AUTOMORPHISMS OF FUNCTIONS IN ABELIAN PERMUTATION GROUPS

by STEPHEN D. COHEN and GARY L. MULLEN

(Received 25 November, 1974)

1. Let \(\Omega = H_1 \oplus \ldots \oplus H_n \) be an abelian group of permutations of a finite non-empty set \(S \). If \(H_i \) is generated by \(\phi_i \), let \(s_{\phi_i}(\alpha) \) denote the length of the cycle of \(\phi_i \) containing \(\alpha \). For any function \(f \) on \(S \), let \(A(f, \Omega) = \{ \phi \in \Omega \mid f\phi = f \} \). In Theorem 2 we show that, if for every \(i \neq j \) and \(\alpha \in S \), \(s_{\phi_i}(\alpha) \) and \(s_{\phi_j}(\alpha) \) are relatively prime, then \(A(f, \Omega) = A(f, H_1) \oplus \ldots \oplus A(f, H_n) \) for all \(f \), while in Theorem 3 we prove the natural converse.

2. Let \(\Omega \) be a group of permutations of a finite non-empty set \(S \). Let \(\Gamma \) be the set of all functions from \(S \) into \(T \) where \(T \) is a finite set containing at least two elements. If \(f, g \in \Gamma \), then \(f \) is equivalent to \(g \) relative to \(\Omega \) if there exists a \(\phi \in \Omega \) such that \(f\phi = g \). We say that a permutation \(\phi \in \Omega \) is an automorphism of a function \(f \) relative to \(\Omega \) if \(f\phi = f \). Let \(A(f, \Omega) \) denote the group of automorphisms of the function \(f \) relative to \(\Omega \). For example, if \(K \) is the finite field of order \(q \), \(S = K' \) where \(r \geq 1 \), \(T = K \) and \(\Gamma = K[x_1, \ldots, x_r] \), then the above situation reduces to that considered by Carlitz in [1].

If \(T = \{a_1, \ldots, a_v\} \) and \(f \in \Gamma \), let \(S_f = \{ \beta \in S \mid f(\beta) = a_i \} \). We define \(\pi_f \), the partition of \(f \), to be the collection of non-empty \(S_f \)'s. If \(f, g \in \Gamma \) with \(\pi_f = \{ S_i \} \) and \(\pi_g = \{ T_i \} \), then \(f \) is equivalent to \(g \) relative to \(\Omega \) if and only if there exists a \(\phi \in \Omega \) such that \(\phi(S_i) \subseteq T_i \) for \(i = 1, \ldots, v \). If we let \(g = f \) we may easily prove

Lemma 1. If \(\phi \) is a permutation of \(S \), then \(\phi \) is an automorphism of a function \(f \) if and only if the cycles of \(\phi \) (regarded as sets) form a refinement of \(\pi_f \).

Suppose now that \(\Omega \) is abelian and that \(\Omega = H_1 \oplus \ldots \oplus H_n \) where each \(H_i \) is cyclic generated by \(\phi_i \). If \(\phi \in \Omega \) and \(\alpha \in S \), let \(s_{\phi}(\alpha) \) denote the cycle of \(\phi \) containing \(\alpha \) and \(s_{\phi}(\alpha) \) the length of \(s_{\phi}(\alpha) \).

Theorem 2. Let \(\Omega \) be as above. If for every \(i \neq j \) and \(\alpha \in S \), \(s_{\phi_i}(\alpha) \) and \(s_{\phi_j}(\alpha) \) are relatively prime, then

\[
A(f, \Omega) = A(f, H_1) \oplus \ldots \oplus A(f, H_n)
\]

for all \(f \in \Gamma \).

Proof. Clearly \(A(f, H_1) \oplus \ldots \oplus A(f, H_n) \subseteq A(f, \Omega) \) and, if \(\psi_i \in H_i \), \(\psi_j \in H_j \), then \(s_{\phi_i}(\alpha) \) and \(s_{\phi_j}(\alpha) \) are relatively prime. Let \(\alpha \in S \) and \(\psi \in A(f, \Omega) \) so that \(f\psi = f\psi_1 \ldots \psi_n = f \) and hence \(f(\psi_1 \ldots \psi_n(\alpha)) = f(\alpha) \) for any integer \(l \). By hypothesis and the Chinese Remainder Theorem, we may choose for each \(i \) an integer \(l_i \) such that \(l_i \equiv 1 \pmod{s_{\phi_i}(\alpha)} \) and \(l_i \equiv 0 \pmod{s_{\phi_j}(\alpha)} \) for \(j \neq i \). Hence \(\psi_1 \ldots \psi_n(\alpha) = \psi_1(\alpha) \) so that \(f(\psi_1(\alpha)) = f(\alpha) \), which implies that \(\psi_1 \in A(f, H_1) \).

Theorem 3. If \(\Omega \) is as above and (1) holds for all \(f \in \Gamma \), then for every \(i \neq j \) and \(\alpha \in S \), \(s_{\phi_i}(\alpha) \) and \(s_{\phi_j}(\alpha) \) are relatively prime.
Proof. Suppose that for some $i \neq j$ and some $\alpha \in S, (s_{\phi_i}(\alpha), s_{\phi_j}(\alpha)) = s > 1$. Let $\psi_i = \phi_{\psi_i}^s$ and $\psi_j = \phi_{\psi_j}^{s_{\phi}(\alpha)/s}$ so that $\psi_i \in H_i$, $\psi_j \in H_j$ and $s_{\phi_i}(\alpha) = s_{\psi_j}(\alpha) = s$.

Case 1. $\sigma_{\psi_i}(\alpha) = \sigma_{\psi_j}(\alpha)$ (as sets). Then there exists an integer k such that $\psi_i \psi_j^{-k}(\alpha) = \alpha$. Let $\psi = \psi_i \psi_j^{-k}$ so that $\sigma_{\phi}(\alpha) = (\alpha)$. Let $S_1 = \{\alpha\}$, $S_2 = S \setminus S_1$, $\pi = \{S_1, S_2\}$ and f be any function whose partition is π. Then by Lemma 1, $f \psi = f \psi_i \psi_j^{-k} = f$ so that $\psi_i \psi_j^{-k} \in A(f, \Omega)$. Since $\sigma_{\phi}(\alpha) \notin S_1$, then $\psi_i \notin A(f, H_i)$ so that (1) fails to hold.

Case 2. $\sigma_{\psi_i}(\alpha) \neq \sigma_{\psi_j}(\alpha)$. Let $\psi = \psi_i \psi_j$ so that $(\psi_i \psi_j)^{-1}(\alpha) = \alpha$ which implies that $s_{\phi}(\alpha) \leq s$. Hence $\sigma_{\psi_i}(\alpha)$ and $\sigma_{\psi_j}(\alpha)$ cannot both be contained in $\sigma_{\phi}(\alpha)$, so that we may assume that $\sigma_{\psi_i}(\alpha) \notin \sigma_{\phi}(\alpha)$. Let $S_1 = \sigma_{\phi}(\alpha)$, $S_2 = S \setminus S_1$, $\pi = \{S_1, S_2\}$ and f be any function whose partition is π. Then $\psi = \psi_i \psi_j \in A(f, \Omega)$; but $\psi \notin A(f, H_i)$, so that again (1) fails to hold.

REFERENCE