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Summary

Height has been studied in human genetics since the late 1800s. We review what we have learned
about the genetic architecture of this trait from the resemblance between relatives and from genetic
marker data. All empirical evidence points towards height being highly polygenic, with many loci
contributing to variation in the population and most effect sizes appear to be small. Nevertheless,
combining new genetic and genomic technologies with phenotypic measures on height on large
samples facilitates new answers to old questions, including the basis of assortative mating in
humans, estimation of non-additive genetic variation and partitioning between-cohort phenotypic
differences into genetic and non-genetic underlying causes.

1. Introduction

Human height is a classical model ‘complex’ trait in
genetics research. It has a continuous near-normal
distribution and shows strong familial resemblance.
In other species, the correlation between relatives for
height is also large and related phenotypes such as
body size show strong response to artificial selection.
For example, the enormous variation in sizes among
dog breeds or the difference in size between broiler
and layer chickens are the result of artificial selection
in relatively short periods of time in terms of the
number of generations. There are also strong envi-
ronmental influences on height, as evidenced, for
example, by the secular rise in average height in
industrialized nations. Height in humans is easily
measured and self-reports through questionnaire
data or telephone interviews are highly accurate
(Macgregor et al., 2006). Height is often measured as
part of medical disease studies, facilitating very large
sample sizes for genetic studies. One could argue that
height in humans is the equivalent of bristle number in
Drosophila, in terms of its role as a model phenotype.

In the short review, we attempt to summarize what
we have learned about the genetic architecture (here
defined as the number of genes influencing height,
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their allelic spectrum, effect sizes and mode of gene
action within and between loci) of height after more
than a century of research.

2. Resemblance between relatives

Francis Galton was probably the first researcher who
was interested in the resemblance between relatives
for human height (he was also interested in intelli-
gence and many other things), in particular, in quan-
tifying such resemblance (Galton, 18864, b). Galton
observed a regression of progeny height towards the
mean in the population ‘ The deviates of the children
are to those of their mid-parents as 2 to 3’ (Galton,
18865h). In today’s terms and interpretation, he esti-
mated a heritability of two-third from the regression
of offspring phenotype on the mid-parental value.
Galton and others thought that the resemblance be-
tween relatives for a quantitative trait such as height
indicated a discovered law of inheritance. Following
the rediscovery of Mendel’s work in 1901, these laws
were thought to be different from those for discrete
(Mendelian) traits; as for example; the title ‘On
the Laws of Inheritance in Man: I. Inheritance of
Physical Characters’ (Pearson & Lee, 1903) suggests.
It was not until the classic paper by R.A. Fisher that
the apparent difference in laws of inheritance between
Mendelian characters and continuous traits was
resolved (Fisher, 1918). The phenotypic correlation
between first-degree relatives was first estimated about
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Fig. 1. Plots of phenotypic correlations between close
relatives against their expected genetic relationships in four
different studies: Pearson & Lee (Pearson & Lee, 1903),
Virginia: (Eaves et al., 1999), FHM: (Kannel ef al., 1961,
1979; Splansky et al., 2007) and Liu et al. (Liu et al.,
2006). The red solid line shows the regression of the
observed phenotypic correlation on the expected genetic
relationship with the slope indicating an estimate of
heritability. The blue dotted line is the regression line with
a slope of 0-8 and no intercept.

half a century ago (Figs 1 and 2) and has not changed
much since then. The correlation of monozygotic
(MZ) twin pairs, whether raised together or apart is
about 0-8-0-9 (Bouchard et al., 1990; Eaves et al.,
1999; Silventoinen et al., 2003 ; Macgregor et al., 2006;
Visscher et al., 2008). The correlation of first-degree
relatives is about one-half of that of MZ twins and
these observations have led to the commonly held view
that height is a classic example of a quantitative trait
with large narrow-sense heritability. From modelling
the correlation of twin pairs, full-sibs and parents
and progeny there appears to be little or no evidence
for dominance or epistatic genetic variation. So far so
good. But if we look at more distant relatives the
picture becomes more complicated. Second- and third-
degree relatives are more similar than predicted from a
simple additive model and a narrow-sense heritability
of 0-8. For example, the phenotypic correlation of
cousins is about 0-2, whereas 0-1 is predicted (Fig. 1).
Fisher already noted these discrepancies from the
simple additive model (Fisher, 1918). At the extreme
end is the correlation between (unrelated) spouses,
which is approximately 0-2-0-3 for height.

Relative to random mating, assortative mating
increases the correlation between relatives. Lynch &
Walsh (1998) used the Pearson & Lee (1903) corre-
lations between first-degree relatives and estimated
a narrow-sense heritability under random mating of
~0:62. The expected phenotypic correlation of
first cousins and second cousins is (1/8)(1 +rh?)? and
(1/32)(1 +rh*)3, respectively (Lynch & Walsh, 1998),
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Fig. 2. Phenotypic correlations between parent—offspring,
siblings, DZ twins and MZ avuncular (MZ twin with the
offspring of his/her co-twin) in four different studies:
Pearson & Lee (Pearson & Lee, 1903), Virginia:
(Cloninger, 1999), FHM: (Kannel et al., 1961, 1979;
Splansky et al., 2007) and Liu et al. (Liu et al., 2006).

with r the phenotypic correlation between spouses
and /? the narrow-sense equilibrium heritability after
many generations of assortative mating. For r=0-2
and h2=0-8, the expected correlations of first cousins
and second cousins are therefore 0-195 and 0-066, re-
spectively. However, these calculations assume that
individuals choose mates based on phenotypic simi-
larity (and solely on height). In humans, things are
likely to be more complicated in that mate choice
may be within socio-economic strata which may differ
in mean phenotype. Therefore, assortative mating
in humans may be partly due to the environment
(Falconer & Mackay, 1996). ‘Social homogamy’ as a
model for the resemblance between spouses refers
to assortment and cultural transmission based on
correlated unobserved random non-genetic effects
(Morton, 1974). The observed phenotypic correlation
of ~0-2 between the two spouses of MZ pairs
(Eaves et al., 1999) shows that the simple model of
phenotypic assortment is not consistent with these
data—we would expect their correlation to be
Ph?~0-22 x 0-8=0-032. Yet, the spouses of DZ pairs
had a lower correlation of ~0-1 (Eaves et al., 1999).
Therefore, the high correlation of distant relatives
is likely to be due to a combination of assortative
mating and social homogamy.

3. Major mutations/single genes

There are a number of identified genes and specific
mutations within them that cause considerable
decreases or increases in height. Dominant mutations
in the fibroblast growth factor receptor gene 3
(FGFR3) cause dwarfism (Velinov et al., 1994). These
mutations are rare, with a frequency of between
1/10000 and ~1/100 000. Marfan syndrome is caused
by dominant mutations in the gene FBNI1 that affect
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Fig. 3. Plot of the number of height SNPs on each

chromosome against chromosome length. A total of 180

height SNPs were discovered by a meta-analysis of GWAS

with 183 727 individuals of European ancestry by the
GIANT consortium (Lango Allen et al., 2010).

connective tissue. There is a range of phenotypes
for carriers of a mutation, including being taller
than average by about 10cm (Lee er al., 1991).
A mutation in the orthologue of the human HMGA?2
gene is responsible for the pygmy mutant mouse
(Zhou et al., 1995). Interestingly, a disruption of this
gene in humans causes severe overgrowth (Ligon
et al., 2005) and common single nucleotide poly-
morphisms (SNPs) in the gene are associated with
small additive effects (~4 mm) (Weedon et al., 2007).
Therefore, mutations in the same gene can cause
dwarfism, giantism and subtle ‘normal’ variation.

While there are numerous single-gene (monogenic)
conditions that profoundly affect height (Weedon &
Frayling, 2008), the mutations behind them are too
rare to explain much variation in the population. This
does not exclude the existence of further rare muta-
tions or low-frequency polymorphisms of large effects
that contribute to variation in height.

4. Linkage analyses

Linkage analyses for rare disorders that have a large
effect on height have been successful in finding
causative mutations, including those for Marfan syn-
drome (Kainulainen et al., 1990) and achondroplasia
(Lee et al., 1991). Linkage analyses to find these rare
mutations are not based on normal variation in height
in the population but on segregating disease pheno-
types in pedigrees. Linkage analyses for height itself
in small or extended pedigrees have produced many
‘significant” LOD scores (Hirschhorn et al., 2001) but
have not resulted in the identification of segregating
variants that explain the observed linkage signals.
This is not just for human height but also for many
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other complex traits in human populations, including
disease.

Linkage analysis can also be conducted in an esti-
mation rather than hypothesis testing framework,
by correlating genome-wide (or chromosome-wide)
identity by descent with phenotypic similarity
(Goldgar, 1990; Visscher et al., 2006, 2007). An
application to height using full-sib pairs and micro-
satellite markers showed that the estimate of narrow-
sense heritability from this approach was very similar
to estimates from traditional twin and family studies,
and allowed the partitioning of additive genetic
variation across chromosomes (Visscher et al., 2000,
2007).

It is interesting to speculate why quantitative trait
loci (QTLs) mapping has not been successful in dis-
covering genes that affect height in the light of results
of recent genome-wide association studies. It is likely
that many reported significant linkage findings are
false positives, due to multiple and post-hoc testing
of many hypotheses. However, it seems unlikely that
all reported linkage results are false positives. When
we estimated genetic variation per chromosome in an
unbiased manner and correlated the estimates with
the number of reported QTL per chromosome, we
found a significant correlation, also after conditioning
on the length of the chromosome (Visscher et al.,
2007). It is possible that QTLs harbour multiple low-
frequency variants with large effect that are not de-
tected in association scans but can be detected using
linkage analysis. Alternatively, QTL can consist of
many more common variants of small effects (in
principle, detectable by association analysis) that
cause between-chromosome variation in the popu-
lation (Dekkers & Dentine, 1991; Visscher & Haley,
1996). Even though these variants of small effect size
may be in linkage equilibrium in the population,
within a family they are in LD and the contribution
of all variants in a large chromosomal region (say,
20 Mb) can be detected by linkage. In principle, this
hypothesis that linkage analysis findings can be ex-
plained by a concentration of many causal variants of
small effects can be tested by having genome-wide
association study (GWAS) or sequence data on
closely related individuals. Then variation within and
between families can be partitioned simultancously.
Regions with multiple low-frequency variants of
large effect that are segregating in the population
would show up as explaining a lot of variation within
families but little between-family variation.

5. Genome-wide association studies

Despite the previous findings of rare mutations that
cause extreme short and tall people and numerous
linkage peaks that cover a large fraction of the
genome, no genes or gene variants had been found
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that contribute to normal variation of height in the
population. GWAS is designed to test for associations
between SNPs and a trait in a hypothesis-free genome
scan. GWAS were facilitated by the HapMap project
(The International HapMap Consortium, 2005)
which catalogued human common genetic variants
and by the development commercial SNP chips that
can rapidly genotype hundreds of thousands of
SNP loci. The first two GWASs for height identified
two common SNPs at genes HMGA2 (Weedon et al.,
2007) and GDF5-UQCC (Sanna et al., 2008). The
allelic effects of the two SNPs are ~4 mm and their
allele frequencies (p) are approximately 0-5 and 0-4,
respectively. Assuming Hardy—Weinberg proportions
of genotypes, the variance contributed by an SNP
is 2p(1 —p)a®, where a is the additive effect size
(Falconer & Mackay, 1996). An effect of 4 mm is
4/70=0-057 phenotypic standard deviations (SD),
and so these two SNPs contribute 2x0-5x0-5x
0-057*> and 2x0-4x0-6x0-057% respectively, or
~0-2% each of the phenotypic variance for height in
the general population. Subsequently, three GWAS
with much larger sample size confirmed the SNPs
at HMGA2 and GDF5-UQCC loci and identified
an additional 42 SNPs to be associated with height
(Gudbjartsson et al., 2008; Lettre et al., 2008;
Weedon & Frayling, 2008; Weedon et al., 2008). On
one hand, more than half of the 44 SNPs are in
the vicinity of genes with plausible function and/or
involved in biological pathways related to skeletal
growth and development (Weedon & Frayling, 2008),
which provide great insight into the molecular mech-
anism of human growth. On the other hand, however,
the effect sizes are very small, ranging from 1 to 4 mm
or approximately 0-01-0-06 phenotypic SD, assuming
a SD for height of 70 mm, and in total, they only ex-
plain ~5% of height phenotypic variation. Of these
44 loci, only four were identified by all of these three
GWAS, only seven were identified by at least two
studies and the remaining 33 were implicated by one
study alone. Because the power to detect such small
effects is typically low, e.g. the power to detect an SNP
that explains 0-2% of the phenotypic variance was
~30% with a sample size of 10000 (Visscher, 2008),
it is often expected that an SNP appears to be gen-
ome-wide significant in one study but not in another
study. A much larger sample size is required to detect
new height SNPs with similar or smaller effects.
The recent meta-analysis of 46 GWAS with an initial
discovery set of 133653 individuals and a follow-
up replication set of 50074 samples by the GIANT
consortium identified 180 SNPs (Fig. 3) including the
previous 44 SNPs (Lango Allen et al., 2010). These
SNPs in total explain ~10% of the height variation,
suggesting that the additional 135 SNPs only explain
an extra ~5% of the variation. Using an approach
developed by Park et al. (2010), Lango Allen et al.
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(2010) estimated that ~ 700 SNPs with effects equal to
or larger than those identified, which in total would
explain ~16% of the phenotypic variance of height
and a sample size of 500000 is required to declare
99-6 % of these loci as genome-wide significant.

Considering GWAS and meta-analysis with such
large sample being conducted, we have only explained
1/8th of the heritability of height; where is the re-
maining heritability? This question is relevant not
only for height but also for most other complex traits
and diseases such as Type 2 diabetes, schizophrenia,
obesity and cardiovascular diseases (Manolio et al.,
2009). Explanations such as gene—gene and gene
interaction are not relevant to this problem because
the narrow-sense heritability by its definition is the
phenotypic variance explained by additive genetic
variation. The main debate is between ‘rare variants
or structural DNA variation that are not (well) tagged
by common SNPs’ and ‘a large number of variants
with small effects’. We recently proposed and applied
a method to accumulate the effects of all the common
SNPs and estimated that ~45% of the phenotypic
variance of height can be explained by considering all
the common SNPs together (Yang et al., 2010). We
argued that half of the heritability for height that has
not been explained by single-SNP association studies
is hiding rather than missing (Gibson, 2010). The
reason why GWAS are unable to explain this amount
of genetic variation is because the effect sizes of
individual SNPs are too small to pass the stringent
genome-wide significant level and because of the
imperfect LD between common SNPs and causal
variants, especially when the minor allele frequencies
(MAF) of causal variants tend to be low. More details
about the methods and implications of Yang er al.
(2010) can be found in Visscher et al. (2010).

6. Non-additive variation

The resemblance between relatives for height, in par-
ticular for close relatives, suggests that most or all
similarity is due to genetic factors and that most or all
genetic variation is additive. The latter is consistent
with theoretical expectations (Hill ez al., 2008). Eaves
et al. (1999) used an extended twin design (twins and
their spouses, parents, siblings and offspring) and a
total of ~30000 individuals with multiple pheno-
types, including height. They had 80 different kinds
of relationships and estimated multiple variance
components by fitting and selecting models. These
authors concluded that ~56% of variance was due
to additive genetic effects, ~16% due to assortment
and ~9 % due to dominance (and other non-additive
effects).

Most rare (Mendelian) mutations affecting height
appear to be fully dominant or recessive. Pairwise
interaction tests between validated SNPs from
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GWAS suggest no interaction, but those SNPs were
ascertained because they show strong additive effects
and the statistical power to detect additive by
additive epistasis is extremely low. From genome-
wide-realized additive and dominance coefficients
of relationship we estimated dominance variance
(Visscher et al., 2006, 2007). It was not significantly
different from zero but the power of detection was low
because the additive and dominance relationships
were highly correlated (~0-9).

Therefore, theory and empirical data do not sup-
port a large role for non-additive variation for height.
However, the power to detect dominance variance
in all experimental designs employed to date (resem-
blance between relatives, linkage and GWAS) has
been low and we know from molecular biology that
interactions at the cellular level are ubiquitous. With
ever-increasing sample sizes it will become feasible to
get more accurate estimates of dominance and epi-
static variance. Nevertheless, if the inference that the
narrow-sense heritability of human height is ~80 % is
correct then there is not much room for non-additive
variation.

7. Prediction

The height of offspring can be predicted from those
of their mid-parents with a precision of *~40%
(Galton, 1886b; Aulchenko et al., 2009). The pre-
cision of this prediction follows directly from quanti-
tative genetic theory (Falconer & Mackay, 1996) and
depends only on the observed phenotypic correlation
between parents and progeny. Strictly speaking this
is not necessarily a genetic prediction because even
if the parent—offspring resemblance was due to en-
vironmental factors the prediction would hold. Here
the prediction precision is defined as the proportion
of variance in offspring height that is explained by
the predictor (mid-parent value), i.e. the square of the
correlation between predicted heights and actual ob-
servations. Note that this definition is different from
the one used in livestock genetics, where the corre-
lation between true and predicted breeding value is
commonly used. This definition, called ‘accuracy of
prediction’, is more logical because the best one can
do with a genetic prediction is to have a correlation of
unity between the predicted and the actual genetic
value. The correlation between the genetic predictor
and phenotype has an upper limit that depends on the
heritability of the trait (see e.g.Wray et al. (2010) for
relevant theory when the phenotype is disease status).
The expected correlation between the phenotype and
predictor from close relatives (one with a phenotype,
the other to be predicted) is r = a;#* based on a simple
additive model, where a; is the additive genetic
relationship (numerator relationship or twice the
kinship coefficient) between relatives, e.g. a;=1/2 for
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parent—offspring or siblings. The prediction precision
for MZ twins is r®=h*, which forms the upper
boundary of the prediction accuracy from individual
observations on relatives. With genome-wide SNP
data, we are able to predict height between ‘un-
related” people, and the prediction accuracy depends
on the number of underlying causal variants that
affect height and the accuracy of the estimates of
SNP effects (Goddard et al., 2009). Theory on whole-
genome methods for prediction suggest that a very
large discovery sample is needed, of the order of
100000 s of individuals with SNP and phenotype
data, to predict future observations with reasonable
precision (Goddard, 2009). However, sample sizes of
300000+ are likely to be available in the near future
and in combination with new ‘genomic selection’
statistical methods (Meuwissen et al., 2001) it may
become feasible to make accurate predictions of
height from genetic data.

Under a simple model in which all resemblance
between parents and progeny is due to additive gen-
etic effects, the proportion of variance in offspring
phenotype explained by mid-parent phenotype is
r?="hh*, e.g. 0-32 for a heritability of 0-8. Hence, if
identified SNPs cumulatively explain more than 32 %
of the phenotypic variance then a predictor from these
SNPs will do better than the mid-parent phenotype.
From the latest meta-analysis of height (Lango Allen
et al., 2010) approximately 10-12% of phenotypic
variance is explained by all robustly associated SNPs.
However, a predictor built from genomic selection
methods that use all individual-level genotype data
should do better than explaining ~10% of pheno-
typic variance. It seems plausible that the combi-
nation of ever larger samples size, improved genome
coverage and better statistical methods will result in
DNA-based predictions that will rival or outperform
prediction based on parental observations in the near
future.

8. Global variation in height and the evolution
of height

Height is one of the ranges of physical phenotypes
that can differ greatly between different geographi-
cally defined populations. For example, mean height
in many Southern European populations, such as
Portugal and Italy, is generally lower than those from
Northern Europe such as the Netherlands. Regional
variation in height may be due to variation due to
environmental or genetic influences or a combination
of both. Height heritabilities, as estimated from
twin studies, are broadly constant across European
countries (Silventoinen efr al., 2003). However, a
high and consistent heritability for height says noth-
ing about the nature of differences between popu-
lations. Once we more fully catalogue the DNA
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polymorphisms that cause variation, the relative
contributions of gene and environmental factors on
mean differences can be quantified.

It is, however, abundantly clear that human height
has been increasing since at least the 19th century
when comprehensive records first began (McEvoy &
Visscher, 2009). The mean height of Dutch men, for
example, has increased from 165 cm in 1860 to a cur-
rent 184 cm (Cole, 2003). The secular rise in height
probably reflects improvements in health care and
diet. The secular increase in Northern European
height appears to have somewhat plateaued recently
but Southern Europeans continue to show strong
growth patterns such that the relative gap in height is
closing (Garcia & Quintana-Domeque, 2007), sug-
gesting that environmental factors are an important
source of the geographic difference in height across
Europe. Supporting such a conclusion is the obser-
vation that the SNPs associated with height by
GWAS do not appear to be obviously different in
frequency between Northern and Southern European
populations. But small differences in allele frequencies
can add up. Under a number of simplified assump-
tions, the mean genetic difference between the popu-
lations is 23(a;0,;) (Falconer & Mackay, 1996),
where the sum is over all causal variants (with effect
size a;) and 0, is the difference in allele frequencies
between the two populations. For example, 1000 loci
with a difference in allele frequency of 1% and an
additive effect of 1 mm each would contribute to a
mean difference of 2 cm. As previously noted, the
identified 180 loci control only 10 % of the variance in
height and many more loci of very small effect will
contribute to height variation. To fully test the extent
to which differences in population height are genetic,
we probably need to have more loci identified.
Furthermore, height GWAS, as with the study of
many traits, have been focused on European popu-
lations making it even more challenging to determine
whether broader geographical differences in height
between continents are genetic or environmental. It
is yet unclear whether the catalogue of the variants
that contribute to height are the same in identity
and/or effect between populations. From height
GWAS that have been conducted in Korean and
Japanese populations (Cho et al., 2009 ; Okada et al.,
2010), we know that several loci were previously
identified in Europeans and several novel loci
were detected. A difference in both effect size and
allele frequency between Europeans and Koreans was
noted for the SNP in HMGAZ2 that is most strongly
associated with height — the SNP explains about four
times more variation in the European population.
However, until causal variants have been identified,
it is difficult to draw strong conclusions from allele
frequencies and effects sizes at markers that are in LD
with one or more causal variants.
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9. Height evolution

Given that it is clear that many hundreds of genetic
variants contribute to height, it is unlikely that at least
some of these do not differ in frequency across popu-
lations either due to genetic drift or natural selection.
Genetic drift is an important force in the emergence
of new populations since their formation typically
involves a bottleneck effect. Genetic drift could thus
easily cause some populations to have more tall rather
than short alleles (or vice versa). Alternatively, under
selection, the frequency of a genetic variant that af-
fects height and simultaneously confers an advantage
or disadvantage to the prevailing environment could
also lead to marked geographic differences in height if
the selective force(s) and episode differ in geographic
extent or intensity. The striking differences in stature
between pygmy populations and their neighbours is
thought to be the result of natural selection, most
likely linked to some facet of their tropical rainforest
environment, because the pygmy phenotype occurs
in multiple unlinked rainforest localities in Africa,
South America and South East Asia (Perry &
Dominy, 2009). Several theories regarding this
observation have been proposed including better
mobility (Diamond, 1991) or more effective thermo-
regulation (Cavalli-Sforza, 1986). Small body size,
and consequent reduced energy needs, might also be
advantageous for a lifestyle where food supply is
limited or uncertain (Shea & Bailey, 1996). Once the
genetic variants underlying the pygmy phenotype
across the world are unravelled, we will be able to tell
if this remarkable convergent evolution has occurred
through polymorphisms in the same set of genes or
whether it was achieved by different genetic and bio-
logical pathways. Apart from the role of natural
selection in explaining regional variation, it is likely
that positive and negative selection have operated in
tandem (purifying selection) at the broader species
level to ensure that height is restricted to the observed
normal range. Sexual selection and positive assor-
tative mating also may have contributed to differences
in height between populations.

10. Conclusions and the way forward

Combining the evidence from the resemblance be-
tween relatives, major mutations and GWAS, we can
conclude that height is a typical complex trait with a
range of allele frequencies of causal variants from rare
Mendelian mutations to common polymorphisms.
The bulk of genetic variation appears to be due to
causal variants in linkage disequilibrium (LD) with
common SNPs, which is surprising (to some). With
current knowledge the model of genetic variation for
human height appears consistent with most segre-
gating variants being evolutionary neutral or nearly
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neutral. However, this conclusion is driven in part by
a lack of discovery about causal variants that cause
variation in the population, since signatures of selec-
tion will be weaker at sites in LD with causal variants
than at the variants under selection, in particular for
negative selection.

One important question, not just for human height,
is how much variation in the population can be ex-
plained by low-frequency variants, for example, those
with a frequency of about 1% in the population.
Sequencing efforts such as the 1000 Genomes project
(Siva, 2008) and in the near future the availability of
full genome sequences on many individuals will pro-
vide a test bed. Associated variants that have been
detected to date each explain about 0-1-0-4 % of the
phenotypic variance. If causal variants have a fre-
quency of 1% in the population, then they will be
detected with current sample sizes of ~ 100000 if their
effect sizes are ~1-6-3-1 cm. Effects at associated
SNPs, many of which are likely to be in strong LD
with causal variants, are of the order of a few mm,
and rare mutations (e.g. those causing Marfan syn-
drome, tall stature or dwarfism) have effect sizes of
10-100 cm. It seems likely that there must be variants
with effect sizes in between these extremes.

What have we learned from over a century of gen-
etics research on human height? Research into the
resemblance between relatives and partitioning on
phenotypic variation has not really added that much
since the work of Galton, Pearson and Fisher. It is
only in the last decade and in particular the last 5 years
that genome-wide marker technology has enabled the
mapping of ‘polygenes’. The results are interesting
but, perhaps, not surprising: underlying variation in
height there are many loci, most with small effect sizes,
which appear to work additively. It seems that the
mutational target for height is high in the genome, in
that mutations in many genes can affect height.

For the near future, one exciting by-product of
genomics technologies is that old questions can be
addressed with new data. We name a few possibilities
here but the possible list is much longer and only
limited by the imagination of the researcher:

1. Assortative mating. With sufficient genetic vari-
ation explained by mapped loci, estimated additive
genetic (breeding) values can be calculated from
marker data and the phenotypic correlation be-
tween spouses can be compared with their genetic
correlation. A social homogamy model would
predict no correlation of breeding values in the
absence of genetic substructure in the population.

2. Estimation of non-additive variation. With large
sample sizes (10000s) of genotyped sibling pairs,
genetic variance can be partitioned into additive,
dominance and additive-by-additive variance,
using the same method as Visscher et al. (2006,
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2007). It may be possible to estimate dominance
variance from GWAS data, fitting an additive and
dominance relationship matrix simultaneously.

3. Estimation of genetic correlations between height and
disease. Height is phenotypically correlated with a
range of other traits, including disease (Gunnell
et al., 2001; Zuccolo et al., 2008). The whole-
genome approaches for estimating genetic variation
can also be used to estimate genetic covariance even
when traits are measured on different people. In a
prediction framework, this was done for schizo-
phrenia and bipolar disorder (Purcell et al., 2009).

4. Reconciling linkage and association results. If we
have GWAS or sequence data on pedigrees then
between and within-family variation, either across
the genome or for a chromosome or locus, can be
estimated simultaneously.

5. Estimating between-group differences. 1If a pro-
portion of the variation is explained by known
variants then estimated breeding values can be
calculated for individuals from different groups
and these differences can be compared to pheno-
typic between-group differences that are estimated
from different individuals. For example, what is the
mean additive genetic value from known variants
for Dutch people compared to, say, Italians, and
how does that compare to the phenotypic differ-
ence in height between these populations? Hence,
in principle, the proportion of phenotypic between-
group difference due to genetic factors can be
estimated.

6. Variation due to the X-chromosome. The approach
pioneered by Yang et al. (2010) can be used for
individual chromosomes. For the X-chromosome,
different models of dosage compensation (X-
inactivation) make specific predictions about gen-
etic variance in males and females, and these can
be tested empirically.
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