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SUMMARY

The ' neutral mutation theory' holds that most amino acid substitutions
in evolution are selectively neutral. The known pattern of variation in
human haemoglobins can only be made consistent with this theory if the
human species has passed through a bottleneck of numbers in the recent
past. If this theory is true, estimates of the necessary size and duration of
this bottleneck can be made. A theory is developed which leads to an
estimate of Yg n, the number of alleles present in a population which arise
between g and n generations ago, and hence to the estimate

Po = (sr/»)*w.«,
where u is the neutral mutation rate and Ne the effective population size,
for the probability that a population contains no such alleles. Using data
on haemoglobins, this gives an approximate upper limit to the time elapsed
since the bottleneck in human numbers. Either such a bottleneck occurred,
or the neutral mutation theory is false; data on other proteins will enable
a choice between these possibilities to be made.

1. INTRODUCTION

It has recently been argued (e.g. Kimura, 1968a; King & Jukes, 1969) that a
majority of the gene substitutions which have occurred in evolution have been
selectively neutral and have been established by 'genetic drift', and that much of
the observed protein variation is likewise selectively neutral. The strongest argument
in favour of this view is that the rate of evolutionary change, per amino acid site
per year, has been surprisingly constant for a given class of proteins. The evidence
for constancy of rate is best for haemoglobins (Kimura, 1969). This constancy of
rate is to be expected on the neutral mutation theory; the very simple argument ia
given in § 2 below. It is unexpected on the selectionist view, which would predict
spurts of evolution-for example, when viviparity arose in mammals.

It is difficult to test directly the belief that a particular mutant is selectively
neutral, although the evidence reviewed by King & Jukes (1969) make such a
belief entirely plausible. I t might be argued that no two different genes could ever
be exactly equal in their effects on fitness, since exact equality requires identity.
However, exact equality is not required by the neutral mutation theory. All that is
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required is that the rate of change of frequency due to selection should be small
compared to that due to sampling of a finite population. In this sense, neutrality
is consistent with the biochemical evidence, but difficult to test by direct measures
on particular gene differences.

This difficulty has led to an attempt to test the neutral mutation theory by
comparing the frequency of protein variants in natural populations with that to be
expected from this theory (e.g. Kimura, 1968a; Maynard Smith, 1970). In particular,
use has been made of the formula (Kimura & Crow, 1964) I = 1/(1 +4Neu), where /
is the probability that an individual is homozygous at a locus, u is the neutral
mutation rate at that locus, and Ne the effective population size.

Unfortunately, there are serious drawbacks to this approach. First, although we
can sometimes estimate u from the observed rate of evolution, we do not know Ne.
This does not matter too much, since we can make a rough estimate. More seriously,
the formula holds only at the equilibrium between new mutation and random
elimination. It is easy to show that the time in generations to approach the equi-
librium is of the same order as Ne. It follows that the formula can only be applied to
small populations which have been small for an appreciable number of generations.

The human species, for which the best data on protein variation are available,
is abundant but has only recently become so. In this paper, we attempt to find the
frequencies of protein variants to be expected on the neutral mutation theory in a
species which has recently increased in numbers, and to compare their frequencies
with the observed data on haemoglobins.

It turns out that the question of whether observed distributions agree with the
theoretical ones depends critically on the size of the human population during the
paleolithic. The possible implications of this are discussed in § 6.

2. VARIATION AND EVOLUTION IN HAEMOGLOBINS

Consider the rate of evolution due to the fixation of neutral mutations. In a
population of fixed size N there are 2N genes at a locus. By the process of random
sampling from such a population, at some time in the future all the genes in the
population will be descended, with or without further mutation, from just one of
the 2N genes. We will say that this gene is established. Hence, if one of the 2N genes
is a newly arisen selectively neutral mutation, it has a probability 1/2N of becoming
established. The expected number of new mutants per generation is 2Nu, where u
is the neutral mutation rate at the locus, and so the rate at which new mutations
are established in evolution is

2Nux~ = u.

Since for a given class of proteins, a constant proportion of all mutants would be
expected to be selectively neutral, the rate of evolution will likewise be constant
and equal to the neutral mutation rate at the locus, and will be independent of
population size.
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Evidence on the rate of evolution of the haemoglobin molecule has been re-
viewed by Kimura (1969). By comparing the sequences of two existing haemoglobin
chains, and knowing the approximate date of the most recent common ancestor of
those two chains, it is possible to estimate the average rate of evolution, in amino
acid substitutions per site per year, in the line connecting the two present chains via
their common ancestor. A number of independent, or largely independent, estimates
can be made. Thus a comparison of human a with horse a is independent of a
comparison of human /? with horse /?, and each is largely independent of a comparison
of human a with human /?. Kimura shows that a number of such comparisons fall
in the range 8-8 to 14-0 x 10~10 substitutions per site per year.

These data are consistent with the idea that most substitutions which have been
incorporated in the evolution of haemoglobin were selectively neutral, with a
neutral mutation rate of approximately 10~9 per site per year. When studying varia-
tion in existing populations, it is usual that only electrophoretically recognizable
mutants can be identified. It is therefore important to know whether such mutants
can be used to test the neutral mutation theory.

Considering all possible base substitutions in DNA, approximately one-third of
the amino acid substitutions produced involve a change in charge. Comparing the
a and /? chains of human haemoglobin, 25 out of 83 substitutions involve a charge
change. Thus electrophoretically recognizable mutants are as likely to be in-
corporated as others; on the neutral mutation theory this meana that they are as
likely to be selectively neutral as other mutations. Thus they can be used to test
the theory, using a neutral mutation rate one-third of that calculated for all amino
acid substitutions. The number of sites per chain is 140, and a human generation
lasts approximately 20 years. Hence in testing the neutral mutation theory, the
appropriate mutation rate for electrophoretically recognizable mutants in man is

u = | x 10~9 x 20 x 140 ~ 10~6 per cistron per generation.

The best data on the frequency of haemoglobin variants in man are due to
Lehmann and his colleagues (quoted by Harris, 1970, p. 215). In a sample of 10971
individuals from Northern Europe, 10 rare variants were found, 3 in the a and
7 in the ft chain. Of the /? chain variants, 3 are known to be common in other parts
of the world, and are known to be subject to strong selective forces and believed to
be maintained by heterosis; clearly, these cannot be explained by the neutral muta-
tion theory. This leaves 7 variants, 3 at one locus and 4 at the other; of these, 4 were
found only once and 3 were found twice.

Thus each variant had a frequency lower than 10~*, and the total frequency of
rare variants which could be selectively neutral was 10/(2 x 10971 x 2) or approxi-
mately 2-5 x 10"4 per locus. There were no variants with higher frequencies. To
what extent is this pattern of variation consistent with the neutral mutation theory,
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3. THE TIME OF ORIGIN OF PRESENT HUMAN GENES

Let No = present population size,
Nn = population size n generations ago,

n = number of generations into the past,
u = neutral mutation rate, per locus per generation,

Xn = number of copies (with or without further mutation) of a mutant n
generations after its origin,

Zn = number of copies now (with or without further mutation) of all mutants
arising in the nth past generation,

Fn = fraction of genes now which are copies (with or without further muta-
tion) of mutants arising in the nth past generation,

Pm>n = fraction of genes now which are copies (without further mutation) of
mutants arising between m and n generations ago (m < n).

The expected number of new neutral mutations arising n generations ago is
2Nnu. The expected number of copies of each of these mutants is

Hence E(ZB) = 2Nnu{NojNn) = 2NQu

and ~E{Fn) = 2Noul(2No) = u.

Hence if we ignore those genes which have mutated twice during the last n
generations, which we can safely do if nu <| 1, we have

MPm,n) = (n-m)u. (1)

In other words, according to the neutral mutation theory, the expected proportion
of present genes which arose by mutation between, say, 100 and 150 generations
ago is the same as the proportion which arose between 1000 and 1050 generations
ago, being 50u in each case. Let us apply relation (1) to the past 500 generations, or
approximately 10000 years, of human evolution since the invention of agriculture.
The mean fraction of electrophoretically recognizable mutants from that period
which exist among present genes is 500 x 10~6 = 5 x 10~4. Although this value looks
rather close to the fraction of rare mutants found in Lehmann's samples, we cannot
judge how good the agreement is without having the variance of Pm>n- This we
investigate in section 4.

Consider next the electrophoretically recognizable mutants arising in the 50 000
or so generations between 10000 and one million years ago. The mean fraction of
such mutants among present genes is 5 %. Now alleles which arose a large number
of generations ago, and which have survived, would be expected to have frequencies
higher than the very rare variants actually found. For the frequency of an allele
when it first arises in a population of size N is 1/22V; if a fraction p of newly arising
neutral alleles survive until now, their mean frequencies will be l/(2Np). The exact
value of p will depend on the length of time elapsed, fluctuations in population size
and of the distribution of family size in the population, but for the relevant period,
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p would be of the order 10~3 to 10~4 (from equation (17) below, for k > 500). Thus
we would expect to find at the haemoglobin loci electrophoretically recognizable
variants, originating between 10000 and one million years ago, with individual
frequencies of the order 10~2 to 10~3 (or higher if, as might be the case, different
variants were indistinguishable from each other) and contributing in all about 5 %
of present genes. In fact, no such contribution exists. One explanation for the
absence of this contribution is that neutral mutation theory is false. The rare
variants observed in present populations are slightly deleterious.

However, this is not the only explanation. If the variance ofPmn is high, a value
of Pm n far removed from 5 % may be not at all unlikely. The calculations of section 5
below show that this variance depends heavily on population size, and, if the human
numbers were 'sufficiently small' for a 'sufficiently long period' in the 'sufficiently
recent past', mutants arising prior to such a period might well have been eliminated.

4. THE LAST 500 GENERATIONS

We make two assumptions about the growth of human populations over the past
500 generations. First, that the probability generating function (p.g.f.) of the
number of copies of an individual gene in the next generation is

A(z) = a1 + ( l -a 1 ) ( l - /? 1 )z / ( l - /? 1 z) . (2)

Thus the probability of no copies is ax, and the probability of k copies,
k = 1,2,3,..., is (1 — ax) (1 - fa) yfff-1. Secondly, we assume that the parameters OLX, fa
have remained constant during these 500 generations.

The so-called modified geometric distribution (2) describes the actual human
offspring distribution very well (see, for example, Lotka, 1931, where such a dis-
tribution is fitted successfully to the number of sons in American families). The
derivation of the gene copy distribution from the offspring distribution, and the
choice of the parameters, is discussed below. I t can easily be shown that small
variations in ax and fa would not seriously alter the conclusions.

I t is convenient to replace the pair of parameters av fa by the parameters A, x,
where n _ i \ ~ i _ i

It then follows (see Harris, 1963, p. 9) that the number of copies of a gene n
generations later has the p.g.f.

w h e r e

A and x are constants which should be chosen to fit the actual gene copy distribution
as accurately as possible; estimation of A and x by maximum likelihood is appro-
priate. If, from a sample of N genes in the parent population, rk genes produce k
copies {k = 0,1,2,...; S rk = N), the estimates X and £ of A and x are

X = 1/fi, (6)
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and x = Tjr-^g = f^ . , (7)

where /i = £ kr/JN *s the mean number of descendants of one gene, and f0 = ro/N
k

is the fraction of genes that gave no copies in the next generation.
Suppose now that the p.g.f. of the number of children born to a couple is

o + ( l-o)( l-6)a/( l-6«). (8)

The p.g.f. of the number of copies of a single gene in a single birth is ^(1 +z).
Hence the p.g.f. for the number of copies of a gene in the next generation, corre-
sponding to (2), is

Hence ax = a + (l —a)(l —6)/(2 —6), and so the estimate of a; is

But since (1 — a)/(l — b) = 2/i, our estimate of a; yields

a + 2/i-l '

Now [i is slightly greater than unity; writing /i = 1 +d and neglecting terms in d2

1+a

a is the probability that an individual leaves no offspring. Until recently, perhaps
as many as half the children born alive would fail to survive to reproductive age;
of those who survived, up to 10 % might be biologically sterile and maybe a further
10 % would fail to have children for other reasons. Thus if we count individuals
at birth, a ia unlikely to be higher than 0-6, but is almost certainly at least 0-2.

To estimate fi we note that in the past 400-500 generations, the total population
has increased by a factor of between 10a to 104, assuming a population 10000 years
ago of about 105 to 107. This gives estimates of /i ranging from about 1-01 to 1-025,
and so d will be between 0-01 and 0-025. Table 1 gives various possible estimates
of x.

Table 1. Estimates of x for various values of a and fi = 1 +d

d

a

0-2
0-3
0-4
0-5
0-6

0-01

0-987
0-989
0-9925
0-993
0-995

0-015

0-980
0-984
0-989
0-990
0-9925

0-020

0-973
0-978
0-985
0-987
0-990

0-025

0-967
0-973
0-981
0-983
0-9875
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For the case we are considering, we certainly have /i > 1 and hence A < 1, and
so, from (5), an -> x as n ->• oo. Since ocn is the probability that the line is extinct
by the nth generation, our two parameters have the interpretations: A = reciprocal
of the mean number of copies of a gene in the next generation; x = probability of
ultimate extinction of a new mutant.

We can easily derive the mean and variance of Fn, the fraction of genes now present
which are copies of mutants arising in the nth past generation:

Fn = ZJ(2N0) and Zn = X<«> +.. . + X$>,

where X^ is the number of copies now of the tth mutant arising n generations ago,
and Mn is the number of mutants which arose n generations ago. Mn is a random
variable with a Poisson distribution of mean 2Nnu, and X^ has p.g.f./n(z). Hence
by the use of standard results in probability theory (see, for example, Feller,
chapter xn, theorem 1), Zn has p.g.f.

Hn(z) = exv{2Nnu[fn(z)-l]}.

Thus H^(z) = 2Nnuf^z)Hn(z).

H"n{z) = {2NnUf"n(z) + [2NnufUz)?}Hn(z).

Therefore E(ZJ = H'n{\) = 2Nnuf'n{\) = 2iV>/A»,

and var (ZJ = H"n{\) +H'n{\) - [H'n{l)f

2(1-A")

Now ^"n, although a random variable, has mean \nN0, and so we have the approxi-

B(Zn) = 2N0u;

var

Hence E(Fn) = u, (9)

Equation (9) is the result obtained in the previous section. I t is clear from (9)
and (10) that in many realistic cases the standard error of Fn will considerably
exceed its mean. For instance, taking u = 10~6 and x = 0-990, we find that <r(Fn)
is less than E(-Fn) only when Nn > 108, and this is true only in the recent past.
Hence as we would expect, estimates of the contribution to the present population
of mutants arising in a single past generation are subject to a large degree of error.

Thus we consider a succession of generations. Let Zm_„ be the number of genes
6 ORH 19
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present now which are copies of mutations which arose between generations m and n.
Since we are only considering the past 500 generations, n—m will always be small
compared with u~l x 106, and so we shall not introduce appreciable error by
assuming that Zmn is the sum, n

? j "fcj
fc=m+l

of the contributions of the mutations from successive generations, and that the
random variables (Zk) are independent. We then get

J = 2Nou(n-m),

2 n 1

1 %r=m+\ A.

2(l-An-m) (n — m)(l+x)\

and

Hence

(1-x)

Table 2. The standard error of the estimate (11) ofPmn

entry in the table multiplied by 10"4
is the

(The entries correspond to (m, n) = (0, 100); (150, 250); (0, 400); (100, 500)
respectively. We have taken u — 10-6, No = 3 x 109.)

(11)

0-990

0-985

0-980

0-975

0-990

0-0157
0-0477
0-1300
0-2202

0-0128
0-0390
0-1062
0-1798

00111
00337
0-0920
0-1557

0-0100
0-0302
00823
01393

0-985

0-0213
•0-0851
0-3038
0-6503

0-0174
0-0695
0-2480
0-5310

0-0151
0-0602
0-2148
0-4599

0-0135
00538
01921
0-4113

0-980

0-0275
0-1491
0-7330
2-015

0-0225
0-1218
0-5985
1-645

0-0195
0-1055
0-5183
1-425

0-0175
00943
0-4636
1-274

0-975

00348
0-2617
1-826
6-476

0-0284
0-2137
1-491
5-288

0-0246
,01851
1-291
4-579

0-0220
0-1655
1-155
4-096

Using

we obtain

x = 0-990, 1 - A = 002, u = 10~6 and No = 3 x 109,

50
(12)

For example, when m = 50 and n = 100, we have

E(Pm, J = 5 x 10-5; var (Pra,n) « 6 x 10~12.

Hence the standard deviation of the estimate 5 x 10~5 of P50> 100 is about 2-5 x 10~6,
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and so the estimate is made with some confidence. Further values are given in
Table 2.

It is clear that the estimate made in section 3 of a fraction 5 x 10"4 of existing
genes having arisen in the past 500 generations is not too badly out, provided the
estimates of neutral mutation rate and population size are reliable. Thus the rare
haemoglobin variants found in human populations can be interpreted on neutral
mutation theory as arising in the past 500 generations or so.

5. THE PREVIOUS 50000 GENERATIONS

We now have to consider the discrepancy between the estimate that 5% of
existing alleles arose between 10000 and one million years ago, and the failure to
observe such variants. Since the population during this period may have been
constant or fluctuating, the theory developed in section 4 does not apply. The only
explanation consistent with the neutral mutation theory for the absence of these
variants is that the population passed through a bottleneck of numbers sufficient
to eliminate neutral genetic variability. In this section, we attempt to answer three
questions:

(a) If the human population remained at some effective size Ne for long enough for
an equilibrium between new mutation and random elimination to be reached, how
small must Ne have been for there to be a reasonable probability that the population
would be genetically homogeneous ?

(b) Supposing that Ne was small enough for the population at equilibrium to be
genetically homogeneous, for how many generations must the population have
remained at that number for genetic homogeneity to be attained ?

(c) Supposing that by passing through a bottleneck the population became
genetically homogeneous, and that subsequently Ne increased comparatively quickly
so that the equilibrium condition would be one of genetic polymorphism, how
recently must the bottleneck have occurred for there to be a reasonable chance that
no common variants have been established since ?

These questions are equivalent to asking how small, for how long, and how recent,
must a bottleneck in human numbers have been to account for the absence of
common neutral haemoglobin variants.

(i) Population size and genetic homogeneity

Kimura (19686) gives the probability that, if there are k potential alleles at a
locus, one particular allele is fixed as

where a = 4Neu and /? = 4^«/(fe— 1).
If u and l/N are very small, this becomes

6-2
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If & is large, i.e. if k > 1 and k > 4Neu,

(±Y
ocT(a)r(alk)\2N)

~ a,T{ajk) \2N,

Table 3. Values of PH, the probability that the population is genetically
homogeneous when u — 10~8 and the values of N, a are as shown

(Ne is taken as [(l-a)/(l + a)]N (see equation (18)).)

N 0-25 0-30 0-35 0-40 0-45 0-50 0-55 0-60 0-65 0-70
1 000 0-984 0-985 0-987 0988 0-990 0-991 0-992 0-993 0-994 0-995
2 000 0-964 0-968 0-971 0-974 0-977 0-980 0-983 0-985 0-987 0-989
5 000 0-903 0-912 0-921 0-930 0-937 0-945 0-952 0-958 0-965 0-970

10 000 0-802 0-820 0-837 0-854 0-870 0-884 0-899 0-912 0-925 0-937
20 000 0-622 0-653 0-683 0-712 0-740 0-768 0-795 0-820 0-845 0-870
50 000 0-273 0-312 0-353 0-396 0-440 0-486 0-534 0-582 0-632 0-683

100 000 0063 0084 0-109 0139 0-174 0-215 0-263 0-316 0-376 0-444
200 000 0-003 0-005 0009 0015 0-025 0-039 0-059 0087 0-126 0-178
500 000 0-000 0000 0000 0000 0000 0-000 0-000 0-001 0-004 0-010

Since there are k alleles, all equally likely to be fixed at any one time, the prob-
ability PH that the population is genetically homogeneous is

PH = aV{a\h) \2NJ ~ W
Equation (13) enables us to decide on the effective population size Ne required

if there is to be a reasonable chance of genetic homogeneity. Some values are given
in Table 3. Taking u = 10~6, as suggested for electrophoretically recognizable
mutants, the effective population size during the palaeolithic would have to have
been 10* or less to account for the present distribution of haemoglobin variants.
Had the population been 105 or more, for a period long enough to approach its
equilibrium, then the population 10000 years ago would almost certainly have been
polymorphic (P > 0-99) at each of the a and /? loci, and these polymorphisms would
be present today.

(ii) Time to reach homogeneity
Given that the effective population size is small enough for the equilibrium con-

dition to be one of genetic homogeneity, for how long must an initially polymorphic
population remain at that frequency to reach homogeneity ? Suppose that a popula-
tion is initially polymorphic for two alleles at a locus, with frequencies >̂: 1 —p, and
that the effective size remains constant. Kimura (1964, equation 4-13 with appro-
priate changes in notation) gives the probability PH that the population will have
become homogeneous for one or other allele as

PB ~ 1 - 6^(1 -p) e - ^ W , (14)

where n is the number of generations.
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Takings = 0-5, this becomes
PH = l-fe-"'<2Ay. (15)

Hence if n = 2Ne, there is a probability of approximately one half that an initially
polymorphic population will have become homogeneous. Thus an effective popula-
tion of 104 would have to be maintained for approximately 20000 generations, or
400000 years, to have an evens chance of becoming homogeneous. A population of
effective size 1000 might become homogeneous if maintained for 2000 generations,
or 40000 years.

(iii) Preservation of homogeneity after an increase in numbers

I t is clear from § 4 that if the human population was homogeneous at the haemo-
globin loci 500 generations ago, it would with high probability still be homogeneous
today, except for rare variants. For how long will a population which is constant
or slowly increasing in numbers retain genetic homogeneity, once this has been
produced by passing through a bottleneck ? This is equivalent to asking how recently
a bottleneck must have occurred to account for the present observed homogeneity.

We consider a population of uniform size with family size distribution (8). Note
that in a population with specific values of a and b the number of offspring to an
individual is independent of those born to other individuals. The population size
is not then specified apriori - its expectation is specified. The mean of distribution (8)
is(l —a)/(l — 6), and so for apopulation with constant expectation (1 —a)/(l — 6) = 2.
The corresponding gene copy distribution is given by (2), where the probability
that a gene has no copies in the next generation is given by

It follows directly that (1 - a J K = 2(1 -o) / ( l +a). (16)

If ak is the probability that a gene now will have no copies in k generations time,
then (Harris, 1963, p. 9) _ l - a x

~ak~ l-a^+ka^'

We will now find the distribution of Yg_ n, the number of alleles which arose between
g and n generations ago and which are still represented by at least one copy. The
number of new alleles arising k generations ago has a Poisson distribution with
mean 2Nu. Of these, a fraction (1 — ak) survive to the present time. Hence Ygn

has a Poisson distribution with mean

2Nu(l-ak) = ^
k=g a i k=

and provided that g > (1 — a,)/^,

l ^ l o g - . (18)
l + o Bg K '
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Now it can be shown that for the family size distribution (8), while the expected
population size remains constant, the effective population size Ne = N( 1 — a)j( 1 + a);
this result may be easily obtained by calculating directly the probability that two
genes in different individuals in one generation come from the same individual in
the previous generation, or by use of the standard formula to be found, e.g. in
Wright (1969, page 215). Hence

E(rftB) = 4tf««log(»/0). (19)

Equation (19) holds only if n <̂  Ne. This limitation arises for the following reason.
In assuming that the probability that a gene arising k generations ago is given by
(17), we have ignored the possibility that a second allele may have arisen among the
descendants of the first and have increased in frequency so as wholly to replace the
original mutant.

Since Tg „ has a Poisson distribution, the probability Po that the population has
no alleles arising between g and n generations ago is given by

Po = (gin)™*". (20)

Equation (20) can be used to estimate how many generations must elapse before
an initially homogeneous population becomes heterogeneous. In doing so, we must
choose a value of g sufficiently large to ensure that mutant alleles which are present
are represented by a sufficient number of copies to make it unlikely that they will
be lost during the subsequent 500 generations of rapid expansion.

Let Cg be the expected number of copies of a mutant which is still present g
generations after its origin. The probability that a mutant will survive for g genera-
tions is (1 — ag), and since it is a constant population, the expected number of copies
of each mutant, surviving or not, is one; hence

Ca(l-ag) = l,

Hence for a = 0-6, Cg ~ 2g.
The probability that a mutant of which there were Cg copies 500 generations ago

would survive until the present time is 1 — (1 — ct50Q)c<> ~ 1 — (1 — x)cs. Taking
g = 100 and hence Cg = 200, and (1 — x) = 0-01, gives a probability that the mutant
is still represented as 1 —e~2 = 0-865. Thus if we apply equations (19) and (20)
with g = 100 generations, then mutants which arose between n and g generations
before the end of the period of constant numbers Ne have a high probability of
surviving during the period of expansion to the present time. Table 4 gives values
of ~E(Ygn) and Po for g = 100 and various values of Neu. For large values of n, ~E(Yg n)
is comparable to na — 1, where na is the expected number of alleles at equilibrium,
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and for convenience some values of na — 1 are also tabulated. These values are based
on the formula (Kimura, 19686)

J l/2iV

For large values of n, Po is comparable to PH, the probability that at equilibrium
the population will be homogeneous; values of PH are also given in Table 4.

Note that in neither case should we expect equality in the limit, since both Po and
E(5^„) ignore those rare mutations which arise in the last g generations and which
are included in the estimates of PH and na.

Table 4. Values ofE,(Ygn) and Po {see equations (19), (20)) for g = 100
and values ofn, Ne (lOn ^ Ne), with u = 10"6

(The values of na— 1 and PJJ for N = Ne, 2Ne, 4We are given for comparison purposes.)

Ne x 10

n x 10-3

0-2
0-5
10
2 0
5-0

100
20-0

N = I 2Ne

n x 10-3

0-2
0-5
1-0
2 0
5 0

100
20-0

(4N,
N = \ 22V.

\N.

2

0-006
—
—
__

—

0-066
0-072
0-077

2

0-994

—

0-985
0-970
0-935

5

0014
0032

—
—
—.

—

0-184
0-197
0-211

5

0-986
. 0-968

—
—
—
—
—

0-958
0-918
0-832

10

0-028
0-064
0-092

—
—

—

n

0-394
0-421
0-449

10

0-973
0-938
0-912

—
—

0-912
0-832
0-673

20

0-055
0-129
0-184
0-240

—

—

. - 1
0-838
0-893
0-949

JV, x 10-3

A

20

0-946
0-879
0-832
0-787

—
— .
—

PH

0-820
0-673
0-428

50

0-139
0-322
0-460
0-599
0-782

—

2-25
2-38
2-52

50

0-871
0-725
0-631
0-549
0-457

—
—

0-582
0-339
0100

100

0-28
0-64
0-92
1-20
1-57
1-84

—

4-7
5-0
5-2

100

0-758
0-525
0-398
0-302
0-209
0158

—

0-316
0-101
0-008

200

0-55
1-29
1-84
2-40
3 1 3
3-68
4-24

10-8
11-3
11-9

200

0-574
0-276
0-158
0-091
0-044
0025
0014

0-087
0-008
0-000
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6. CONCLUSIONS

The argument of this paper is unavoidably somewhat involved. The main con-
clusions can be briefly summarized as follows:

If a majority of the amino acid substitutions which have occurred during the
evolution of haemoglobin have been selectively neutral, then

(i) u, the rate of neutral electrophoretically recognizable mutations, is approxi-
mately 10~6 per human generation.

(ii) If Pmn is the fraction of genes now which are copies of mutants arising between
ra and n generations ago, then, provided nu -4 1, E(i^nm) = (n — m)u.

Generations
Fig. 1. Past history of human numbers; for explanation see text.

(iii) Neutral mutations arising in the last 500 generations, during which the
human population has been increasing rapidly, can account for the rare haemo-
globin variants known to exist. Equation (12) gives the variance of Pmn and Table 1
some estimated values for the past 500 generations.

(iv) Equation (1) suggests that some 5% of existing haemoglobin genes arose
between 10000 and 1 million years ago and a further 5% between 1 and 2 million
years ago. No such neutral variants in fact exist. Two explanations for their absence
are possible: either the neutral mutation theory is false, or human numbers have
passed through a bottleneck in the recent past, during which the population be-
came genetically homogeneous. In the latter case the standard error of Pmn would
be large, and the estimate of 5 % unreliable.

(v) If the explanation is a bottleneck in numbers, how narrow, and how recent,
must such a bottleneck have been? Thus suppose (Fig. 1) that effective numbers
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were reduced to Nx for nx generations, what values of i ^ and nx are required to pro-
duce genetic homogeneity? If subsequently the population increased to an effective
number JV2 for n2 generations, prior to its recent rapid increase, what values of N2

and n2 are consistent with the preservation of genetic homogeneity? Before sum-
marizing our conclusions on these points, something must be said about the meaning
of effective population size.

(vi) The effective population in the past consists of those who have contributed
genes to existing human populations, in particular to populations whose haemo-
globins have been studied. A tribe which became extinct without contributing
anything to present populations should not be included. But very little gene flow
between tribes is sufficient to ensure that, from the point of view considered here,
the effective population is the whole species (Ewens, 1969, p. 38; Maynard Smith,
1970).

The model analysed here treats generations as separate. I t is convenient to think
of the total population size N as being equal to all the children born during a period
of, say, 20 years, or one generation. The effective population size is then given by
(1 — a) Nj(l+a), where a is the probability that a live-born child will fail to survive
and produce at least one child. For most calculations we have assumed a = 0-6,
to allow for a 50 % mortality before reproduction age. With this value of a, N is
approximately equal to the total live population at one time under the age of
40 years, and the effective population Ne is one quarter of that.

(vii) The value of Nx required to ensure genetic homogeneity follows from

iNeu

which gives the probability that a population which has reached equilibrium be-
tween new mutation and random elimination will be genetically homogeneous.
Some values are given in Table 2. They suggest that Nx would have to be of the order
of 10* or less.

(viii) The period nx for which a population must remain at N± to have a good chance
of becoming homogeneous is approximately equal in generations to 2Ne. If Nx were
104, this would imply 20000 generations or 400000 years. A population of effective
size 1000 might become homogeneous in 40000 years.

(ix) If after a bottleneck a genetically homogeneous population rises rapidly to
effective size Nz and remains at that number for n2 generations, then the number Y
of new alleles which arose between n2 and g generations before the end of the period,
and which are still present at its end, has a Poisson distribution with mean

E(F) = 4Neulog(n2lg), (19)
provided that n2 <̂  Ne.

The expected number of copies Cg of the most recently arising allele is given by
equation (21). If a = 006, then Cg = l + 2g. Thus taking g = 100 gives Cg ~ 200.
A gene present in 200 copies 500 generations ago has a high probability of being
present today.
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The probability Po that the population after n2 generations at size Ne has no
alleles originating between g and n2 generations ago is given by

'*- (20)

Taking g = 100, values of Po and E( Y) for various values of Neu and nz are given
in Table 3, which also gives values of PH, the probability of homogeneity, and na,
the expected number of alleles, for large n2.

It is clear that the length of time for which a population might remain homo-
geneous depends critically on the value of 4:Neu. If 4Neu is greater than or only
slightly less than unity, the population will not only rapidly become heterogeneous,
but will soon contain more than two alleles.

The arguments in this paper can be used in one of two ways. If the neutral muta-
tion theory-that most amino acid substitutions in evolution are selectively
neutral-is accepted, then they provide information about the size of the ancestral
human population. As data on other proteins becomes available, this information
will become more precise.

Alternatively, the arguments can be used as a test of the neutral mutation theory
itself. Clearly, it is possible to suggest a past history of human numbers which is
consistent with neutral mutation theory and with the known facts about present
variation in the a and /? chains of haemoglobin. These facts therefore cannot be
used to test the theory, in the absence of independant evidence about past human
numbers. The possibility of testing arises if patterns of variation found for other
human proteins require assumptions about past numbers inconsistent with the
assumptions needed to account for haemoglobin variants.

An adequate test along these lines requires that we have data on present variability
and also an estimate of the 'neutral mutation rate' from amino acid sequences of
related species with a common ancestor a known time in the past. The required
information is available for fibrinopeptide A. King & Jukes (1969) estimated the
rate of evolution of this peptide as 42-9 x 10~10 substitutions per codon per year.
Since there are 16 amino acids, this corresponds to a neutral mutation rate of
42*9 x 16 x 20 x 10~10 ~ 1-4 x 10~6 substitutions per gene per human generation,
or slightly higher than the estimate for electrophoretically recognizable mutations
at the haemoglobin loci. Doolittle et al. (1970) have sequenced fibrinopeptide from
125 normal humans and found no variants. These data are consistent with the
haemoglobin data, and strengthen the argument that, if the neutral mutation
theory is to be retained, we must suppose that human numbers have passed through
a bottleneck.

If human numbers went through a bottleneck sufficiently narrow to eliminate
neutral haemoglobin variants, this would not permit the survival of a selectively
neutral multiple allelic polymorphism. Hence a multiple allelic polymorphism as
is found for the transferrins (Wang, Sutton & Riggs, 1966) is not selectively neutral,
or the mutation rate and hence the rate of evolution is much higher for transferrins;
in the absence of sequence data we cannot choose between these possibilities.
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It may also be possible to test the neutral mutation theory by applying the
methods of this paper to other species, if approximate estimates of past population
numbers can be made. Equations (19) and (20), which describe the rate at which
an initially homogeneous population becomes genetically heterogeneous, should be
of particular value.
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