In the thirty years since it was proved that 0, 1 and 144 were the only perfect squares in the Fibonacci sequence [1, 9], several generalisations have been proved, but many problems remain. Thus it has been shown that 0, 1 and 8 are the only Fibonacci cubes [6], but there seems to be no method available to prove the conjecture that 0, 1, 8 and 144 are the only perfect powers.

In a different direction, generalising the sequence to $P_n(a)$ defined by

$$P_0(a) = 0,$$

$$P_1(a) = 1,$$

$$P_{n+2}(a) = aP_{n+1}(a) + P_n(a)$$

or to $p_n(a)$ defined by

$$p_0(a) = 0,$$

$$p_1(a) = 1,$$

$$p_{n+2}(a) = ap_{n+1}(a) - p_n(a),$$

it has been shown that the problem of determining the squares in these sequences can be handled easily when a is odd, but only in exceptional cases when a is even [2, 3, 4]. In the case of the first of these with $a = 2$, we obtain the Pell sequence, 0, 1, 2, 5, \ldots, 169, \ldots, to which we shall refer below simply as P_n. It has been shown by Ljunggren [5] that its only squares are 0, 1 and 169. However, the method of that paper was long and extremely complicated, involving relative units in a biquadratic field, and Mordell asked over 30 years ago [7] whether a simpler proof might not be available. There has indeed been another proof recently [8] which is quite different in conception, depending as it does on purely analytical ideas. Although that proof is a considerable achievement, whether it can be regarded as more simple is a matter of opinion, as it still seems to require tools and a mass of detail disproportionate to the apparent difficulty of the problem. Maybe what Mordell had in mind was a proof akin to that for Fibonacci squares, both short and technically elementary.

Despite this challenge, no such proof has appeared; it may therefore perhaps be of interest to present the following very simple proof of the fact that there are no other powers in the sequence, a result far exceeding the present state of knowledge of the corresponding problem for the Fibonacci sequence.

Theorem. The only solutions of $P_n = x^k$ with $k > 2$ are given by $n = 0, 1$.

Lemma. The Diophantine equation $y^2 - 2z^k = -1$ with $k > 2$ has only the solutions $y = z = 1$ and $y = 239, z = 13, k = 4$.

Proof of lemma. For $k = 4$ or a multiple of 4, the result is Ljunggren's. For other values, k must have an odd prime factor, and so without loss of generality may be taken to be odd, say $k = 2K + 1$. For any solution both y and z must be odd, and factorising in $Q[i]$ gives $(y + i)(y - i) = (1 + i)(1 - i)^{2K+1}$. Since $(1 + i)$ and $(1 - i)$ are associates we find that $y + i = (1 + i)(a + ib)^{2K+1}$ and $z = a^2 + b^2$ for some suitable rational integers a and b, since any units, i.e. powers of i, can be absorbed into the $a + ib$. Thus we find $2i = (1 + i)(a + ib)^{2K+1} - (1 - i)(a - ib)^{2K+1}$ and so

$$1 + i = (a + ib)^{2K+1} + i(a - ib)^{2K+1} = (a + ib)^{2K+1} + (-1)^K(i(a + b))^{2K+1}.$$

Thus, if K is even, $(1 + i)$ is divisible by $(a + ib) + (ia + b) = (1 + i)(a + b)$ whence

20 J. H. E. COHN

\[a + b = \pm 1, \text{ and similarly, if } K \text{ is odd, } a - b = \pm 1. \text{ In either case we obtain } z = a^2 + b^2 = 2a^2 \pm 2a + 1, \text{ and so } 2z = c^2 + 1, \text{ where } c = |2a \pm 1| \geq 1. \]

Our equation can now be rewritten in the form \(y^2 - (c^2 + 1)(z^K)^2 = -1 \), and since the general solution of the Pell equation \(u^2 - (c^2 + 1)v^2 = -1 \) is given by

\[u + v\sqrt{c^2 + 1} = (c + \sqrt{c^2 + 1})^{2m+1}, \]

we find that

\[z^K = \left(\frac{1}{2}(c^2 + 1) \right)^K = \sum_{r=0}^{m} \binom{2m + 1}{2r + 1} c^{2m - 2r}(c^2 + 1)^r. \] (1)

Now suppose that \(p \) is any prime dividing \(\frac{1}{2}(c^2 + 1) \). Then \(p \mid (2m + 1) \). Then from (1) we see that \(p \mid (2m + 1) \) and so if \(p^m \mid (2m + 1) \), we see that the first term on the right hand side of (1) is divisible by \(p^n \) precisely, whereas all the other terms are divisible by higher powers. Thus \(\lambda K = \mu \), and since this holds for every prime factor of \(\frac{1}{2}(c^2 + 1) \), it follows that \(\left(\frac{1}{2}(c^2 + 1) \right)^K \) divides \(2m + 1 \) and so \(2m + 1 \equiv \left(\frac{1}{2}(c^2 + 1) \right)^K \). On the other hand from (1) we see that \(\left(\frac{1}{2}(c^2 + 1) \right)^K > 2m + 1 \) unless \(m = 0 \) and \(c = 1 \). Thus \(z = 1. \)

Proof of theorem. For \(n \) odd, the result follows from the lemma and the identity \(Q_n^2 - 2P_n^2 = (-1)^n \) where the sequence \(Q_n \) satisfies the same recurrence relation as \(P_n \) but with initial conditions \(Q_0 = Q_1 = 1 \). For \(n \) even, \(n \neq 0 \), let \(n = 2^h m \), where \(m \) is odd. Then it is found without difficulty that \(h \geq 2 \) and that \(P_n = 2^h P_m Q_m Q_{2m} X \), where the five factors on the right are pairwise coprime. It thus follows that if \(P_n \) is to be a perfect \(k \)th power, then each factor on the right must also be one. But by the lemma \(P_m \) can be a perfect \(k \)th power only if \(m = 1 \), and then \(Q_{2m} = 3 \) fails to be one, which concludes the proof.

REFERENCES

DEPARTMENT OF MATHEMATICS,
ROYAL HOLLOWAY UNIVERSITY OF LONDON,
EGHAM, SURREY TW20 0EX
ENGLAND