Genealogical inference of closely related species based on microsatellites

CHRISTIAN SCHLÖTTERER*
Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, 1210 Wien, Austria

Summary
Despite their unmatched popularity in many research areas, microsatellites have not yet become a major tool for the inference of genealogical relationships of closely related species. Recent studies have successfully extended the repertoire of microsatellite analysis beyond population genetics and demonstrate that phylogenetic relationships of closely related species can be inferred accurately with fewer loci than previously assumed.

Even though well-founded phylogenies of closely related species and populations play a central role in the understanding of evolutionary processes, the inference of genealogical relationships remains a significant challenge. Even under the simple model of an instantaneous speciation event, ancestral polymorphisms are shared between the two separate groups. For large population sizes, substructured populations, and recent speciation events, this problem is even more pronounced (Edwards et al., 2000). Hence, allelic variants within and between taxonomic groups are very likely to predate the species split. Genealogical relationships inferred from a single gene may or may not coincide with the genealogy of the species (Pamilo et al., 1988). Consequently, multiple genes need to be analyzed, preferably for multiple individuals from each species in order to estimate the species phylogeny.

A different approach to the genealogical inference of closely related species takes advantage of variation shared across groups. The process of differentiation of the frequencies of non-selected ancestral alleles in different taxonomic groups due to genetic drift begins immediately after a speciation event. Initially, allozymes were used for genealogical inference based on differences in allele frequency, but the frequent non-neutral behavior of allozymes and the limited number of informative marker systems often severely compromised their use. About a decade ago, microsatellites were introduced as a novel molecular marker (Litt et al., 1989; Tautz, 1989; Weber et al., 1989). This class of DNA evolves mostly under neutrality, and several thousand loci are typically present in eukaryotes (Schlötterer, 2000). In contrast to allozymes, microsatellites have an exceptionally high mutation rate. Therefore, not only genetic drift, but also mutation pressure affects allele frequencies. To account for this, several microsatellite specific distance measurements have been introduced, such as R_{st} (Slatkin, 1995) and $(\theta\mu)^2$ (Goldstein et al., 1995). While these distance measurements have the desired property of linearity with time, they also have a large variance. Computer simulations suggest that 50–100 microsatellite loci may be required for reliable phylogenetic reconstruction (Takezaki et al., 1996). Further problems for microsatellite based genealogical inference are imposed by a presumed length constraint, which keeps the repeat number at a locus below a certain threshold (Bowcock et al., 1991). Modifications of microsatellite-based distance measurements have been proposed to account for this (Feldman et al., 1997; Pollock et al., 1998; Zhivotovsky, 1999), more recent studies on the mutation process of microsatellites suggest, however, that mutational behavior of microsatellites is specific to the repeat number (Ellegren, 2000; Harr et al., 2000; Xu et al., 2000). While deviations from the strict stepwise mutation model do not affect phylogenetic reconstruction, variation in mutation rates among species remains a major concern (Goldstein et al., 1997). Due to these anticipated complications, only a very limited number of experimental studies have been performed to test the applicability of microsatellites for genealogical inference.
1. The Drosophila model

In comparison to many other experimental systems, the Drosophila melanogaster complex offers a wealth of information relating to genealogy, including data on allozyme and inversion polymorphism, numerous gene trees, and a full body of speciation studies (Powell, 1997). As a result, a good a priori hypothesis exists, against which the genealogical relationships inferred from microsatellites can be tested.

The D. melanogaster complex consists of four species. D. melanogaster and D. simulans are two cosmopolitan species, and D. sechellia and D. mauritiana are endemic to the islands of the Seychelles and Mauritius. The basal position of D. melanogaster was established a long time ago, but the grouping of the remaining three species has only recently been established. ‘Speciation genes’, which contribute directly to some aspects of biological divergence, are expected to reflect the species phylogeny more accurately than other genes. Use of the Odysseus (OdsH) locus, a homeobox gene involved in hybrid male sterility in the D. simulans clade, implies that D. simulans and D. mauritiana cluster together (Ting et al., 2000). This grouping is also supported by a joint sequence analysis of 14 different genes (Kliman et al., 2000).

Approximately 30 individuals from each species were analyzed for 39 microsatellite loci (Harr et al., 1998). In a tree of individuals, in which each individual is treated as a separate OTU, all four species are well separated and each species node was supported by a high bootstrap value. Most importantly, the genealogical relationships were identical to those based on the ‘speciation gene’ OdsH. Hence, this Drosophila model has clearly demonstrated that microsatellite analysis can be used for phylogenetic reconstruction.

2. Other studies

A substantial number of studies using a small number of loci (< 10) to infer genealogical relationships have been published, but they are difficult to evaluate in the context of usefulness of microsatellites for phylogenetic reconstruction. The first study to systematically evaluate the usefulness of microsatellites for phylogenetic inference was based on samples from 13 geographic areas representing three different bear species (Paetkau et al., 1997). Using 10 loci the authors were not able to resolve the close sister relationship of polar bears and brown bears from more distantly species, irrespective of the distance measurement used. Despite the undoubted importance of the study at the time published, in the light of other studies (see below), it appears likely that a larger number of loci would have resulted in different outcome. Similarly, a study based on 10 microsatellites failed to differentiate humans and three primate species (Bowcock et al., 1994).

The mammalian family Bovidae includes a variety of globally distributed ungulates. One tribe, the Bovini, contains many important domestic animals, such as cattle, Yak and Buffalo. Ritz et al. (2000) used 20 microsatellites to infer the phylogenetic relationship of the tribe Bovini. Two different distance measurements, (δµ)² (Goldstein et al., 1995) and Cavalli-Sforza and Edwards’ chord distance (Cavalli-Sforza et al., 1967) gave a consistent grouping of species. As expected from the results of the computer simulation study of Takezaki and Nei (1996), the chord distance resulted in higher bootstrap support values (Ritz et al., 2000).

The study by Goldstein et al. (1999) on the island foxes, a diminutive form of the mainland gray fox Urocyon cinereoargenteus, provides a nice example of genealogical inference at the population level based on microsatellites. Island foxes currently occupy six of California’s Channel islands. With a dataset of 19 microsatellite loci and using a distance measure based on the proportion of shared alleles, 181 out of 183 foxes were assigned correctly to their geographic origin. While the topology of population trees based on (δµ)² matched the presumed colonization history of the islands, the trees derived with the proportion of shared alleles did not place the gray fox as an outgroup (Goldstein et al., 1999).

The last example for microsatellite based phylogeny reconstruction addressed the old question of whether the two oak species, Q. robur and Q. petraea, are two separate taxonomic units (Muir et al., 2000). The authors analyzed five populations from each of the two species with 20 microsatellites. A grouping of the populations according to geography would be expected if Q. robur and Q. petraea are not distinct taxonomic units. However, consistent with morphological data, Muir et al. (2000) found that the two species were well separated with high bootstrap values supporting the grouping of populations from the same species.

3. Indels in flanking sequence

Microsatellite variability is predominantly scored as PCR product length variation, hence microsatellite repeat number changes are measured jointly with indels in the flanking sequence. While in D. melanogaster flanking sequence variation seems to be a frequent phenomenon Colson et al., 1999; Harr & Schlötterer, unpublished observations, for many species the length of PCR product usually varies by multiples of the repeat unit size, suggesting that mutations of the microsatellite account for most of the variation in PCR product size. Between species, however, flanking sequences accumulate indel muta-
tions with increasing phylogenetic distances. A laborious but feasible approach to circumvent this problem would be to determine the exact repeat counts for each species and locus by DNA sequencing. Interestingly, data from the D. melanogaster complex suggest that indels in the flanking sequence are not compromising the recovery of the correct topology. Using PCR product lengths rather than repeat number inferred by sequencing of a single representative individual, Harr et al. (1998) recovered the identical topology, but the bootstrap support was slightly lower for the data set based on PCR-product lengths.

4. How many loci?

While computer simulations suggest that approaching 100 microsatellite loci may be required for accurate phylogenetic reconstruction, the genealogy of the D. melanogaster species group could be inferred reliably with just 39 microsatellites. Even a smaller number of loci resulted in the same topology (Harr et al., 1998). The authors attributed the accuracy of their phylogenetic reconstruction to the low mutation rate of Drosophila microsatellites (Schlötterer et al., 1998; Schug et al., 1997). An alternative explanation would be that some taxa require fewer loci for accurate phylogenetic reconstruction. The studies by Ritz et al. (2000) and Muir et al. (2000), however, were based on only 20 microsatellites, and also provided a strong phylogenetic signal despite the observation that microsatellites in their taxonomic groups were not described to have low mutation rates. Future studies will confirm whether or not a moderate number (20–40) of microsatellite loci is sufficient to infer reliable microsatellite based phylogenies.

5. Which distance measurement?

Takezaki and Nei (1996) proposed to use D_α (Nei et al., 1983) or Cavalli-Sforza and Edwards’ chord distance (Cavalli-Sforza et al., 1967) for the inference of the topology. $(\delta\mu)^2$ on the other hand should be used to estimate branch lengths. While the proportion of shared alleles (Bowcock et al., 1994) was not evaluated by the authors, the experimental data by Harr et al. (1998) and Muir et al. (2000) suggest that this distance measurement is also effective in obtaining the correct genealogical relationship.

Given that distance estimators based on allele frequencies rely on genetic drift, they are sensitive to changes in population size. It has been known for some time that bottlenecks inflate genetic distances (Chakraborty et al., 1977), an effect that has been confirmed by computer simulation studies using microsatellites (Takezaki et al., 1996). A recent study demonstrated, however, that in cases of low migration rates the $(\delta\mu)^2$ estimator could be corrected for demographic effects such as bottlenecks and population expansions (Zhivotovsky, 2001). The only caveat of this method is that the variability in the ancestral population is required for this correction. Using an extant population with levels of variability similar to the presumed ancestral one Zhivotovsky (2001) improved the microsatellite based estimate for the out of Africa colonization of humans from 34,000 to 57,000 years.

While the approach by Zhivotovsky (2001) could potentially be applied to genealogical inference, the variability of the ancestral populations is required for each node of the tree (including internal nodes). Whether or not estimates based on extant populations and additional information about the history will be sufficient to improve genealogical inference based on $(\delta\mu)^2$ requires further investigation.

6. Final remark

Given that several studies have demonstrated that a moderate number of loci permit a microsatellite based phylogenetic inference of closely related species, I anticipate that more studies with a larger number of loci will verify the usefulness of microsatellites for phylogenetic reconstruction. Based on larger data sets, it will be possible to decide whether loci with a low mutation rate are more effective for phylogenetic reconstruction and how many loci are required for a sufficient statistical support. Whether or not divergence times are best estimated by Bayesian or likelihood based approaches, which require a specific demographic model, or by model free algorithms remains to be clarified (Stumpf et al., 2001).

I am grateful to R. Achmann, B. Harr, M. Kauer, and L. Zhivotovsky for helpful discussions. Many thanks to G. Gibson for his encouragement. C.S. is supported by grants of the Fonds zur Förderung der wissenschaftlichen Forschung.

References

