most
favourable case is that in which the carrying capacities of two genotypes in a
niche are inversely related to their intrinsic fitnesses when rare in the same niche.
Some results are summarized in Table 3.

This type of model is more favourable for the maintenance of polymorphism
if there is habitat selection, either because individuals actively seek out a par-
ticular niche, or because niche size is large relative to the dispersal distance of
individuals.

The density-dependent model proposed by Clarke (1972) refers to competition
within a single niche. It can maintain polymorphism if the niche contains two
resources, and if the different genotypes consume those resources in different
amounts, but apparently not otherwise.

The model of Stewart & Levin (1973) can maintain polymorphism only if the
resource concentration fluctuates widely in time, and then only if the concentration
is very precisely adjusted. The model seems even less robust than Levene's. The
suggestion by Clarke & Allendorf (1979) that enzyme polymorphism may be
maintained because of the kinetic properties of enzymes is a form of this model,
and therefore seems unlikely to be of wide relevance.

The only model considered here which escapes the dilemma of requiring either
intense selection or a nicely adjusted environment is that proposed by Gillespie
(1976, 1977). The robustness of this model depends essentially on the assumption
that the fitness of a genotype is a convex function of its enzyme activity, an
assumption which can give rise to a net (arithmetic mean) heterozygous advantage.

We thank Dr Brian Charlesworth for pointing out to us that Gillespie's (1976) conditions
for polymorphism can be derived from Levene's (1953) conditions.
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