SEMI-NORMAL OPERATORS ON UNIFORMLY SMOOTH
BANACH SPACES

by MUNEO CHÖ

(Received 7 March, 1989; revised 10 November, 1989)

1. Introduction. In this paper we shall examine the relationship between the
numerical ranges and the spectra for semi-normal operators on uniformly smooth spaces.

Let X be a complex Banach space. We denote by X^* the dual space of X and by
$B(X)$ the space of all bounded linear operators on X. A linear functional F on $B(X)$ is
called state if $\|F\| = F(1) = 1$. When $x \in X$ with $\|x\| = 1$, we denote
$$D(x) = \{f \in X^* : \|f\| = f(x) = 1\}.$$

Let us set
$$\Pi = \{(x, f) \in X \times X^* : \|f\| = f(x) = \|x\| = 1\}.$$

The spatial numerical range $V(T)$ and the numerical range $V(B(X), T)$ of $T \in B(X)$
are defined by
$$V(T) = \{f(Tx) : (x, f) \in U\}$$
and
$$V(B(X), T) = \{F(T) : F \text{ is a state on } B(X)\},$$
respectively.

If $V(T) \subset \mathbb{R}$, then T is called hermitian. An operator $T \in B(X)$ is called hyponormal
(co-hyponormal) if there are hermitian operators H and K such that $T = H + iK$ and
$C = i(HK - KH) \geq 0 \leq 0$.

An operator $T \in B(X)$ is called semi-normal if T is hyponormal or co-hyponormal.
An operator T is called normal if there are hermitians H and K such that $T = H + iK$
and $HK = KH$.

For an operator $T \in B(X)$, the spectrum, the approximate point spectrum, the point
spectrum, the kernel and the dual operator of T are denoted by $\sigma(T)$, $\sigma_a(T)$, $\sigma_p(T)$,
$\text{Ker}(T)$ and T^*, respectively.

The following results are well-known:
(1) $\text{co} \ V(T) = V(B(X), T)$, where $\text{co} \ E$ is the closed convex hull of E.
(2) $\text{co} \ \sigma(T) \subset \overline{V(T)}$, where $\text{co} \ E$ and \overline{E} are the convex hull and the closure of E,
respectively.
(3) $V(T) \subset V(T^*) \subset \overline{V(T)}$.
(4) If T is normal, then $\sigma(T) = \sigma_a(T)$ and $\text{co} \ \sigma(T) = \overline{V(T)} = V(B(X), T)$.

Remark 1. From (3), if T is hyponormal or co-hyponormal, then T^* is co-
hyponormal or hyponormal, respectively.

We set, for $t > 0$:
$$\rho(t) = \sup \{\frac{1}{t}(\|x + y\| + \|x - y\|) - 1 : \|x\| = 1, \|y\| \leq t\}.$$

A Banach space X is called uniformly smooth if
$$\frac{\rho(t)}{t} \to 0 \quad \text{as} \quad t \to 0.$$

REMARK 2. A Banach space X is uniformly smooth iff X^* is uniformly convex. See [3] for details.

We recall from [1] and [2] the construction of a larger space X^0 from a given Banach space X. Then the mapping $T \to T^0$ is an isometric isomorphism of $B(X)$ onto a closed subalgebra of $B(X^0)$. Let Lim be fixed Banach limit on the space of all bounded sequences of complex numbers with the norm $\|\{\lambda_n\}\| = \sup\{|\lambda_n| : n \in \mathbb{N}\}$. Let \hat{X} be the space of all bounded sequences $\{x_n\}$ of X. Let N be the subspace of \hat{X} consisting of all bounded sequences $\{x_n\}$ with $\text{Lim} \|x_n\|^2 = 0$. The space X^0 is defined as the completion of the quotient space \hat{X}/N with respect to the norm $\|\{x_n\} + N\| = (\text{Lim} \|x_n\|^2)^{1/2}$. Then the following results hold:

$$\sigma(T) = \sigma(T^0), \quad \sigma_\pi(T) = \sigma_\pi(T^0) = \sigma_p(T^0) \quad \text{and} \quad \overline{\sigma_\pi} V(T) = V(T^0).$$

We need the following results.

THEOREM A [2, Theorem 4]. X is uniformly convex iff X^0 is uniformly convex.

THEOREM B [5, Lemma 20.3 and Corollary 20.10]. If H is hermitian and $Hx = 0$ with $\|x\| = 1$, then there exists $f \in X^*$ such that $(x, f) \in \Pi$ and $H^*f = 0$.

2. Semi-normal operators on uniformly smooth spaces.

THEOREM 1. Let X be uniformly smooth. Let $T = H + iK$ be semi-normal on X.

(1) If $a \in \sigma(H)$, then there is a real number b such that $b \in \sigma(K)$ and $a + ib \in \sigma(T)$.

(2) If $b' \in \sigma(K)$, then there is a real number a' such that $a' \in \sigma(H)$ and $a' + ib' \in \sigma(T)$.

Proof. (1) Since H is hermitian, there exists a sequence $\{x_n\}$ of unit vectors in X such that $(H - a)x_n \to 0$. Since X^* is uniformly convex, by Theorem 3.11 in Mattila [11] it follows that $(H^* - a)f_n \to 0$, where $f_n \in D(x_n)$. Consider the larger space X^*_{co} of X^*. Then $\text{Ker}(H^* - a)$ is a non-zero subspace of X^*_{co}. If $f_0 \in \text{Ker}(H^* - a)$ such that $\|f_0\| = 1$, then by Theorem B there is a sequence $\{\varphi_n\}$ such that $\|\varphi\| = \varphi(f_0) = 1$ and $(H^* - a)\varphi = 0$. We may assume that $C = i(HK - KH) \geq 0$. Then $C^* = i(K^*H^* - H^*K) \geq 0$ and

$$\varphi(C^*f_0) = i\varphi(K^*(H^* - a)f_0) - if_0^*(K^*H - H^*K)f_0 = 0,$$

where \hat{f}_0 is the Gel’fand representation of f_0. Since, by Theorem A, the space X^*_{co} is uniformly convex and $C^*_{\text{co}} \geq 0$, it follows that $C_{\text{co}}f_0 = 0$ by Theorem 2.1 in [12]. Therefore, we have that

$$(H^* - a)Kf_0 = 0.$$

It is easy to see that $\text{Ker}(H^* - a)$ is invariant for K^*. Hence, there exist a real number b and non-zero vector g_0 in $\text{Ker}(H^* - a)$ such that $K^*g_0 = bg_0$. It follows that $b \in \sigma_p(K^*)$ and $a + ib \in \sigma_p(T^*)$. And we have that $b \in \sigma(K^*) = \sigma(K)$ and $a + ib \in \sigma(T^*) = \sigma(T)$.

(2) is proved in the same way as (1).

THEOREM 2. Let X be uniformly smooth. Let $T = H + iK$ be semi-normal. Then

$$\co \sigma(T) = \overline{V(T)} = V(B(X), T).$$
Proof. We assume that Re $\sigma(T) \subset \mathbb{R}^+$. Then by Theorem 1 it follows that $\sigma(H) \subset \mathbb{R}^+$. Since $\sigma(H) = V(H) = V(B(X), H)$, it follows that Re $V(B(X), T) \subset \mathbb{R}^+$. Since $\alpha T + \beta$ is semi-normal for every $\alpha, \beta \in \mathbb{C}$, it follows that $\sigma(T) = \overline{V(T)} = V(B(X), T)$.

Theorem 3. Let X be uniformly smooth. Let $T = H + iK$ be co-hyponormal on X. If $a + ib \in \sigma(T)$, then $a \in \sigma(H)$ and $b \in \sigma(K)$.

Proof. If $a + ib \in \sigma(T)$, then $a + ib \in \sigma(T^*)$. Thus there exists $b' \in \mathbb{R}$ such that $a + ib'$ belongs to the boundary of $\sigma(T^*)$. Therefore there exists a sequence (f_n) of unit vectors in X^* such that $(T^* - (a + ib'))f_n \to 0$. Since X^* is uniformly convex and T^* is hyponormal on X^*, by Theorem 2.7 in [12] we have that $(H^* - a)f_n \to 0$ and $(K^* - b')f_n \to 0$. It follows that $a \in \sigma(H)$.

$b \in \sigma(K)$ is proved analogously.

Corollary 4. Let X be uniformly smooth. Let $T = H + iK$ be co-hyponormal on X. Then Re $\sigma(T) = \sigma(H)$ and Im $\sigma(T) = \sigma(K)$.

Proof. The proof follows easily from Theorems 1 and 3.

Problem. Does Theorem 3 hold for a hyponormal operator?

Remark 3. The following theorem holds, which corresponds to Theorem 10.6 in [4]. Let X be uniformly smooth. Then

$$\{ \lambda \in \overline{V(T)} : |\lambda| = \|T\| \} \subset \sigma_n(T).$$

It follows from the uniform convexity of X^* and $\overline{V(T)} = \overline{V(T^*)}$.

Acknowledgment. I would like to express my thanks to the referee for his kind advice.

References

10. M. Chô and H. Yamaguchi, Bare points of joint numerical ranges for doubly commuting hyponormal operators on strictly c-convex spaces, preprint.

Department of Mathematics
Joetsu University of Education
Joetsu, Niigata 943
Japan