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Summary

Two new test statistics were constructed to detect departures from the equilibrium neutral theory

that tend to produce genealogies with longer internal branches (e.g. population subdivision or

balancing selection). The new statistics are based on a measure of linkage disequilibrium between

adjacent pairs of segregating sites. Simulations were run to determine the power of these and

previously proposed test statistics to reject an island model of geographic subdivision. Unlike

previous power studies, this one uses a coalescent model with recombination. It is found that

recombination rates on the order of the mutation rate substantially reduce the power of most test

statistics, and that one of the new test statistics is generally more powerful than the others. Two

suggestions are made for increasing the power of the statistical tests examined here. First, they can

be made more powerful if critical values are obtained from simulations that condition on a lower

bound for the population recombination rate. Secondly, for the same total length sequenced,

power is increased if independent loci are considered instead of a single contiguous stretch.

1. Introduction

One of the fundamental goals of evolutionary genetics

is to determine what forces in the past have influenced

the genetic variation observed in the present. For

sequence data, some researchers have approached this

problem by developing statistical tests to detect

departures from a constant size, panmictic, no

recombination, neutral Wright–Fisher model (e.g.

Hudson et al., 1987, 1994; Tajima, 1989; McDonald

& Kreitman, 1991 ; Fu & Li, 1993; Fu, 1996, 1997;

McDonald, 1996). This null model is widely used

because it makes simple, testable predictions; it is one

way of modelling Kimura’s (1968, 1983) neutral

theory of molecular evolution. When one of these tests

rejects the null hypothesis, it is likely that at least one

of the assumptions of the equilibrium neutral model

has been violated. Possible alternatives include more

complex demographic histories (e.g. population struc-

ture, changes in population size), linkage to sites

under selection of some kind (e.g. balancing, fluctu-
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ating, directional or purifying selection), or selection

operating directly on the sites in question. Ideally one

would like to determine which alternatives are likely if

the null model is rejected; however, this is difficult to

do, partly because of our ignorance of the patterns of

genetic variability expected under many of the

alternative models, but also because multiple alterna-

tives can produce patterns that are similar and thus

difficult to distinguish. For polymorphism data from

a single species, Fu (1996) categorized alternative

models as those that tend to produce an excess of

‘new’ mutations (e.g. linkage to a recent selective

sweep, population growth) and those that tend to

produce an excess of ‘old’ mutations (e.g. population

subdivision, balancing selection). Alternative models

in the same class are expected to produce data sets

that differ from equilibrium neutral expectations in

similar ways.

The usefulness of these statistical tests depends on

how often they reject the null hypothesis when it is

actually false. This is often tested by simulating data

under some model other than the equilibrium neutral

model and documenting what power various statistical

tests have to reject the null model (e.g. Braverman et
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al., 1995; Simonsen et al., 1995; Fu, 1996, 1997). The

same approach is followed in this paper. We con-

centrate on ways of analysing sequence polymorphism

data from a single species, and on the effects of two

departures from the standard equilibrium neutral

model : recombination and geographic subdivision. In

particular, we find the power of several tests to reject

the null model when data are simulated using a

symmetrical island model of geographic subdivision

(Wright, 1931) with recombination. Although some

researchers note that most test statistics are con-

servative with respect to recombination (e.g. Tajima,

1989; Fu & Li, 1993; Fu, 1996), no one has

documented how strong the effect actually is. Deter-

mining the magnitude of this effect is one of the

primary aims of this paper. It is expected that models

of linkage to a site under balancing selection (Hudson

& Kaplan, 1988) and models of deterministically

decreasing population size (e.g. Griffiths & Tavare! ,
1994) would produce similar results, as might other

models of geographic subdivision (e.g. Whitlock &

McCauley, 1990). This work is presented in three

parts : first, two new test statistics B and Q are

developed (see Section 2). Then, their powers are

compared with the powers of previous test statistics to

detect geographic subdivision in the presence of

recombination. The other test statistics considered are

Tajima’s (1989) D (which hereafter is called T ), Fu &

Li’s (1993) D* (here called D), and Fu’s (1996) W and

Gη (here called G). Finally, an example from the

literature is analysed.

A different method of demographic inference

involves maximum likelihood (see, e.g., Griffiths &

Tavare! , 1995; Kuhner et al., 1995). If likelihoods can

be calculated for alternative models, then a likelihood-

ratio test may be used to discriminate between

hypotheses. Likelihood methods are appealing be-

cause they make full use of the available data, unlike

summary statistics. However, they are compu-

tationally intensive, and it is unclear how sensitive

they are to model assumptions. Algorithms for

calculating likelihoods exist for finite-island models

without recombination (e.g. Nath & Griffiths, 1996)

and for panmictic models with recombination

(Griffiths & Marjoram, 1996). Although in theory it

should be straightforward to calculate likelihoods for

a model with both geographic subdivision and

recombination, it is not yet computationally practical

to do so for data sets of reasonable size. A program

(recom58, provided by R. C. Griffiths) for calculating

likelihoods under a panmictic model with recom-

bination (which should be faster than a program that

calculates likelihoods for a finite-island model with

recombination) takes several weeks of computing time

on a 400 MHz Pentium II processor to calculate

maximum likelihood estimates for a single data set

with sample size n¯ 30, S¯ 20 segregating sites, and

recombination parameter 4Nr¯ 5 (results not shown).

Even then, the result would be hard to interpret ; for

single-locus data it is unclear how to obtain the critical

values of a likelihood-ratio test without extensive

simulation. The standard χ# approximation for the

distribution of 2 log (L
"
}L

!
) (where L

"
and L

!
are the

likelihoods under the alternative and null models) is

not necessarily applicable. Data sets considered for

this paper’s tests are this size or larger, so for them

summary statistics may be the only viable alternative.

Another approach to the problem of inferring

geographic structure from sequence data can be found

in the permutation tests of Hudson et al. (1992). When

adequate sample sizes are obtained from more than

one island, their tests are often much more powerful

than the tests surveyed in this paper (Hudson et al.,

1992; Fu, 1996). This is not surprising since Hudson

et al.’s tests explicitly use the information of where

each sequence was sampled whereas the other tests do

not. However, there are situations when their test

should not be used. For example, this permutation

test cannot be used whenever individuals are sampled

from only a single locality, and might be significantly

less effective if the population structure does not

correspond in a simple way to geographic location

(see, e.g., Hilton & Hey, 1996, 1997), since a sample

from multiple localities would not necessarily include

different putative islands. This lack of correspondence

between population structure and geographic location

might also apply to species such as Drosophila

melanogaster that are thought to have originated in a

particular area (e.g. Africa for D. melanogaster) and

recently expanded their range.

Most of the following simulations concentrate on

situations when only a single population has been

sampled. Some researchers have chosen to analyse

single-locality samples under the assumption that

local populations are in equilibrium, even if the

species as a whole shows evidence of geographic

structure. One of the conclusions of this study is that

the above assumption is not conservative: if there

actually is population structure, then assuming pan-

mixia for a sample from a single locality could lead to

false positive test results.

2. New test statistics

Under the standard Wright–Fisher neutral model,

genealogies of a sample can be simulated using the

coalescent (Kingman, 1982a, b ; Hudson, 1990), and

the genealogical relationships between different

members in the sample can be represented pictorially

by a tree (for a review see Hudson, 1990). Departures

from the standard neutral model can be thought of in

light of the effect they have on the shape of the

genealogical tree. For example, the presence of
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Fig. 1. An example of a coalescent tree that might arise
under geographic subdivision.

geographic subdivision might produce a genealogy

like the one shown in Fig. 1. This genealogy differs

from the neutral one in one branch (the oldest one)

being much longer than its standard neutral ex-

pectation. (For a detailed explanation see, e.g.,

Takahata, 1988.) It has been shown that linkage to a

site under balancing selection can produce similarly

shaped genealogies (Hudson & Kaplan, 1988).

The new test statistics to be introduced use the

information in adjacent pairs of segregating sites.

Suppose each new mutation happens at a different

nucleotide site from all previous mutations (i.e. the

infinite-sites assumption). Call a pair of segregating

sites congruent if the subset of the data consisting of

the two sites contains only two different haplotypes. If

there has been no recombination between the two

segregating sites, they will be congruent if and only if

both mutations lie on the same branch of the unrooted

tree. Another way of thinking about this is to consider

each segregating site as an unordered partition of the

sample, where the subsets correspond to those

individuals that have the same allele at that particular

site. (A partition of the sample consists of two disjoint

subsets whose union is the set of individuals in the

sample.) Two segregating sites are congruent if and

only if their corresponding partitions are identical.

Label the branch lengths in the unrooted genealogy

l
"
, l

#
,…, l

x
. Then, for two segregating sites with the

same genealogical history (e.g. two segregating sites

with no recombination between them), the probability

that they are congruent is

P(congruent)¯
3
x

j="

l#
j

03x
j="

l
j1#

. (1)

For genealogies with one very long branch (such as

Fig. 1), this probability is higher than for most neutral

genealogies, because it is quite common for both

mutations to lie on the one very long branch. The

probability of congruence is much more complicated

when there is recombination between the two

segregating sites. However, since not all recombination

events affect the longest branch, it is expected that

compared with the neutral case, alternative models

that tend to produce genealogies that look like Fig. 1

will still have a higher probability of congruence of

segregating sites even when there is recombination

between the two sites. Set S as the number of

segregating sites in the sample. Then, define

B«¯ the number of pairs of adjacent segregating sites

that are congruent,

B¯B«}(S®1).

B has been scaled so that its minimum value is 0 and

its maximum is 1. It can be thought of as a measure of

linkage disequilibrium among the segregating sites.

For the reasons outlined above, E(B) (the expectation

of B) should be higher under a geographic subdivision

model than the standard neutral model with the same

level of recombination. Simulation results confirm

this for a finite-island model of geographic subdivision

(results not shown). Thus, B can be used as a one-

tailed test statistic where values that are too high

reject the standard neutral model ; such values are

suggestive of geographic subdivision, or some other

force that tends to distort genealogies into having one

or more branches that are much longer than the

others. Unfortunately, analytical results are difficult

to obtain even in the simplest cases. If there is no

recombination and S¯ 2, then finding E(B) (i.e.

finding the average of (1) over all possible genealogies)

would still require knowledge akin to the expectations

and variances of all the relative branch lengths in an

unrooted tree. Even for a sample size of n¯ 3, this

expectation may have to be found by numerical in-

tegration. The critical values of B are therefore found

by simulation instead.

As the recombination rate increases, E(B) is

expected to decrease ; it becomes less and less likely

that adjacent segregating sites share the same gen-

ealogy, and the probability of congruence is less for

those that do not than for those that do. In contrast,

one quantity that increases with increasing recom-

bination rate is the number of different partitions

defined by adjacent pairs of congruent segregating

sites. Although the absolute probability of congruence

decreases, those pairs that are congruent are more

likely to have a genealogy that is not shared by other

congruent pairs, and hence are more likely to induce

a unique partition. Let A¯ the set of all distinct

partitions induced by congruent pairs of segregating

sites. Then, define

Q¯ (BrAr)}S,

where rAr is the size of the set A. Like B, Q is scaled to

be between 0 and 1, and is also expected to be larger
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Table 1. Data set used as an example (see text)

Segregating site

1 2 3 4 5 6 7 8 9 10

Seq1 a c c t a g a c t a
Seq2 g \ \ \ \ t \ \ c g
Seq3 g g t g c t \ \ c \
Seq4 g \ \ \ c \ \ \ \ \
Seq5 g g t g c t t g \ \

under a geographic subdivision model than under the

panmictic neutral model. It too can be used as one-

tailed test statistic with the critical values determined

by simulation. Although B should be conservative in

the presence of recombination, it is not as clear what

effect recombination has on the distribution of Q,

since Q is the sum of one term that is positively

correlated with the recombination rate and one that is

negatively correlated with the recombination rate.

Both Q and B are attempts to use some of the

information captured in the phylogeny besides the

number of descendants of each mutation. They are

both ad hoc, but are easy to calculate.

As an example, consider the sample of sequences

shown in Table 1. There are 10 segregating sites, so

nine pairs of adjacent segregating sites to consider.

Three of these pairs are congruent: sites 2 and 3, sites

3 and 4, and sites 7 and 8. Of these, the first two induce

the same partition while the last one induces a

separate partition. Thus, for this data set, S¯10,

B«¯ 3, rAr¯ 2, B¯ 0±333 and Q¯ 0±5.

3. Simulations

Random sequence samples were generated using a

modification of a coalescent program with recom-

bination and geographic subdivision kindly provided

by R. R. Hudson. This program assumes an infinite-

sites model, so all segregating sites are biallelic. The

values of different test statistics were then calculated

using these simulated samples. A summary of the test

statistics considered can be found in Table 2. (The

notation differs from that of some authors.) The

powers of these eight statistics were then compared

under various scenarios. All simulations were run

conditional on the number of segregating sites, not

θ¯ 4Nµ. (θ is the population mutation rate, N is the

diploid effective population size and µ is the total

mutation rate per generation.) The rationale for this is

that we can observe the number of segregating sites in

a sample but we must estimate θ. Power simulations

conditional on θ are problematic since there is no way

of constructing an appropriate null distribution

without knowing the true value of θ. A more thorough

Table 2. Summary of the statistical tests considered

Test statistic Source

W Fu (1996)a

B See Section 2
Q See Section 2
G Gη, from Fu (1996)
D(1) D*, from Fu & Li (1993)b

D(2) D*, from Fu & Li (1993)c

T(1) D, from Tajima (1989)d

T(2) D, from Tajima (1989)c

a See also Strobeck (1987), Depaulis & Veuille (1998).
b One-tailed test of when D* is significantly positive.
c Two-tailed test.
d One-tailed test of when D is significantly positive.

argument can be found in Hudson (1993). When the

number of segregating sites is fixed, D is equivalent to

counting the total number of singletons, and W is

equivalent to counting the number of haplotypes.

Critical values for the test statistics were estimated

from 100000 simulations of a panmictic, no re-

combination model with the sample size and the

number of segregating sites fixed, and significance

defined at the 5% level. (Critical values for Q often

conditioned on low levels of recombination instead of

no recombination to be conservative. This is discussed

in Section 4.) The power was determined by counting

how often the null model was rejected out of 100000

replicates of an alternative model. These latter models

conditioned on the same sample size and number of

segregating sites, and specified a particular sym-

metrical island model (fixing the number of islands

and the migration rate between them) and a re-

combination rate. The scale migration and recom-

bination rates are defined as 4Nm and 4Nr respectively,

where m is the proportion of migrants per generation

between each pair of islands and r is the recombination

rate per generation. Since there are at least six free

variables (sample size, recombination rate, number of

segregating sites, number of islands, migration rate

between islands, and distribution of sampled indi-

vidualswithin islands), it is computationally unfeasible

to test power across all the parameter space. There

was no attempt to be exhaustive ; instead, examples

are shown that are thought to be indicative of general

patterns. These often involve changing one or two

variables while holding the others constant. Many

more simulations were run than can be described in

this paper; the details and results of these additional

simulations, as well as all computer programs used,

are available from the author on request.

Conditioning on the number of segregating sites

makes most of the variables examined (W, D, Q and

B) have few possible values. In order to compare

powers more accurately, a randomized test was used
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(see, e.g., Lehmann, 1986, p. 71). Suppose, for

example, 100000 replicates are run, resulting in 2000

trials with W! 5, 5000 trials with W¯ 5, and 93000

trials with W" 5. What P value should then be

assigned to those trials having W¯ 5? The con-

servative approach would assign P¯ 0±07. A draw-

back of this approach is that a one-tailed test would

reject only 2000 trials at the 5% level ; furthermore,

the P values would not be uniformly distributed on

(0, 1) under the null hypothesis. The approach taken

here is to choose the P value for a given trial with

W¯ 5 uniformly from (0±02, 0±07). This way, exactly

5% of the trials under the null hypothesis will be re-

jected at the 5% level, making it easier to compare

powers. In practice, the conservative approach would

be used, leading to a loss of power of W, D, Q and B.

This loss of power decreases as the sample size and

number of segregating sites increase, and is an inherent

problem of simulating conditional on the number of

segregating sites (see Section 6). As mentioned before,

simulating conditional on θ has its own problems.

4. Results

I first tested the effect of recombination alone on

statistics, when panmixia is assumed. The purpose of

this was to examine how conservative the test statistics

are with respect to recombination. The rejection

probabilities of each test statistic as a function of the

recombination rate are shown in Fig. 2. Here, the x-

axis is 4Nr for the entire simulated region and the y-

axis is the rejection probability in per cent. The sample

size is n¯ 30 and the number of segregating sites is

S¯ 40. Note that when 4Nr& θ
W
, recombination

6

5

4

3

1

0

2

0 10 20 30
4Nr

R
ej

. p
ro

b.
 (

%
)

W

B

Q

G

D (1)

D (2)

T (1)

T (2)

Fig. 2. The decrease in rejection probability due to the presence of recombination. Critical values are obtained from
100000 panmictic, no recombination, infinite-sites stimulations with sample size n¯ 30 and the number of segregating
sites S¯ 40. The eight test statistics examined are listed in Table 2.

reduces the rejection probability of most tests by more

than half.

θ
W

¯S53
n−"

j="

j−"

is the estimate of θ based on the number of segregating

sites (Watterson, 1975). For example, when 4NrE θ
W

(i.e. 4Nr¯10 in Fig. 2), the actual rejection prob-

ability is ! 4±1% for Q, ! 3% for D(1), and is

!1±7% for the other six statistics. The decrease in

rejection probability due to recombination is mono-

tonic for all variables except Q, which contains a

quantity that positively correlates with the recom-

bination rate.

The same decrease due to recombination can be

seen when population structure is simulated instead of

panmixia. Fig. 3 shows the power under a two-island

model with 4Nm¯ 0±5, n¯ 30, S¯ 40, and all

individuals sampled from the same island. Critical

values are determined from 100000 panmictic simu-

lations with n¯ 30 and S¯ 40. Since Q does not

decrease monotonically with increasing 4Nr in Fig. 2,

it would not be conservative to obtain critical values

for Q using no recombination simulations. The

recombination rates for the null simulations were

therefore set at the values for which the rejection

probabilities in Fig. 2 were maximal (i.e. 4Nr¯ 2 for

Q, and 4Nr¯ 0 for the other test statistics). That way,

if the null model were true, the rejection probabilities

would all be % 5% regardless of the actual re-

combination rate. Further geographic subdivision

simulations with different sample sizes and number of

segregating sites (many of which are described below)

suggest that some patterns in Fig. 3 are quite robust.
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Fig. 3. The effect of recombination on the power to reject the standard neutral model when simulations are run using a
symmetrical island model of geographic subdivision. One hundred thousand replicates were run for each value of 4Nr.
A two-island model is used, with 4Nm¯ 0±5, n¯ 30, S¯ 40, and all individuals sampled from the same island. Critical
values are obtained from the panmictic, infinite-sites simulations shown in Fig. 2 using the recombination rate that is the
most conservative (see text). The eight test statistics examined are listed in Table 2.

First, it should be noted that all measures have

relatively low power for almost all sets of parameter

values tested; also, most tests show a monotonic

decrease in power with increasing recombination rate.

When 4Nr" 0, the most powerful statistic is Q, except

when there are few segregating sites and the re-

combination rate is very high, in which case D(1) is

more powerful. In most simulations, W is the most

powerful statistic when 4Nr¯ 0; however, W and G

are the weakest statistics as soon as 4Nr is not

extremely small. This implies that Fu’s (1997) F
S

(which is equivalent to the other tail of W ) is strongly

non-conservative in areas where recombination is

present.

One interesting facet of the data is the large contrast

between 4Nr¯ 0 and 4Nr" 0. D(2) and T(2) are

more powerful than D(1) and T(1) respectively when

4Nr¯ 0, but the situation is reversed as 4Nr increases.

A possible explanation is as follows: for the par-

ameters in Fig. 3, it is common for there to be more

than two migration events in the history of a particular

site. When this happens, a positive shift is expected in

both D and T. When 4Nr is small, the increased

variance leads to both tails being large, but as 4Nr

increases, the expected variance of D and T decreases,

leading to substantial weight at only one of the tails.

Even more striking is the extreme sensitivity of both

W and G to recombination. Though both perform

well when 4Nr¯ 0 in Fig. 3, they are consistently the

worst two measures for medium and high levels of

recombination. This result is not surprising. Re-

combination leads to multiple trees for the segregating

sites, and mutations on different genealogies lead to

new haplotypes. Low W values are thus quite rare

when there is appreciable recombination. Also, a

significant G test requires an extreme distortion in the

frequency spectrum, such as a majority of mutations

occurring in a certain type class. (The type of a

mutation, as defined by Fu (1996), is the number of

sampled individuals in the smaller of the two allelic

classes.) This is very unlikely to occur if the whole

sequence does not share the same genealogy.

The change in power is explored under a variety of

different scenarios, displayed in Fig. 4–9. Critical

values are determined from 100000 panmictic simu-

lations conditional on the same sample size and

number of segregating sites. Fig. 4–8 condition on the

most conservative recombination rate for each test

statistic as was done for Fig. 3; in Fig. 9, critical

values are obtained instead from simulations that

condition on the actual recombination rate.

(i) Different migration rates

Fig. 4 shows how power is affected by changes in the

migration rate. Fig. 4a has a low migration rate

(4Nm¯ 0±1), while Fig. 4b displays a high migration

rate (4Nm¯ 2±0). All other variables are the same as in

Fig. 3. All test statistics are more powerful when the

migration rate is low, and Q is the most powerful

except when 4Nr! 2 or when both 4Nr and 4Nm are

large. Increasing the migration rate causes the power

of both Q and B to decrease more quickly as 4Nr

increases, while both T and D seem much less sensitive

to recombination (regardless of the migration rate).

As before, both W and G are almost powerless for
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Fig. 4. The recombination rate versus power for different levels of migration. One hundred thousand replicates were run
for each value of 4Nr. A two-island model is used, with n¯ 30 and S¯ 40. All individuals are sampled from the same
island. The migration parameters are : (a) 4Nm¯ 0±1 (low migration) ; (b) 4Nm¯ 2±0 (high migration). Critical values are
the same as in Fig. 3. The eight test statistics examined are listed in Table 2.

medium or high levels of recombination. When all

individuals are sampled from the same island (as they

are in Fig. 4), there is a rather narrow range of

migration parameter values that lead to a reasonable

chance of detecting the structure using any of the test

statistics. When migration is too high (e.g. 4Nm" 5),

migrants are so common that the population behaves

similar to a panmictic one. When the migration rate is

low, many samples have no migrants in their history

(which is also close to the panmictic case). As a result,

the power of most test statistics starts decreasing when

the migration rate is too low (e.g. 4Nm! 0±1) (results

not shown).

(ii) Different sample configurations

Fig. 5a shows the effect of having five islands instead

of two. The sample size, number of segregating sites

and migration rate are the same as in Fig. 3, and all

individuals are sampled from the same island.

Increasing the number of islands from two to five

makes all the statistical tests substantially more

powerful ; for 4Nr"1, Q is the most powerful test,

and it is more than twice as powerful as it is in Fig. 3.

Population structure is often easier to detect because

those trials with at least one migration event often have

very deep (thus distorted relative to neutral expec-

tations) genealogies ; it takes longer for two individuals

in different islands to coalesce because most migration

events move one individual to a third island instead of

to the same island as the other individual. Also, in Fig.

5a, all test statistics (except W and G) retain most of

their power even when the recombination rate is quite

high.

Fig. 5b shows how sampling equally from two

islands (instead of sampling all individuals from the
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Fig. 5. The recombination rate versus power for two different sample configurations. One hundred thousand replicates
were run for each value of 4Nr. For both graphs, 4Nm¯ 0±5, n¯ 30 and S¯ 40. In (a) there are five islands, and all
individuals are sampled from the same island. For (b), there are two islands, and 15 individuals are sampled from each
island. Critical values are the same as in Fig. 3. The eight test statistics examined are listed in Table 2.

same island) affects the power of the different statistics.

The total sample size, number of segregating sites,

number of islands and migration rate are as in Fig. 3.

All statistics except for T(1) show a decrease in power

when multiple islands are sampled. Equal sampling

leads to proportionally longer external branches, since

fewer pairs of individuals are in the same island (a

necessary prerequisite for coalescence). This leads to

more expected singletons and a smaller expected

probability of congruence. T(1) fares well only because

both islands were sampled equally, leading to a rise in

intermediate frequency polymorphisms. If the islands

are sampled unequally, there is no increase in power

(results not shown).

(iii) Power �ersus the number of segregating sites

The effect of the number of segregating sites on the

power of the different test statistics is shown in Fig. 6.

Under the assumption that the mutation rate and the

recombination rate do not vary between nucleotide

sites, Fig. 6 can also be interpreted as showing power

versus increasing length sequenced (since then the

number of segregating sites will be proportional to the

length in base pairs). The three graphs are for no

(4Nr¯ 0), medium (4Nr¯ 0±25 n S ) and high (4Nr¯
0±75 n S ) levels of recombination. The latter two

correspond to 4NrE θ
W

and 4NrE 3θ
W
. Again, all

other variables have the same value as in Fig. 3. The

most powerful measures are W (Fig. 6a) and Q (Fig.

6b, c). An ideal test statistic would become more

powerful when more information (i.e. more

segregating sites) is available. In Fig. 6a, all eight test

statistics have this property. However, this is under

the assumption of no recombination, which is un-

reasonable for most nuclear gene sequences. For

medium and high levels of recombination (Fig. 6b, c),

only Q becomes more powerful as the number of

segregating sites increases. The others start losing

power after an intermediate peak. This observation is

somewhat surprising (see Section 6).
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Fig. 6. The number of segregating sites (S ) versus power. Each data point is based on 100000 replicates. A two-island
model is used, with 4Nm¯ 0±5, n¯ 30, and all individuals sampled from the same island. The recombination rates are:
(a) no recombination; (b) 4Nr¯ 0±25 nS (i.e. 4NrE θ

W
) ; (c) 4Nr¯ 0±75 nS (i.e. 4NrE 3θ

W
). Critical values are obtained

from 100000 panmictic, infinite-sites simulations that condition on the same sample size and number of segregating sites,
and use the recombination rate that is the most conservative (see text). The eight test statistics examined are listed in
Table 2.
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Fig. 7. The sample size (n) versus power for different values of 4Nr. Each data point is based on 100000 replicates. A
two-island model of geographic subdivision is used, with 4Nm¯ 0±5 and all individuals sampled from the same island.
The number of segregating sites was chosen to keep θ

W
as close to constant as possible over a fixed length of simulated

sequence. The sets of parameters are : n¯10 and S¯ 21 ; n¯ 20 and S¯ 27; n¯ 30 and S¯ 30; n¯ 40 and S¯ 32;
n¯ 50 and S¯ 34. The total recombination rates are: (a) 4Nr¯ 0; (b) 4Nr¯ 7±5 (i.e. 4NrE θ

W
). Critical values are

obtained from 100000 panmictic, infinite-sites simulations that condition on the same sample size and number of
segregating sites, and use the recombination rate that is the most conservative (see text). The eight test statistics
examined are listed in Table 2.

(iv) Power �ersus sample size

Fig. 7 shows what effect a change in the sample size

has on the powers of the different test statistics. The

model of subdivision is the same as in Fig. 3, and the

number of segregating sites is chosen to keep θ
W

(for

the whole gene) as close to constant as possible. This

involved simulating with the following pairs : n¯10

and S¯ 21 ; n¯ 20 and S¯ 27; n¯ 30 and S¯ 30;

n¯ 40 and S¯ 32; n¯ 50 and S¯ 34. Fig. 7a and b

show the results for no recombination (4Nr¯ 0) and

medium levels of recombination (4Nr¯ 7±5; equi-

valently, 4NrE θ
W
). The most powerful statistics are

W (no recombination) and Q (medium recombi-

nation). Higher recombination rates yield graphs

similar to Fig. 7b (results not shown). As above, good

test statistics should increase in power as more

individuals are sampled. The only statistics that do

not are W and G in Fig. 7b. Once again, W and G are

very sensitive to recombination; though W is the most

powerful in the no recombination case, it is one of the

worst once the recombination rate is on the same

order as the mutation rate. The superiority of Q in

Fig. 7b arises because it is less affected by re-

combination than the other statistics.

(v) Trade-off between sample size and length

sequenced

Under the constraint that a fixed total length could be

sequenced, simulations were run to see whether it were

better to sequence large stretches of few individuals or
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Fig. 8. The sample size (n) versus power for different values of 4Nr. Each data point is based on 100000 replicates. A
two-island model of geographic subdivision is used, with 4Nm¯ 0±5 and all individuals sampled from the same island.
Simulations are meant to mimic a situation where a fixed total length is sequenced and θ

W
per site is (as close to)

constant (as possible) ; it is used to study the trade-off between sample size and length sequenced. The specific parameter
values are: n¯10 and S¯ 64; n¯ 20 and S¯ 40; n¯ 30 and S¯ 30; n¯ 40 and S¯ 24; n¯ 50 and S¯ 20. The
recombination rates are: (a) 4Nr¯ 0; (b) 4Nr¯ 225}n (i.e. 4NrE θ

W
). Critical values are obtained from 100000

panmictic, infinite-sites simulations that condition on the same sample size and number of segregating sites, and use the
recombination rate that is the most conservative (see text). The eight test statistics examined are listed in Table 2.

a smaller length from more individuals. Since both

time and money are limited, most researchers face this

trade-off. For a panmictic population and a similar

question, a detailed discussion of optimal sequencing

strategies can be found in Pluzhnikov & Donnelly

(1996). Fig. 8a and b show power versus sample size

for no recombination (4Nr¯ 0) and moderate re-

combination (4Nr¯ 225}n). As before, the medium

rate corresponds to 4NrE θ
W
. This implicitly assumes

that the recombination rate and the proportion of

sites that are segregating are constant per base pair.

The model of subdivision was taken to be the same as

in Fig. 3, and the number of segregating sites was

chosen to keep θ
W

(per base pair) as close to constant

as possible. The following parameter pairs were used:

n¯10 and S¯ 64; n¯ 20 and S¯ 40; n¯ 30 and

S¯ 30; n¯ 40 and S¯ 24; n¯ 50 and S¯ 20. As in

Figs. 6 and 7, the most powerful test statistics are W

(in Fig. 8a) and Q (in Fig. 8b). For most simulations,

statistics show maximum power under intermediate

values of sample size and length sequenced, but this

intermediate value depends both on the particular

statistic and on the recombination rate. In general, as

the recombination rate increases, the optimal strategy

is to sequence a smaller length from more individuals.

(vi) Conditioning on the actual recombination rate

Fig. 9 shows power versus recombination rate when

the critical values are obtained from simulations that

condition on the actual recombination rate. All other

parameter values are the same as in Fig. 3. This
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Fig. 9. The recombination rate versus power with critical values obtained from simulations that condition on the actual
recombination rate. One hundred thousand replicates were run for each value of 4Nr, and all other parameter values are
the same as in Fig. 3. The eight test statistics examined are listed in Table 2.

situation is unrealistic because the intragenic re-

combination rate cannot yet be measured directly but

must be estimated from the patterns of variation.

Current estimators of 4Nr from sequence data are all

biased and have large variances (e.g. Hudson, 1987;

Hey & Wakeley, 1997; Wakeley, 1997). Conditioning

on the actual recombination rate noticeably increases

the power of all the test statistics relative to Fig. 3. The

most powerful test statistic is W (for 4Nr! 3) or B

(for 4Nr& 3). Q is less sensitive to recombination

than B, so it performs better when critical values are

determined using simulations with a conservative

recombination rate (e.g. as in Fig. 3).

5. An example

The results of Fig. 9 show that conditioning on a

positive recombination rate for the null distribution

increases the power of all test statistics. We dem-

onstrate this by analysing a data set taken from a

recently published study of Adh in Arabidopsis thaliana

(Innan et al., 1996). Although A. thaliana is mostly

self-fertilizing, a coalescent model is still reasonable

(with a change in time-scaling) since each sequence

was sampled from a different individual (Nordborg &

Donnelly, 1997). The purpose of this example is

pedagogical, not explanatory. Thus, the facts that the

sample locations might not be random and that

selection might be operating on Adh will be ignored.

Table 2 from Innan et al. (1996) was culled to

include only biallelic single-nucleotide poly-

morphisms. There are 17 individuals in the sample, 75

segregating sites and 13 distinct haplotypes. The

average number of nucleotide differences between two

sampled individuals is 19±06, B«¯ 31, rAr¯ 9,

Table 3. P �alues for the different test statistics and

the data set of Innan et al. (1996)

P value

Test statistic 4Nr¯ 0 4Nr¯ 8±9

W 0±579 0±444
B 0±062 0±019
Q 0±024 0±007
G 0±759 0±304
D(1) 0±148 0±087
D(2) 0±296 0±175
T(1) 0±297 0±196
T(2) 0±594 0±392

B¯ 0±419, Q¯ 0±533 and η¯ (38, 7, 9, 5, 0, 1, 5, 10).

The last is Fu’s (1996) notation for the frequency

spectrum of a data set with no outgroup. One hundred

thousand no recombination, coalescent simulations

were run for a panmictic population conditional on

n¯17 and S¯ 75. The results are shown in the second

column of Table 3. The only statistic that is significant

(at the 5% level) is Q, with P¯ 0±024.

The data from Innan et al. (1996) show some

evidence of recombination at Adh in A. thaliana. The

estimated minimum number of recombination events

in the sample (R
M
, from Hudson & Kaplan, 1985) is

7. We construct a lower bound C
min

for 4Nr as

follows: we take the largest value of 4Nr such that

simulations with this recombination rate are unlikely

to produce data sets with R
M

& 7 (i.e. they do so less

than 2±5% of the time). This is roughly the same

method as in Hudson & Kaplan (1985) and Hudson

(1987). For our example, the estimated lower bound is
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C
min

E 8±9. Simulations were then run with the most

conservative value of 4Nr that was greater than or

equal to C
min

(in this example, 4Nr¯C
min

for all test

statistics). Although this method has two sources of

Type I error, further simulations show that it is still

conservative (results not shown). The P values are

displayed in the third column of Table 3. All the P

values are lower, and two statistics are significant ; Q

has P¯ 0±007 and B has P¯ 0±019. These significant

P values support the claim of Innan et al. (1996) that

the observed haplotypic structure is suggestive of

population subdivision or selection.

6. Discussion

One observation that is evident from the simulations

is that all test statistics have poor power to reject the

null hypothesis, even when large sample sizes and

many segregating sites are considered. In reality, the

power is even lower for actual data sets because a

randomized test would not be used. However, the

order, (e.g. that Q is usually the most powerful while

W and G are often the worst) would be essentially the

same. As discussed in Section 1, part of the problem

is that the information contained in which individuals

were sampled from which localities is not used by any

of the test statistics. In fact, all the test statistics except

for T(1) perform better when all individuals are

sampled from the same island, instead of comparable

sampling from all islands (see Figs. 3 and 5b).

However, there is still some new information that

these statistical tests provide. Though the permutation

tests of Hudson et al. (1992) are constructed to

determine whether samples from different localities

are different from each other, the results presented

here suggest that samples from a single locality

already often do not conform to equilibrium neutral

expectations. Researchers who overlook possible

subdivision in their samples underestimate the vari-

ance in possible outcomes that can arise due to non-

selective factors.

The conclusions that can be drawn from a dis-

crepancy between results and neutral expectations are

far from obvious; the test statistics described were all

constructed to test the consistency of a given data set

with the standard equilibrium neutral model. Those

data sets that are consistent with the neutral model

provide at best only indirect evidence that the region

in question is actually evolving neutrally ; such data

sets may also be consistent with selective alternatives.

Conversely, a data set that is inconsistent with the null

modelmight also be inconsistentwithmany alternative

hypotheses (see, e.g., Wayne & Simonsen, 1998).

Because of this difficulty, studies of genetic variation

that use ‘statistical tests of neutrality ’ without explicit

a priori alternative hypotheses are hard to interpret. A

significant test result without any additional infor-

mation does not help to distinguish between possible

alternatives. Even if the data are unlikely to have

arisen under the null model, they may be even more

unlikely to have arisen under most or all alternative

models. If one had two easily simulated hypotheses

and access to powerful computers, then a likelihood

approach (that compares the likelihoods of the data

under each model) might be appropriate. However,

this might not be computationally practical for large

data sets or for models (such as island models of

geographic subdivision) that require extensive para-

meterization.

Another problem with post hoc analysis using

statistical tests of neutrality is that most researchers

do not correct for multiple tests. In practice,

researchers apply a number of different statistical

tests, and consider their data set ‘non-neutral ’ if at

least one test is significant. The probability that at

least one test rejects neutrality at the 5% level is

clearly much higher than 5%. When the P values in

Table 3 are recalculated (by simulation) to correct for

multiple tests, only Q (when 4Nr¯C
min

) remains

significant.

Since an accurate correction for multiple tests

requires extensive computer simulations, it might be

best if only a single statistical test (chosen before the

data is collected) is used for analysing a given data set.

The choice of test should depend on what alternative

hypotheses the investigator thinks are the most

reasonable. A statistical test that is good at detecting

geographic subdivision, for example, might not be

particularly effective at detecting other types of

departures from the null model such as recent

bottlenecks or linkage to a recent selective sweep.

Knowing which test statistic to choose requires more

work to be done investigating the predictions of

common alternative models to the standard neutral

theory.

To highlight the degree of overlap between test

statistics, 100000 genealogies were simulated using

the same parameter values as in Fig. 2; these simulated

data sets were then analysed using W, Q, D(1) and

T(1). These four are generally superior (for detecting

geographic subdivision) to G, B, D(2) and T(2)

respectively. It was found that 12±8% of the replicates

had at least one significant test (7±8% with one, 3±2%

with two, 1±4% with three, and 0±5% with all four).

To have a 5% chance of obtaining at least one

significant test statistic, one could run each test with a

nominal rejection probability of 1±75%. (This rejection

probability was determined by simulation.) However,

this composite test statistic is no more powerful than

any of the other statistics (results not shown).

There are many other ways one could construct a

composite test statistic from W, Q, D(1) and T(1). If

the composite is defined to be significant when one or

more of the component test statistics are significant,
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Fig. 10. The power of D(1) and Q as a function of the number of loci considered. Each locus has parameters as in
Fig. 3, with 4Nr¯10, and critical values determined from panmictic simulations of k loci using a conservative
recombination rate. Here ind. stands for independent, and cons. stands for consecutive (see text).

then the nominal rejection probabilities could differ

among the four component test statistics. For example,

since Q is more powerful than the others in Fig. 3, it

might make sense to ‘weight ’ Q more heavily than the

others by giving it a higher rejection probability while

lowering that for the others. A composite test could

also be devised that requires more than one test

statistic to be significant at a certain level. The power

of a number of different composite statistics was

compared with the eight test statistics described in

Section 1, and none of them performed better than Q

(for low levels of recombination) and D(1) (for high

levels of recombination) (results not shown).

This last observation is rather disappointing, be-

cause it suggests that many test statistics use similar

aspects of the data. Perhaps even more disturbing is

the observation that increasing the amount of data

(i.e. increasing the sample size or the length sequenced)

does not lead to a large increase in power. In fact,

when recombination rates are high, increasing the

length sequenced actually decreases the power of most

test statistics (see Fig. 6c). As the length sequenced

increases, so does 4Nr ; tests that use critical values

from no recombination simulations become

increasingly conservative (and thus less powerful).

However, when the parameter combinations in Fig.

6c were rerun with critical values determined from

simulations that conditioned on the actual recom-

bination rate (cf. Fig. 9), the shape of the power

curves was more like Fig. 6a (i.e. power increased with

increasing numbers of segregating sites for all test

statistics except W ) (results not shown). Thus, it is not

the presence of recombination itself that decreases

power, but the difference between the actual re-

combination rate and the rate used in simulating the

null distribution.

Demographic departures from the standard null

model are expected to affect the patterns of observed

variability over the whole genome. One way of

increasing the power to detect geographic subdivision

of all the test statistics examined is to sequence

independent loci instead of one large contiguous

stretch. The advantage then is that we know when

there is free recombination between the loci, and

hence can condition on it. Simulations were run that

modelled k independent loci (1%k%10), each with

n¯ 30, S¯ 40, 4Nr¯10, and the same island model

as in Fig. 3. Critical values were determined from

simulations with k independent panmictic loci, each

with conservative recombination rate. The power of Q

is shown in Fig. 10 as a function of k. Also shown in

Fig. 10 is the power of Q as a function of k when the

k loci are consecutive, not independent (i.e. S¯ 40k,

4Nr¯10k). As can be seen, the increase in power that

arises from being able to condition on free recom-

bination between loci is substantial. For comparison,

Fig. 10 includes the power of D(1) (the best of the old

test statistics in Fig. 3) as a function of k when the k

loci are independent or consecutive.

In the future, the amount of sequence data available

will not be the limiting factor, and information will be

available on the patterns of variation at many unlinked

‘neutral ’ areas (or at least areas with no functional

significance or obvious signs of selection). This

information will be used to construct likely demo-

graphic scenarios ; these scenarios will then be used as

null models in tests for selection in specific areas.

Instead of just accepting or rejecting the equilibrium
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neutral model, we will be able to infer which selective

and demographic forces have shaped the observed

patterns of sequence variability.

I thank R. R. Hudson for helpful discussions as well as B.
Charlesworth, M. Kreitman, T. F. C. Mackay, M. S.
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comments on an earlier version of this manuscript. This
work was supported by the University of Chicago Division
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