ALL NON-ARCHIMEDEAN NORMS ON $K[X_1, ..., X_r]$

GHIOCEL GROZA

Department of Mathematics, Technical University of Civil Engineering, Lacul Tei 124, Sec.2, RO-020396 Bucharest, Romania e-mail: grozag@mail.utcb.ro

NICOLAE POPESCU*

Romanian Academy, Institute of Mathematics, P.O. Box 1-764, RO-70700 Bucharest, Romania e-mail: Nicolae.Popescu@imar.ro

and ALEXANDRU ZAHARESCU

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801, USA e-mail: zaharesc@math.uiuc.edu

(Received 10 June 2008; revised 24 December 2008; accepted 24 March 2009)

Abstract. If K is a field with a non-trivial non-Archimedean absolute value (multiplicative norm) $| \ |$, we describe all non-Archimedean K-algebra norms on the polynomial algebra $K[X_1, \ldots, X_r]$ which extend $| \ |$.

2000 Mathematics Subject Classification. 11S75, 11C08.

1. Introduction. Let K be a field with a non-trivial non-Archimedean absolute value (multiplicative norm) $| \cdot |$. In this paper, we study K-algebra non-Archimedean norms on $K[X_1, \ldots, X_r]$ which extend $| \cdot |$. Some problems connected with the norms on p-adic vector spaces were solved by I. S. Cohen [5] and A. F. Monna [8], and then O. Goldmann and N. Iwahori were concerned in [6] with the intrinsic structure that is carried by the set of all norms on a given finite dimensional vector space over a locally compact field. When r=1, the case of K-algebra non-Archimedean norms on K[X] which are multiplicative and extend $| \cdot |$ has been treated in [1–3]. In Section 2 below we consider generalizations of the Gauss valuation. We investigate the case when a K-vector space norm is a K-algebra norm and we also address the question of when two norms are equivalent. In Section 3 we then discuss possible types of norms on $K[X_1, \ldots, X_r]$ which extend a given non-trivial non-Archimedean absolute value on K. The completion of $K[X_1, \ldots, X_r]$ with respect to a non-Archimedean Gauss norm is given in Section 4.

There are many applications of non-Archimedean multiplicative norms on $K[X_1, ..., X_r]$ in algebraic geometry where a basic tool is to describe all the absolute values on $K(X_1, ..., X_r)$ which extend $| \cdot |$. In [7] F.-V. Kuhlmann determined which value groups and which residue fields can possibly occur in this case. In the case r = 1 the r.t. extensions $| \cdot |_L$ of $| \cdot |_L$ to L = K(X) have been considered by M. Nagata [9], who

^{*}Partially supported by CEEX program of the Romanian Ministry of Education and Research, Contract No. CEx 05-D11-11/2005.

conjectured that $L_{||L|}$ is a simple transcendental extension of a finite algebraic extension of $K_{||}$. This problem has been affirmatively solved (see for example [1]). Some results on the corresponding problem for $K(X_1, \ldots, X_r)$ are given in Section 5.

2. Gauss norms on $K[X_1, \ldots, X_r]$ **.** Let K be a field with a non-trivial non-Archimedean absolute value (multiplicative norm) $| \ |, \ \text{i.e.} \ | \ | : K \to [0, \infty)$ such that for all $\alpha, \beta \in K$

A1.
$$|\alpha| = 0 \Leftrightarrow \alpha = 0$$
;

A2.
$$|\alpha\beta| = |\alpha| |\beta|$$
;

A3.
$$|\alpha + \beta| \leq \max\{|\alpha|, |\beta|\};$$

A4. there exists $\gamma \in K$ different from zero such that $|\gamma| \neq 1$.

Then (K, | |) is called a *valued field*.

In what follows we work with the polynomial algebra $K[X_1, ..., X_r]$, and study the K-algebra norms $|| \ || : K[X_1, ..., X_r] \to [0, \infty)$ which extend $| \ |$, i.e. $|| \ ||$ satisfies, for all $P, Q \in K[X_1, ..., X_r]$, the conditions A1, A3 and for all $\alpha \in K$ and $P, Q \in K[X_1, ..., X_r]$

N1.
$$||\alpha P|| = |\alpha| ||P||;$$

N2.
$$||PQ|| \le ||P||||Q||$$
;

N3.
$$||\alpha|| = |\alpha|$$
.

If $\mathbf{n} = (n_1, \dots, n_r) \in \mathbb{N}^r$, we put $N(\mathbf{n}) = n_1 + \dots + n_r$. We order the elements of \mathbb{N}^r in the following manner: $\mathbf{i} < \mathbf{j}$ if either $N(\mathbf{i}) < N(\mathbf{j})$ or $N(\mathbf{i}) = N(\mathbf{j})$ and \mathbf{i} is less than \mathbf{j} with respect to the lexicographical order. Hence it follows that for each \mathbf{j} there are only a finite number of \mathbf{i} such that $\mathbf{i} \leq \mathbf{j}$. For simplicity, for any $\mathbf{m} = (m_1, \dots, m_r) \in \mathbb{N}^r$, we denote $\mathbf{X}^{\mathbf{m}} = X_1^{m_1} \cdots X_r^{m_r}$ and $a_{\mathbf{m}} = a_{m_1, \dots, m_r}$. We also denote $\mathbf{X} = (X_1, \dots, X_r)$.

$$P = \sum_{\mathbf{j} \le \mathbf{n}} a_{\mathbf{j}} \mathbf{X}^{\mathbf{j}} \in K[\mathbf{X}], \tag{1}$$

denote

$$E(P) = \{ \mathbf{j} \in \mathbb{N}^r : \mathbf{j} \le \mathbf{n}, a_{\mathbf{j}} \ne 0 \}$$

and $\mathbf{d}(P) = \mathbf{n}$ is the greatest element of E(P) with respect to the lexicographical order. If $a_{\mathbf{d}(P)} = 1$ the polynomial P is called *monic*.

Let (K, | |) be a valued field as above and || || a K-algebra norm on K[X] which extends | |. In what follows we define a non-Archimedean norm on the polynomial algebra K[X] which is a generalization of the Gauss valuation.

We start with the following simple lemma.

LEMMA 1. Suppose that K is a field and $\mathcal{F} = \{P_j\}_{j \in \mathbb{N}^r}$ a sequence of polynomials from $K[\mathbf{X}]$ such that, for every \mathbf{j} , $\mathbf{d}(P_j) = \mathbf{j}$ and ordered with respect to the order defined on \mathbb{N}^r . Then every $Q \in K[\mathbf{X}]$ can be represented uniquely in the form

$$Q = \sum_{\mathbf{j} < \mathbf{d}(Q)} b_{\mathbf{j}} P_{\mathbf{j}},\tag{2}$$

where $b_i \in K$.

Proof. If $Q = \sum_{\mathbf{j} \in E(Q)} c_{\mathbf{j}} \mathbf{X}^{\mathbf{j}}$, $P_{\mathbf{d}(Q)} = \sum_{\mathbf{j} \in E(P_{\mathbf{d}(Q)})} a_{\mathbf{j}} \mathbf{X}^{\mathbf{j}}$, then $Q = c_{\mathbf{d}(Q)} a_{\mathbf{d}(Q)}^{-1} P_{\mathbf{d}(Q)} + Q_{\mathbf{i}}$, where $\mathbf{i} = \mathbf{d}(Q_{\mathbf{i}})$ and $\mathbf{i} < \mathbf{d}(Q)$. By putting $b_{\mathbf{d}(Q)} = c_{\mathbf{d}(Q)} a_{\mathbf{d}(Q)}^{-1}$ the statement follows easily by induction with respect to $\mathbf{d}(Q)$.

We denote

$$E_{\mathcal{F}}(Q) = \{ \mathbf{i} \in \mathbb{N}^r : b_{\mathbf{i}} \neq 0 , \text{ in (2)} \}.$$

Suppose that (K, | |) is a valued field, $\mathcal{F} = \{P_j\}_{j \in \mathbb{N}^r}$ a sequence of polynomials from $K[\mathbf{X}]$ such that, for every \mathbf{j} , $\mathbf{d}(P_j) = \mathbf{j}$, ordered with respect to the order defined on \mathbb{N}^r and $\mathcal{N} = \{\delta_j\}_{j \in \mathbb{N}^r}$ a sequence of positive real numbers such that $\delta_{(0,0,\ldots,0)} = 1$. We call \mathcal{F} and \mathcal{N} admissible sequences of polynomials and positive numbers, respectively.

For every $Q \in K[X]$ written in the form (2) we define

$$||Q||_{\mathcal{F},\mathcal{N}} = \max_{\mathbf{j} \le \mathbf{d}(Q)} \{|b_{\mathbf{j}}|\delta_{\mathbf{j}}\},\tag{3}$$

with $\mathbf{j} \in E_{\mathcal{F}}(Q)$. If $P_{\mathbf{s}}, P_{\mathbf{t}} \in \mathcal{F}$, then by Lemma 1

$$P_{s}P_{t} = \sum_{j \le s+t} \gamma_{j}(s, t)P_{j}, \quad \gamma_{j}(s, t) \in K,$$

$$(4)$$

where $\gamma_{\mathbf{j}}(\mathbf{s}, \mathbf{t}) = \gamma_{\mathbf{j}}(\mathbf{t}, \mathbf{s})$, for every **j**. Then we set

$$\rho_{\mathbf{s},\mathbf{t}} = \max_{\mathbf{i} < \mathbf{s} + \mathbf{t}} \{ |\gamma_{\mathbf{j}}(\mathbf{s}, \mathbf{t})| \delta_{\mathbf{j}} \}. \tag{5}$$

PROPOSITION 1. Suppose that $(K, | \cdot|)$ is a valued field, \mathcal{F} and \mathcal{N} admissible sequence of polynomials and real numbers, respectively. Then $\| \cdot \|_{\mathcal{F},\mathcal{N}}$, defined by (3) is a K-vector space non-Archimedean norm on $K[\mathbf{X}]$ which extends $| \cdot|$. Moreover $\| \cdot \|_{\mathcal{F},\mathcal{N}}$, is a K-algebra norm on $K[\mathbf{X}]$ if and only if

$$\rho_{s,t} < \delta_s \delta_t, \tag{6}$$

for every **s**, **t**.

Proof. The first statement is easily verified. For the second part we consider $P, Q \in K[X]$, where $P = \sum_{i < d(P)} a_i P_i$ and Q is given by (2). Then, by (4),

$$PQ = \sum_{\mathbf{u} \leq \mathbf{d}(PQ)} \left(\sum_{\mathbf{v}+\mathbf{w}=\mathbf{u}} a_{\mathbf{v}} b_{\mathbf{w}} P_{\mathbf{v}} P_{\mathbf{w}} \right) = \sum_{\mathbf{u} \leq \mathbf{d}(PQ)} \left(\sum_{\mathbf{v}+\mathbf{w}=\mathbf{u}} a_{\mathbf{v}} b_{\mathbf{w}} \left(\sum_{\mathbf{j} \leq \mathbf{u}} \gamma_{\mathbf{j}}(\mathbf{v}, \mathbf{w}) P_{\mathbf{j}} \right) \right)$$

$$= \sum_{\mathbf{u} \leq \mathbf{d}(PQ)} \left(\sum_{\mathbf{j} \leq \mathbf{u}} \left(\sum_{\mathbf{v}+\mathbf{w}=\mathbf{u}} a_{\mathbf{v}} b_{\mathbf{w}} \gamma_{\mathbf{j}}(\mathbf{v}, \mathbf{w}) \right) P_{\mathbf{j}} \right) = \sum_{\mathbf{j} \leq \mathbf{d}(PQ)} c_{\mathbf{j}} P_{\mathbf{j}},$$

where

$$c_{\mathbf{j}} = \sum_{\mathbf{j} < \mathbf{u} < \mathbf{d}(PO)} \left(\sum_{\mathbf{v} + \mathbf{w} = \mathbf{u}} a_{\mathbf{v}} b_{\mathbf{w}} \gamma_{\mathbf{j}}(\mathbf{v}, \mathbf{w}) \right)$$
(7)

and since only a finite number of a_v , b_w are different from zero, all the sums are finite. Then, if (6) holds,

$$\begin{split} \|PQ\|_{\mathcal{F},\mathcal{N}} &\leq \max_{\mathbf{j} \leq \mathbf{d}(PQ)} \left\{ \left| \sum_{\mathbf{v}+\mathbf{w}=\mathbf{u}} a_{\mathbf{v}} b_{\mathbf{w}} \gamma_{\mathbf{j}}(\mathbf{v}, \mathbf{w}) \right| \right\} \delta_{\mathbf{j}} \right\} \\ &\leq \max_{\mathbf{j} \leq \mathbf{d}(PQ)} \left\{ \max_{\mathbf{j} \leq \mathbf{u} \leq \mathbf{d}(PQ)} \left\{ \max_{\mathbf{v}+\mathbf{w}=\mathbf{u}} \left\{ \left| a_{\mathbf{v}} b_{\mathbf{w}} \gamma_{\mathbf{j}}(\mathbf{v}, \mathbf{w}) \right| \right\} \right\} \delta_{\mathbf{j}} \right\} \\ &\leq \max_{\mathbf{u} \leq \mathbf{d}(PQ)} \left\{ \max_{\mathbf{v}+\mathbf{w}=\mathbf{u}} \left\{ \left| a_{\mathbf{v}} b_{\mathbf{w}} \right| \rho_{\mathbf{v},\mathbf{w}} \right\} \right\} \leq \max_{\mathbf{u} \leq \mathbf{d}(PQ)} \left\{ \max_{\mathbf{v}+\mathbf{w}=\mathbf{u}} \left\{ \left| a_{\mathbf{v}} b_{\mathbf{w}} \right| \delta_{\mathbf{v}} \delta_{\mathbf{w}} \right\} \right\} \\ &\leq \max_{\mathbf{j} \leq \mathbf{d}(P)} \left\{ \left| a_{\mathbf{i}} \right| \delta_{\mathbf{i}} \right\} \max_{\mathbf{j} \leq \mathbf{d}(Q)} \left\{ \left| b_{\mathbf{j}} \right| \delta_{\mathbf{j}} \right\} = \|P\|_{\mathcal{F},\mathcal{N}} \|Q\|_{\mathcal{F},\mathcal{N}}. \end{split}$$

This completes the proof of the proposition.

We call the norm given by (3) the *Gauss norm* on K[X] defined by \mathcal{F} and \mathcal{N} . If $\| \|_{\mathcal{F},\mathcal{N}}$ is a K-algebra norm on K[X], then by (5) and (6) it follows that

$$\delta_{\mathbf{n}} \leq \min_{\mathbf{i} + \mathbf{j} = \mathbf{n}} \left\{ \frac{\delta_{\mathbf{i}} \delta_{\mathbf{j}}}{|\gamma_{\mathbf{n}}(\mathbf{i}, \mathbf{j})|} \right\}. \tag{8}$$

If

$$P_{\mathbf{j}} = \sum_{\mathbf{i} \le \mathbf{j}} a_{\mathbf{i}, \mathbf{j}} \mathbf{X}^{\mathbf{i}}, \tag{9}$$

then

$$P_{\mathbf{s}}P_{\mathbf{t}} = \sum_{\mathbf{j} < \mathbf{s} + \mathbf{t}} c_{\mathbf{j}} \mathbf{X}^{\mathbf{j}},$$

where

$$c_{\mathbf{j}} = \sum_{\mathbf{u}+\mathbf{v}=\mathbf{j}} a_{\mathbf{u},\mathbf{s}} a_{\mathbf{v},\mathbf{t}},$$

and all the sums are finite. We consider i_1 the greatest element of $E(P_sP_t - \gamma_{s+t}(s,t)P_{s+t})$. Thus, by (4),

$$\gamma_{i_1}(s, t) = c_{i_1} - a_{i_1, s+t}.$$
 (10)

By induction with respect to the defined order it follows that

$$\gamma_{\mathbf{i}}(\mathbf{s}, \mathbf{t}) = T_{\mathbf{i}} - a_{\mathbf{i}, \mathbf{s} + \mathbf{t}}, \ \mathbf{i} = \mathbf{i}_2, \mathbf{i}_3, \dots, \tag{11}$$

where $\mathbf{i}_0 = \mathbf{s} + \mathbf{t} > \mathbf{i}_1 > \mathbf{i}_2 > \dots$, \mathbf{i}_k is the greatest element of $E(P_\mathbf{s}P_\mathbf{t} - \sum_{\mathbf{i}_z > \mathbf{i}_{k-1}} \gamma_{\mathbf{i}_z}(\mathbf{s}, \mathbf{t})P_{\mathbf{i}_z})$, $T_\mathbf{j}$ is a polynomial with integral coefficients in $a_{\mathbf{v},\mathbf{w}}$ with either $\mathbf{w} < \mathbf{s} + \mathbf{t}$ or $\mathbf{w} = \mathbf{s} + \mathbf{t}$ and $\mathbf{v} > \mathbf{j}$.

Now for $k \in \{1, 2, ..., r\}$ we consider $\mathbf{e}_k = (0, ..., 1, ..., 0) \in \mathbb{N}^r$. If $\mathbf{n} \in \mathbb{N}^r$, $N(\mathbf{n}) > 1$ we denote $\mathbf{n}_- \in \mathbb{N}^r$, the greatest element such that $\mathbf{n} = \mathbf{n}_- + \mathbf{e}_k$, for some $k \in \{1, 2, ..., r\}$. In this case we denote $\mathbf{e}_k = \mathbf{e}(\mathbf{n})$.

The following result shows that for every admissible $\mathcal{N} = \{\delta_j\}_{j \in \mathbb{N}^r}$ such that

$$C = \inf_{\mathbf{j},k} \left\{ \frac{\delta_{\mathbf{j} + \mathbf{e}_k}}{\delta_{\mathbf{j}}} \right\} > 0, \tag{12}$$

and satisfying (8) one can construct Gauss norms on K[X] of the form $\| \|_{\mathcal{F},\mathcal{N}}$. A trivial case is when we take $P_j(\mathbf{X}) = \mathbf{X}^j$, but also we can find Gauss norms such that $P_{s+t} \neq P_s P_t$.

We put $\mu_{(0,0,\dots,0)} = 1$ and for any **n** with $N(\mathbf{n}) > 1$,

$$\mu_{\mathbf{n}} = \min_{\mathbf{i}+\mathbf{j}=\mathbf{n}} \left\{ \delta_{\mathbf{i}} \delta_{\mathbf{j}} \right\}, \ \tau_{\mathbf{n}} = \min_{N(\mathbf{m})=N(\mathbf{n})-1} \left\{ \mu_{\mathbf{n}}, C \mu_{\mathbf{m}} \right\}. \tag{13}$$

PROPOSITION 2. Suppose that $(K, | \cdot|)$ is a valued field and $\mathcal{N} = \{\delta_j\}_{j \in \mathbb{N}}$ an admissible sequence of real numbers verifying (8) and (12). Then there exist infinitely many sequences of admissible polynomials $\mathcal{F} = \{P_j\}_{j \in \mathbb{N}'}$ such that $\| \cdot \|_{\mathcal{F}, \mathcal{N}}$ defined by (3) is a Gauss norm of K-algebra on K[X].

Proof. We construct sequences of monic polynomials $\mathcal{F} = \{P_j\}_{j \in \mathbb{N}^r}$ such that $\| \|_{\mathcal{F}, \mathcal{N}}$ defined by (3) is a Gauss norm of K-algebra on $K[\mathbf{X}]$. We put $P_{(0,\dots,0)} = 1$ and if $\mathbf{j} = \mathbf{e}_r = (0,\dots,0,1) \in \mathbb{N}^r$, $P_{\mathbf{j}} = a_{\mathbf{j}} + \mathbf{X}^{\mathbf{j}}$, with an arbitrary $a_{\mathbf{j}} \in K$. Generally, if $N(\mathbf{j}) = 1$, we take an arbitrary monic polynomial $P_{\mathbf{j}} = \sum_{\mathbf{i} \leq \mathbf{j}} a_{\mathbf{i},\mathbf{j}} \mathbf{X}^{\mathbf{i}}$, where $a_{\mathbf{i},\mathbf{j}} \in K$. If $\mathbf{j} = (0,\dots,0,2)$ we take the monic polynomial $P_{\mathbf{j}} = \sum_{\mathbf{i} \leq \mathbf{j}} a_{\mathbf{i},\mathbf{j}} \mathbf{X}^{\mathbf{i}}$, with $E(P_{\mathbf{j}}) \setminus \{\mathbf{j}\}$ a subset of the union of all $E(P_{\mathbf{i}})$ with $\mathbf{i} < \mathbf{j}$. Then by (4), we can write $P_{\mathbf{e}_r}^2 = P_{\mathbf{j}} + \sum_{\mathbf{v} < \mathbf{j}} \gamma_{\mathbf{v}}(\mathbf{e}_r, \mathbf{e}_r) P_{\mathbf{v}}$ and by (11) we can find the coefficients $a_{\mathbf{i},\mathbf{j}}$ such that

$$|\gamma_{\mathbf{i}}(\mathbf{e}_r, \mathbf{e}_r)|\delta_{\mathbf{i}} < \tau_{\mathbf{i}}, \ \mathbf{i} < \mathbf{i}.$$

By choosing arbitrary the coefficients $a_{i,j}$ when \mathbf{i} is not in $E_{\mathcal{F}_j}(P_{\mathbf{e}_r}^2)$, where $\mathcal{F}_j = \{P_i\}_{i \leq j}$, we find $E(P_j)$. In the same manner we can construct all the polynomials $P_j = \sum_{i \leq j} a_{i,j} \mathbf{X}^i$, with $N(\mathbf{j}) = 2$. Then by induction, we consider $\mathbf{n} \in \mathbb{N}^r$, and suppose that for all \mathbf{s} with $N(\mathbf{s}) \leq N(\mathbf{n}) - 1$ and $\mathbf{t} \in E_{\mathcal{F}_s}(P_{\mathbf{s}})$ we have

$$|\gamma_{\mathbf{t}}(\mathbf{e}_{k}, \mathbf{s}_{-})|\delta_{\mathbf{t}} \leq \tau_{\mathbf{s}+\mathbf{e}_{k}}, |\gamma_{\mathbf{t}}(\mathbf{i}, \mathbf{j})|\delta_{\mathbf{t}} \leq \delta_{\mathbf{i}}\delta_{\mathbf{j}}, \quad \mathbf{i}+\mathbf{j}=\mathbf{s}, \ k \in \{1, 2, \dots, r\}.$$
 (14)

By (11) we can choose the coefficients of P_n such that the first condition of (14) holds for $\mathbf{s} = \mathbf{n}$. To verify the second condition we consider $\mathbf{i} + \mathbf{j} = \mathbf{n}$, with $N(\mathbf{i})$ and $N(\mathbf{j})$ less than $N(\mathbf{n})$. Then, without loss of generality, we may suppose that $\mathbf{e}(\mathbf{j}) = \mathbf{e}(\mathbf{n})$ and we obtain

$$\begin{split} P_{\mathbf{e}(\mathbf{n})}P_{\mathbf{n}_{-}} &= P_{\mathbf{e}(\mathbf{n})} \left(P_{\mathbf{i}}P_{\mathbf{j}_{-}} - \sum_{\mathbf{t} < \mathbf{n}_{-}} \gamma_{\mathbf{t}}(\mathbf{i}, \mathbf{j}_{-})P_{\mathbf{t}} \right) \\ &= P_{\mathbf{i}} \sum_{\mathbf{t} \leq \mathbf{j}} \gamma_{\mathbf{t}}(\mathbf{e}(\mathbf{n}), \mathbf{j}_{-})P_{\mathbf{t}} - \sum_{\mathbf{t} < \mathbf{n}_{-}} \gamma_{\mathbf{t}}(\mathbf{i}, \mathbf{j}_{-})P_{\mathbf{e}(\mathbf{n})}P_{\mathbf{t}} \\ &= P_{\mathbf{i}}P_{\mathbf{j}} + \sum_{\mathbf{t} < \mathbf{j}} \gamma_{\mathbf{t}}(\mathbf{e}(\mathbf{n}), \mathbf{j}_{-}) \sum_{\mathbf{u} \leq \mathbf{i} + \mathbf{t}} \gamma_{\mathbf{u}}(\mathbf{i}, \mathbf{t})P_{\mathbf{u}} - \sum_{\mathbf{t} < \mathbf{n}_{-}} \gamma_{\mathbf{t}}(\mathbf{i}, \mathbf{j}_{-}) \sum_{\mathbf{u} \leq \mathbf{e}(\mathbf{n}) + \mathbf{t}} \gamma_{\mathbf{u}}(\mathbf{e}(\mathbf{n}), \mathbf{t})P_{\mathbf{u}} \\ &= P_{\mathbf{i}}P_{\mathbf{j}} + \sum_{\mathbf{t} < \mathbf{i}} \sum_{\mathbf{u} \leq \mathbf{i} + \mathbf{t}} \gamma_{\mathbf{t}}(\mathbf{e}(\mathbf{n}), \mathbf{j}_{-}) \gamma_{\mathbf{u}}(\mathbf{i}, \mathbf{t})P_{\mathbf{u}} - \sum_{\mathbf{t} < \mathbf{n}_{-}} \sum_{\mathbf{u} \leq \mathbf{e}(\mathbf{n}) + \mathbf{t}} \gamma_{\mathbf{t}}(\mathbf{i}, \mathbf{j}_{-}) \gamma_{\mathbf{u}}(\mathbf{e}(\mathbf{n}), \mathbf{t})P_{\mathbf{u}}. \end{split}$$

Hence, for a fixed u,

$$\gamma_{\mathbf{u}}(\mathbf{e}(\mathbf{n}), \mathbf{n}_{-}) = \gamma_{\mathbf{u}}(\mathbf{i}, \mathbf{j}) + \sum_{\substack{t < j \\ \mathbf{u} \le \mathbf{i} + t}} \gamma_{t}(\mathbf{e}(\mathbf{n}), \mathbf{j}_{-}) \gamma_{\mathbf{u}}(\mathbf{i}, \mathbf{t})$$

$$- \sum_{\substack{t < \mathbf{n}_{-} \\ \mathbf{u} \le \mathbf{e}(\mathbf{n}) + t}} \gamma_{t}(\mathbf{i}, \mathbf{j}_{-}) \gamma_{\mathbf{u}}(\mathbf{e}(\mathbf{n}), \mathbf{t}). \tag{15}$$

Now by (14) it follows that

$$\begin{split} |\gamma_t(e(n),j_-)\gamma_u(i,t)| &\leq \frac{\tau_j}{\delta_t}\frac{\delta_i\delta_t}{\delta_u} \leq \frac{\delta_i\delta_j}{\delta_u}, |\gamma_t(i,j_-)\gamma_u(e(n),t)| \\ &\leq \frac{\delta_i\delta_{j_-}}{\delta_t}\frac{\tau_{t+e(n)}}{\delta_u} \leq \frac{\delta_i\delta_{j_-}}{\delta_t}\frac{C\mu_t}{\delta_u} \leq \frac{\delta_i\delta_j}{\delta_u}. \end{split}$$

Hence one has (14) for $\mathbf{s} = \mathbf{n}$ and by Proposition 1, it follows that we can find infinitely many sequences of monic polynomials $\mathcal{F} = \{P_j\}_{j \in \mathbb{N}^r}$ such that $\| \|_{\mathcal{F}, \mathcal{N}}$ defined by (3) is a Gauss norm of K-algebra on $K[\mathbf{X}]$.

Next, we study when two Gauss norms are equivalent.

PROPOSITION 3. Suppose that (K, | |) is a valued field and $\| \|_{\mathcal{F}_{\alpha}, \mathcal{N}_{\alpha}}$, $\alpha = 1, 2$, where $\mathcal{F}_{\alpha} = \{P_{\mathbf{j}, \alpha}\}_{\mathbf{j} \in \mathbb{N}^r}$, $\mathcal{N}_{\alpha} = \{\delta_{\mathbf{j}, \alpha}\}_{\mathbf{j} \in \mathbb{N}^r}$, are two Gauss norms on $K[\mathbf{X}]$. If by (2)

$$P_{\mathbf{j},\alpha} = \sum_{\mathbf{i},\mathbf{j}} c_{\mathbf{i},\mathbf{j}}^{(\alpha)} P_{\mathbf{i},3-\alpha}, \ \alpha = 1, 2,$$
 (16)

then the norms are equivalent if and only if there exist positive constants C_1 , C_2 such that

$$\delta_{\mathbf{j},1} \ge C_1 |c_{\mathbf{i},\mathbf{j}}^{(1)}| \delta_{\mathbf{i},2}, \ C_2 \delta_{\mathbf{j},2} \ge |c_{\mathbf{i},\mathbf{j}}^{(2)}| \delta_{\mathbf{i},1}, \text{ for any } \mathbf{i}, \mathbf{j}, \text{ with } \mathbf{i} \le \mathbf{j}.$$
 (17)

Proof. If the norms are equivalent, then there exist positive constants C_1 , C_2 such that for every $Q \in K[X]$

$$C_1 \|Q\|_{\mathcal{F}_2, \mathcal{N}_2} \leq \|Q\|_{\mathcal{F}_1, \mathcal{N}_1} \leq C_2 \|Q\|_{\mathcal{F}_2, \mathcal{N}_2}.$$

Consequently, we obtain

$$\delta_{\mathbf{j},1} = \|P_{\mathbf{j},1}\|_{\mathcal{F}_{1},\mathcal{N}_{1}} \ge C_{1} \left\| \sum_{\mathbf{i} \le \mathbf{j}} c_{\mathbf{i},\mathbf{j}}^{(1)} P_{\mathbf{i},2} \right\|_{\mathcal{F}_{2},\mathcal{N}_{2}} = C_{1} \max_{\mathbf{i} \le \mathbf{j}} \left\{ \left| c_{\mathbf{i},\mathbf{j}}^{(1)} \right| \delta_{\mathbf{i},2} \right\}.$$

Conversely, suppose that (17) holds. If $Q \in K[X]$, then

$$Q = \sum_{\mathbf{j} \leq \mathbf{d}(Q)} b_{\mathbf{j}} P_{\mathbf{j},2} = \sum_{\mathbf{j} \leq \mathbf{d}(Q)} b_{\mathbf{j}} \left(\sum_{\mathbf{i} \leq \mathbf{j}} c_{\mathbf{j},\mathbf{i}}^{(2)} P_{\mathbf{i},1} \right) = \sum_{\mathbf{j} \leq \mathbf{d}(Q)} \left(\sum_{\mathbf{i} \geq \mathbf{j}} c_{\mathbf{j},\mathbf{i}}^{(2)} b_{\mathbf{i}} \right) P_{\mathbf{j},1}.$$

Hence it follows that

$$\begin{aligned} \|Q\|_{\mathcal{F}_{1},\mathcal{N}_{1}} &= \max_{\mathbf{j} \leq \mathbf{d}(Q)} \left\{ \left| \sum_{\mathbf{i} \geq \mathbf{j}} c_{\mathbf{j},\mathbf{i}}^{(2)} b_{\mathbf{i}} \right| \delta_{\mathbf{j},1} \right\} \leq \max_{\mathbf{j} \leq \mathbf{d}(Q)} \left\{ \max_{\mathbf{i} \geq \mathbf{j}} \left\{ \left| c_{\mathbf{j},\mathbf{i}}^{(2)} b_{\mathbf{i}} \right| \right\} \delta_{\mathbf{j},1} \right\} \\ &\leq C_{2} \max_{\mathbf{i} \leq \mathbf{d}(Q)} \left\{ |b_{\mathbf{i}}| \delta_{\mathbf{i},2} \right\} = C_{2} \|Q\|_{\mathcal{F}_{2},\mathcal{N}_{2}}. \end{aligned}$$

REMARK 1. Consider $\| \|_{\mathcal{F},\mathcal{N}}$, a Gauss K-algebra norm on $K[\mathbf{X}]$ defined by $\mathcal{F} = \{P_{\mathbf{j}}\}_{\mathbf{j}\in\mathbb{N}^r}$, $\mathcal{N} = \{\delta_{\mathbf{j}}\}_{\mathbf{j}\in\mathbb{N}^r}$. If for every $\mathbf{j}\in\mathbb{N}^r$, $c_{\mathbf{j}}$ is an element different from zero from K and $P_{\mathbf{j}}^* = c_{\mathbf{j}}P_{\mathbf{j}}$, $\delta_{\mathbf{j}}^* = |c_{\mathbf{j}}|\delta_{\mathbf{j}}$, then by Proposition 3 it follows easily that the Gauss norm defined by $\mathcal{F}^* = \{P_{\mathbf{j}}^*\}_{\mathbf{j}\in\mathbb{N}^r}$, $\mathcal{N}^* = \{\delta_{\mathbf{j}}^*\}_{\mathbf{j}\in\mathbb{N}^r}$ is a K-algebra norm on $K[\mathbf{X}]$ and the norms $\| \|_{\mathcal{F}^*,\mathcal{N}^*}$, $\| \|_{\mathcal{F},\mathcal{N}}$ are equivalent. Hence it follows that up to an equivalence we can consider a Gauss norm defined by a family of monic polynomials.

Example 1. Suppose (K, | |) is a valued field and $\mathbf{S} = \{(\beta_{k,1}, \ldots, \beta_{k,r})\}_{k \geq 1}$ is a fixed sequence of elements of $\overset{\circ}{K}$, where $\overset{\circ}{K} = \bar{B}_K(0, 1) = \{x \in K; |x| \leq 1\}$. We take $\mathcal{F}_1 = \{\mathbf{X}^{\mathbf{i}}\}_{\mathbf{i} \in \mathbb{N}^r}$, $\mathcal{F}_2 = \{P_{\mathbf{i},2}\}_{\mathbf{i} \in \mathbb{N}^r}$, where

$$P_{\mathbf{j},2} = \prod_{0 < k \le j_1} (X_1 - \beta_{k,1}) \prod_{0 < k \le j_2} (X_2 - \beta_{k,2}) \dots \prod_{0 < k \le r} (X_r - \beta_{k,r}).$$

Then it follows easily that all $c_{\mathbf{i},\mathbf{j}}^{(\alpha)}$, $\alpha=1,2$, defined by (16) belong to K. We put $\mathcal{N}_1=\mathcal{N}_2=\{\delta_{\mathbf{j}}\}_{\mathbf{j}\in\mathbb{N}^r}$ where, for every \mathbf{j} , \mathbf{s} , $\mathbf{t}\in\mathbb{N}^r$ with $\mathbf{j}\leq\mathbf{s}+\mathbf{t}$,

$$\delta_{\mathbf{i}} \leq \delta_{\mathbf{s}} \delta_{\mathbf{t}}$$
.

For example we may take either $\delta_{\mathbf{j}} = a^{N(\mathbf{j})}$ with a > 1, for all \mathbf{j} , or $\delta_{\mathbf{j}} = (N(\mathbf{j}) + 1)^p$ with p a fixed positive integer, for all \mathbf{j} . Since all $\gamma_{\mathbf{j},\alpha}$, $\alpha = 1, 2$, defined by (4) belong to K, by Proposition 1 it easily follows that $\| \|_{\mathcal{F}_1,\mathcal{N}_1}$ and $\| \|_{\mathcal{F}_2,\mathcal{N}_2}$ are K-algebra norms on $K[\mathbf{X}]$ and (17) holds with $C_1 = C_2 = 1$. Hence the norms are equivalent.

Let (K, | |) be a valued field and || || a non-Archimedean norm on K[X] which extends $|| || If \mathbf{i} \in \mathbb{N}^r$, put

$$M^{(j)} = \{ Q \in K[\mathbf{X}] \text{ monic, } \mathbf{d}(Q) = \mathbf{j} \}, M_{\parallel \parallel}^{(j)} = \{ \|Q\|; Q \in M^{(j)} \}.$$
 (18)

On K[X] there are non-Archimedean norms which are not Gauss norms (see Remark 3). The following result gives a criterion for a non-Archimedean norm on K[X] to be a Gauss norm.

PROPOSITION 4. Let $(K, | \cdot|)$ be a valued field and let $| \cdot| |$ be a K-algebra non-Archimedean norm on K[X] which extends $| \cdot|$. Then $| \cdot| |$ is a Gauss norm defined by a family of monic polynomials if and only if for every $\mathbf{j} \in \mathbb{N}^r$, there exists $P_{\mathbf{j}} \in M^{(\mathbf{j})}$ such that $||P_{\mathbf{j}}|| = \inf M_{\|\cdot\|}^{(\mathbf{j})}$. In this case $| \cdot| |$ is defined by $\mathcal{F} = \{P_{\mathbf{j}}\}_{\mathbf{j} \in \mathbb{N}^r}$, $\mathcal{N} = \{||P_{\mathbf{j}}||\}_{\mathbf{j} \in \mathbb{N}^r}$.

Proof. If $\| \| \|$ is a Gauss norm defined by a family of monic polynomials $\mathcal{F} = \{P_{\mathbf{j}}\}_{\mathbf{j} \in \mathbb{N}^r}$, then by (3) it follows that for every $\mathbf{j} \in \mathbb{N}^r$, and $Q \in M^{(\mathbf{j})}$, $\|Q\| \ge \delta_{\mathbf{j}}$. Since $\|P_{\mathbf{j}}\| = \delta_{\mathbf{j}}$, it follows that $\|P_{\mathbf{j}}\| = \inf M_{\|\|}^{(\mathbf{j})}$.

Conversely, if for every $\mathbf{j} \in \mathbb{N}^r$ there exists $P_{\mathbf{j}} \in M^{(\mathbf{j})}$ such that $||P_{\mathbf{j}}|| = \inf M_{\|\|}^{(\mathbf{j})}$ then we can take $\mathcal{F} = \{P_j\}_{j \in \mathbb{N}^r}, \mathcal{N} = \{\|P_j\|\}_{j \in \mathbb{N}^r}.$ Since $\|P_{s+t}\| \le \|P_sP_t\| \le \|P_s\| \|P_t\|$ and $||P_{\mathbf{i}_1}|| \le \frac{||P_{\mathbf{s}+\mathbf{t}} - P_{\mathbf{s}}P_{\mathbf{t}}||}{|\gamma_1(\mathbf{s},\mathbf{t})|}$, where \mathbf{i}_1 is the greatest element of $E(P_{\mathbf{s}}P_{\mathbf{t}} - P_{\mathbf{s}+\mathbf{t}})$, by induction with respect to the given order it follows that \mathcal{F} and \mathcal{N} verify the conditions of Proposition 1. We take $Q \in K[X]$ and prove by induction on $\mathbf{q} = \mathbf{d}(Q)$, with respect to the given order that $||Q|| = ||Q||_{\mathcal{F},\mathcal{N}}$. It is enough to consider the case when Q is a monic polynomial. If $\mathbf{q} = (0, \dots, 0, 1)$ we can write $P_{\mathbf{q}} = \mathbf{X}^{\mathbf{q}} - a$ and $Q = \mathbf{X}^{\mathbf{q}} - b$, $a, b \in K$. Since

$$Q = P_{\mathbf{q}} + a - b,\tag{19}$$

we obtain

$$||Q|| \le \max\{||P_{\mathbf{q}}||, |a-b|\} = ||Q||_{\mathcal{F}, \mathcal{N}}.$$
 (20)

If $||P_{\mathbf{q}}|| \neq |a-b|$, by (19) it follows that $||Q|| = ||Q||_{\mathcal{F},\mathcal{N}}$. Otherwise, by the definition of $P_{\mathbf{q}}$ and by (20) we obtain $||P_{\mathbf{q}}|| \le ||Q|| \le ||Q||_{\mathcal{F},\mathcal{N}} = ||P_{\mathbf{q}}||$ and $||Q|| = ||Q||_{\mathcal{F},\mathcal{N}}$, for $\mathbf{q} = (0, \dots, 0, 1).$

Now suppose that $||P|| = ||P||_{\mathcal{F},\mathcal{N}}$, for all the polynomials with $\mathbf{d}(P) < \mathbf{q}$ and let $Q \in K[X]$ such that $\mathbf{d}(Q) = \mathbf{q}$. Then

$$Q = b_{\mathbf{q}} P_{\mathbf{q}} + Q_{\mathbf{i}},\tag{21}$$

where $b_{\mathbf{q}} \in K$ and $\mathbf{d}(Q_{\mathbf{i}}) = \mathbf{i} < \mathbf{q}$. Hence

$$||P_{\mathbf{q}}|| \le \frac{1}{|b_{\mathbf{q}}|} ||Q|| \le \max \left\{ ||P_{\mathbf{q}}||, \frac{1}{|b_{\mathbf{q}}|} ||Q_{\mathbf{i}}|| \right\}. \tag{22}$$

Thus,

$$|b_{\mathbf{q}}| \|P_{\mathbf{q}}\| \le \|Q\| \le \max\{\|b_{\mathbf{q}}P_{a}\|, \|Q_{\mathbf{i}}\|_{\mathcal{F}, \mathcal{N}}\} = \|Q\|_{\mathcal{F}, \mathcal{N}}. \tag{23}$$

If $||Q_i||_{\mathcal{F},\mathcal{N}} = ||b_{\mathbf{q}}P_{\mathbf{q}}||$, by (23) it follows that $||Q|| = ||Q||_{\mathcal{F},\mathcal{N}}$. Otherwise by by (21) we obtain $||Q|| = ||Q||_{\mathcal{F},\mathcal{N}}$ and the proposition is proved.

Now we prove that in the case of p-adic fields all non-Archimedean norms on K[X]which extend | | are Gauss norms.

COROLLARY 1. Suppose K is a locally compact field and $\| \|$ is a K-algebra non-Archimedean norm on K[X] which extends $| \cdot |$. Then $| \cdot | \cdot |$ is a Gauss norm.

Proof. By Proposition 4 it follows that it is enough to show that for $\mathbf{j} \in \mathbb{N}^r$, there exists $P_{\mathbf{j}} \in M^{(\mathbf{j})}$ such that $||P_{\mathbf{j}}|| = \inf M_{\|\|}^{(\mathbf{j})}$. Thus for a fixed $\mathbf{j} \in \mathbb{N}^r$ we choose a sequence $\{P_{\mathbf{i},i}\}_{i\in\mathbb{N}}$ of elements from $M^{(\mathbf{j})}$ such that for every $i, \|P_{\mathbf{i},i}\| \geq \|P_{\mathbf{i},i+1}\|$, and $\lim_{i\to\infty}\|P_{\mathbf{j},i}\|=\inf M_{\parallel\parallel}^{(\mathbf{j})}$. If $P_{\mathbf{j},i}=\sum_{\mathbf{t}\leq\mathbf{j}}a_{\mathbf{j},i,\mathbf{t}}\mathbf{X}^{\mathbf{t}}$, we distinguish two cases:

- (i) The set of coefficients of all polynomials $P_{\mathbf{j},i}$ is bounded in K. Then, since K is locally compact, for every t there exists a subsequence $\{a_{\mathbf{i},i_m,t}\}_{m\in\mathbb{N}}$ of $\{a_{\mathbf{i},i,t}\}_{i\in\mathbb{N}}$ which converges to an element $a_{j,t} \in K$. If we put $P_j = \sum_{t < j} a_{j,t} X^t$, it follows easily that $P_{\mathbf{i}} \in M^{(\mathbf{j})} \text{ and } ||P_{\mathbf{i}}|| = \inf M_{|||}^{(\mathbf{j})}.$
- (ii) The above set of coefficients is unbounded. If $\bar{B}_K(0, 1) = \{x \in K; |x| \le 1\}$ then its maximal ideal $B_K(0, 1) = \{x \in K; |x| < 1\}$ is a principal ideal generated by an element π . We take b_i , the smallest positive integer such that $f_i = \pi^{b_i} P_{\mathbf{j},i} \in \bar{B}_K(0,1)[\mathbf{X}]$.

Choosing, if it is necessary, a subsequence we may assume that $\lim_{i\to\infty} b_i = \infty$. Since $\bar{B}_K(0, 1)$ is a compact set, there exists a subsequence $\{f_{i_s}\}_{s\in\mathbb{N}}$ which converges to a polynomial $f \in \bar{B}_K(0, 1)[X]$. From our choice of b_i it follows that f_i is primitive for any i. Hence it follows that f is primitive, in particular $f \neq 0$. Since $\|P_{\mathbf{j},i}\| \leq \|P_{\mathbf{j},1}\|$ for each i, we obtain that $f = \lim_{i\to\infty} \|f_i\| = 0$, a contradiction which implies the corollary.

3. Types of non-Archimedean norms on K[X]. In order to describe all the non-Archimedean norms on K[X] which extend | | we first establish the following lemma.

LEMMA 2. Suppose that (K, | |) is a valued field and $\{\| \|_i\}_{i \in I}$ is a family of non-Archimedean norms on $K[\mathbf{X}]$ which extend | | such that for any $Q_1, Q_2, Q_3 \in K[\mathbf{X}]$ there exists an $i_0 \in I$ verifying

$$\inf_{i \in I} \{ \|Q_j\|_i \} = \|Q_j\|_{i_0}, \ j = 1, 2, 3.$$

Then, if for all $R \in K[X]$ we define

$$||R|| = \inf_{i \in I} \{||R||_i\},\tag{24}$$

we obtain a non-Archimedean norm on K[X] which extends $| \cdot |$. Furthermore, if for every $i \in I$, $|| \cdot ||_i$ is a K-algebra norm, then also the norm given by (24) is a K-algebra norm.

Proof. If $Q, R \in K[X]$, we consider for example $Q_1 = Q + R$, $Q_2 = Q$, $Q_3 = R$. Then there is an $i_0 \in I$ such that

$$||Q + R|| = ||Q + R||_{i_0} \le \max\{||Q||_{i_0}, ||R||_{i_0}\} = \max\{||Q||, ||R||\}.$$

The other required properties are similarly proved.

Let $\| \|$ be a non-Archimedean norm on $K[\mathbf{X}]$ which extends | |. For every $\mathbf{j} \in \mathbb{N}^r$ we construct a sequence of polynomials $\Pi_{\mathbf{j}} = \{P_{\mathbf{j},i}\}_{i \in \mathbb{N}}$, with $P_{\mathbf{j},i} \in M^{(\mathbf{j})}$ in the following way. If there exists $Q_{\mathbf{j}} \in M^{(\mathbf{j})}$ such that $\|Q_{\mathbf{j}}\| = \inf M_{\|\|\|}^{(\mathbf{j})}$, we fix this polynomial and for every $i \in \mathbb{N}$ we put $P_{\mathbf{j},i} = Q_{\mathbf{j}}$, otherwise we take $\{P_{\mathbf{j},i}\}_{i \in \mathbb{N}}$ such that $\|P_{\mathbf{j},i+1}\| < \|P_{\mathbf{j},i}\|$, for any i, and $\lim_{i \to \infty} \|P_{\mathbf{j},i}\| = \inf M_{\|\|\|}^{(\mathbf{j})}$. We consider

$$\Sigma = \left\{ \sigma = \left\{ s_{\mathbf{i}} \right\}_{\mathbf{i} \in \mathbb{N}^r}, s_{\mathbf{i}} \in \mathbb{N} \right\},\tag{25}$$

and for every $\sigma = \{s_{\mathbf{j}}\}_{\mathbf{j} \in \mathbb{N}^r}$

$$\mathcal{F}_{\sigma} = \left\{ P_{\mathbf{j}, s_{\mathbf{j}}} \right\}_{\mathbf{j} \in \mathbb{N}^{r}}, \ \mathcal{N}_{\sigma} = \left\{ \| P_{\mathbf{j}, s_{\mathbf{j}}} \| \right\}_{\mathbf{j} \in \mathbb{N}^{r}}, P_{\mathbf{j}, s_{\mathbf{j}}} \in \Pi_{\mathbf{j}}.$$
 (26)

REMARK 2. If $\inf M_{\parallel \parallel}^{(j)}$ is not attained, for each \mathbf{j} , then for each $P \in M^{(j)}$ there exists $Q \in M^{(j)}$ such that $\|Q\| < \|P\|$. Then $\|P\| = |a| \|(P-Q)/a\|$, where $a \in K$ and $(P-Q)/a \in M^{(i)}$ with $\mathbf{i} < \mathbf{j}$. Hence, by induction it follows that the values of the norm coincide with the valuation group $|K^*|$.

We are ready to prove the following result.

THEOREM 1. Let (K, | |) be a valued field and let || || be a non-Archimedean norm on $K[\mathbf{X}]$ which extends || |. If, for every $\mathbf{j} \in \mathbb{N}^r$, there exists $P_{\mathbf{i}} \in M^{(\mathbf{j})}$ such that $||P_{\mathbf{i}}|| =$

inf $M_{\parallel \parallel}^{(j)}$, then $\parallel \parallel$ is a Gauss norm defined by $\mathcal{F} = \{P_j\}_{j \in \mathbb{N}^r}$, $\mathcal{N} = \{\parallel P_j \parallel \}_{j \in \mathbb{N}^r}$, where P_j can be chosen in Π_j . Otherwise, the set of K-vector space norms $\{\parallel \parallel \mathcal{F}_{\sigma}, \mathcal{N}_{\sigma} \}_{\sigma \in \Sigma}$ verifies the conditions from Lemma 2 and $\parallel \parallel$ is equal to the norm defined by (24).

Proof. The first case follows by Proposition 4, where P_j can be chosen in Π_j . In the second case, we prove that $\{\|\|_{\mathcal{F}_{\sigma},\mathcal{N}_{\sigma}}\}_{\sigma\in\Sigma}$ verifies the conditions from Lemma 2. We take the monic polynomials $Q_j\in K[\mathbf{X}]$ with $\mathbf{q}_j=\mathbf{d}(Q_j), j=1,2,3$ and put

$$\theta_j = \inf_{\sigma \in \Sigma} \{ \|Q_j\|_{\mathcal{F}_{\sigma}, \mathcal{N}_{\sigma}} \}, \ j = 1, 2, 3.$$

If $\|Q_j\| = \inf M_{\|\|}^{(\mathbf{q}_j)}$, we choose $P_{\mathbf{q}_j,s_{\mathbf{q}_j}}$ with $s_{\mathbf{q}_j} = 0$, otherwise we can take $P_{\mathbf{q}_j,s_{\mathbf{q}_j}} \in \Pi_{\mathbf{q}_j}$ such that $\|Q_j\| > \|P_{q_j,s_{q_j}}\|$. Then $Q_j = P_{\mathbf{q}_j,s_{\mathbf{q}_j}} + a_{\mathbf{q}_j^{(1)},j}Q_{\mathbf{q}_j^{(1)},j}$, where $Q_{\mathbf{q}_j^{(1)},j}$ is monic, $\mathbf{d}(Q_{\mathbf{q}_j^{(1)},j}) = \mathbf{q}_j^{(1)} < \mathbf{q}_j$ and

$$\|Q_j\| = \max\left\{\|P_{\mathbf{q}_j, s_{\mathbf{q}_j}}\|, \|a_{\mathbf{q}_j^{(1)}, j}Q_{\mathbf{q}_j^{(1)}, j}\|\right\}. \tag{27}$$

Now we choose polynomials $P_{\mathbf{q}_{j}^{(1)},s_{\mathbf{q}_{j}^{(1)}}}$ such that either $s_{\mathbf{q}_{j}^{(1)}}=0$, if $\|Q_{\mathbf{q}_{j}^{(1)},j}\|=\inf M_{\|\|}^{(\mathbf{q}_{j}^{(1)})}$ or $\|Q_{\mathbf{q}_{j}^{(1)},j}\|>\|P_{\mathbf{q}_{j}^{(1)},s_{\mathbf{q}_{j}^{(1)}}}\|$, otherwise. Hence $Q_{\mathbf{q}_{j}^{(1)},j}=P_{\mathbf{q}_{j}^{(1)},s_{\mathbf{q}_{j}^{(1)}}}+\tilde{a}_{\mathbf{q}_{j}^{(2)}}Q_{\mathbf{q}_{j}^{(2)},j}$, where $Q_{\mathbf{q}_{j}^{(2)},j}$ is monic and $\mathbf{d}(Q_{\mathbf{q}_{j}^{(2)},j})=\mathbf{q}_{j}^{(2)}<\mathbf{q}_{j}^{(1)}$. Thus

$$\|Q_{\mathbf{q}_{j}^{(1)},j}\| = \max \left\{ \|P_{\mathbf{q}_{j}^{(1)},S_{\mathbf{q}_{j}^{(1)}}}\|, \|\tilde{a}_{\mathbf{q}_{j}^{(2)}}Q_{\mathbf{q}_{j}^{(2)},j}\| \right\}$$
(28)

and

$$Q_j = P_{\mathbf{q}_j, s_{\mathbf{q}_j}} + a_{\mathbf{q}_j^{(1)}, j} P_{\mathbf{q}_j^{(1)}, s_{\mathbf{q}_i^{(1)}}} + a_{\mathbf{q}_j^{(2)}} Q_{\mathbf{q}_j^{(2)}, j},$$

where $a_{{\bf q}_i^{(2)}}=a_{{\bf q}_i^{(1)}}\tilde{a}_{{\bf q}_i^{(2)}}.$ In this way after a finite number of steps we obtain

$$Q_j = P_{\mathbf{q}_j, s_{\mathbf{q}_j}} + a_{\mathbf{q}_j^{(1)}, j} P_{\mathbf{q}_j^{(1)}, s_{\mathbf{q}_j^{(1)}}} + a_{\mathbf{q}_j^{(2)}, j} P_{\mathbf{q}_j^{(2)}, s_{\mathbf{q}_j^{(2)}}} + \dots + a_{(0, \dots, 0), j}.$$

Hence

$$\|Q_{j}\| \leq \max \left\{ \|P_{\mathbf{q}_{j}, s_{\mathbf{q}_{j}}}\|, \|a_{\mathbf{q}_{j}^{(1)}, j} P_{\mathbf{q}_{j}^{(1)}, s_{\mathbf{q}_{j}^{(1)}}}\|, \|a_{\mathbf{q}_{j}^{(2)}, j} P_{\mathbf{q}_{j}^{(2)}, s_{\mathbf{q}_{j}^{(2)}}}\|, ..., |a_{(0, ..., 0), j}| \right\}.$$
 (29)

By using (27) and (28), it follows that one has equality in (29). Moreover, one can choose the same polynomials $P_{\mathbf{i},s_i}$ for all the polynomials Q_j , j=1,2,3. Now we choose $\sigma=\{t_{\mathbf{i}}\}_{\mathbf{i}\in\mathbb{N}^r}\in\Sigma$ such that, if $\mathbf{q}=\max_{1\leq j\leq 3}\{\mathbf{q}_j\}$, then for $\mathbf{i}\leq\mathbf{q}$ and $\mathbf{i}=\mathbf{q}_j^{(r)}$, $t_{\mathbf{i}}=s_{\mathbf{q}_j^{(r)}}$. It follows that $\|Q_j\|=\|Q_j\|_{\mathcal{F}_\sigma,\mathcal{N}_\sigma}=\theta_j$ and $\{\|\|\mathcal{F}_\sigma,\mathcal{N}_\sigma\}_{\sigma\in\Sigma}\}$ verifies the conditions of Lemma 2.

Lastly, take $R \in K[X]$. Since $||R|| \le ||R||_{\mathcal{F}_{\sigma}, \mathcal{N}_{\sigma}}$, it can be proved in the same manner that the norm is equal to the norm defined by (24).

REMARK 3. On K[X] there exist non-Archimedean norms which are not Gauss norms and extend $| \cdot |$. Even in the case of multiplicative norms and r = 1 such examples

can be found. For instance, one may take $K = \mathbb{Q}$, p a prime number and $x \in \mathbb{Q}_p$ a transcendental element over \mathbb{Q} . Then we consider on $\mathbb{Q}[x]$ the absolute value induced by the p-adic absolute value $|\cdot|_p$ defined on \mathbb{Q}_p . If $\{a_n\}_{n\geq 1}$ is a sequence of rational numbers which tends to x in \mathbb{Q}_p , the polynomials $P_n(X) = X - a_n \in \mathbb{Q}[X]$ define a sequence such that $|P_n(x)|_p$ tends to zero. Hence, by Proposition 4, it follows that one obtains a norm as in the second case of Theorem 1.

4. Completions of K[X] with respect to non-Archimedean norms. We now proceed to study the completion of K[X] with respect to a Gauss norm $\| \|_{\mathcal{F},\mathcal{N}}$. We denote by \tilde{K} the completion of K with respect to $| \cdot |$, and consider the set of formal sums

$$\widetilde{K[\mathbf{X}]} = \left\{ f = \sum_{\mathbf{i} \in \mathbb{N}^r} a_{\mathbf{i}} P_{\mathbf{i}}; \ a_{\mathbf{i}} \in \tilde{K}, \ \lim_{N(\mathbf{i}) \to \infty} |a_{\mathbf{i}}| \ \delta_{\mathbf{i}} = 0 \right\}.$$
(30)

If $f \in \widetilde{K[\mathbf{X}]}$, define

$$||f||_{\mathcal{F},\mathcal{N}} = \sup_{\mathbf{i} \in \mathbb{N}^r} \{|a_{\mathbf{i}}| \, \delta_{\mathbf{i}}\}. \tag{31}$$

THEOREM 2. Suppose that $(K, | \cdot|)$ is a valued field and $\| \cdot\|_{\mathcal{F}, \mathcal{N}}$ is a Gauss norm of K-algebra on $K[\mathbf{X}]$. Then $\widetilde{K[\mathbf{X}]}$ is a K-algebra which contains $K[\mathbf{X}]$. Furthermore the map given by (31) is a K-algebra norm and $\widetilde{K[\mathbf{X}]}$ is the completion of $K[\mathbf{X}]$ with respect to the Gauss norm.

Proof. If $f, g = \sum_{\mathbf{i} \in \mathbb{N}^r} b_{\mathbf{i}} P_{\mathbf{i}} \in \widetilde{K[\mathbf{X}]}$, then

$$fg = \sum_{\mathbf{u} \in \mathbb{N}^r} c_{\mathbf{u}} P_{\mathbf{u}},$$

with

$$c_{\mathbf{u}} = \sum_{\mathbf{u} \le \mathbf{v}} \tau_{\mathbf{v}}^{(\mathbf{u})}, \ \tau_{\mathbf{v}}^{(\mathbf{u})} = \sum_{\mathbf{w} \le \mathbf{v}} a_{\mathbf{w}} b_{\mathbf{v} - \mathbf{w}} \gamma_{\mathbf{u}}(\mathbf{w}, \mathbf{v} - \mathbf{w}).$$
(32)

Since, for $v \ge u$,

$$\left|\tau_{\mathbf{v}}^{(\mathbf{u})}\right| \leq \max_{\mathbf{w} \leq \mathbf{v}} \left\{ \left|a_{\mathbf{w}} b_{\mathbf{v} - \mathbf{w}} \gamma_{\mathbf{u}}(\mathbf{w}, \mathbf{v} - \mathbf{w})\right| \right\} \leq \max_{\mathbf{w} \leq \mathbf{v}} \left\{ \left|a_{\mathbf{w}}\right| \left|b_{\mathbf{v} - \mathbf{w}}\right| \frac{\delta_{\mathbf{w}} \delta_{\mathbf{v} - \mathbf{w}}}{\delta_{\mathbf{u}}} \right\},\tag{33}$$

it follows that $\lim_{N(\mathbf{v})\to\infty} \tau_{\mathbf{v}}^{(\mathbf{u})} = 0$ and $c_{\mathbf{u}} \in \widetilde{K}$. Moreover, $\lim_{N(\mathbf{u})\to\infty} |c_{\mathbf{u}}| \delta_{\mathbf{u}} = 0$ and $fg \in \widetilde{K[\mathbf{X}]}$. Then it follows easily that $\widetilde{K[\mathbf{X}]}$ is a K-algebra which contains $K[\mathbf{X}]$. Since

$$||fg||_{\mathcal{F},\mathcal{N}} = \sup_{\mathbf{u} \in \mathbb{N}^r} \{|c_{\mathbf{u}}| \, \delta_{\mathbf{u}}\}$$

by (32) and (33) we obtain that the map given by (31) is a K-algebra norm on $\widetilde{K[\mathbf{X}]}$. We need to show that $(\widetilde{K[\mathbf{X}]}, \| \|_{\mathcal{F},\mathcal{N}})$ is complete. Let $f^{[t]} = \sum_{i \in \mathbb{N}^r} a_{\mathbf{i},t} P_{\mathbf{i}} \in \widetilde{K[\mathbf{X}]}$, $t \geq 1$ a Cauchy sequence. Since, for a fixed \mathbf{i} ,

$$|a_{\mathbf{i},t+1} - a_{\mathbf{i},t}| \le \frac{\|f^{[t+1]} - f^{[t]}\|_{\mathcal{F},\mathcal{N}}}{\delta_{\mathbf{i}}},$$
 (34)

it follows that each sequence $a_{\mathbf{i},t}$, $t=1,2,\ldots$ is a Cauchy sequence in \tilde{K} . For $\mathbf{i} \in \mathbb{N}^r$, let $a_{\mathbf{i}} \in \tilde{K}$ be the limit of this sequence and $f = \sum_{\mathbf{i} \in \mathbb{N}^r} a_{\mathbf{i}} P_{\mathbf{i}}$. We have to prove that $f \in \widetilde{K[\mathbf{X}]}$ and $\lim_{t \to \infty} \|f - f^{[t]}\|_{\mathcal{F},\mathcal{N}} = 0$. By restricting to a subsequence we may assume that

$$||f^{[s]} - f^{[t]}||_{\mathcal{F}, \mathcal{N}} \le \frac{1}{t} \tag{35}$$

for all $s \ge t$, $t = 1, 2, \ldots$ By (34) and (35) we obtain $|a_{\mathbf{i},s} - a_{\mathbf{i},t}| \le \frac{1}{t\delta_{\mathbf{i}}}$, $s = t, t + 1, \ldots$ and hence $|a_{\mathbf{i}} - a_{\mathbf{i},t}| \le \frac{1}{t\delta_{\mathbf{i}}}$, for any $\mathbf{i} \in \mathbb{N}^r$, $t \ge 1$. Since $f^{[t]} \in \widetilde{K[\mathbf{X}]}$, we obtain $\lim_{N(\mathbf{i}) \to \infty} |a_{\mathbf{i},t}| \delta_{\mathbf{i}} = 0$. But, for every t, $|a_{\mathbf{i}}| \delta_{\mathbf{i}} \le \max\{|a_{\mathbf{i},t}| \delta_{\mathbf{i}}, \frac{1}{t}\}$. Hence $\lim_{N(\mathbf{i}) \to \infty} |a_{\mathbf{i}}| \delta_{\mathbf{i}} = 0$ and $f \in \widetilde{K[\mathbf{X}]}$. Then $||f - f^{[t]}||_{\mathcal{F},\mathcal{N}} = \sup_{\mathbf{i} \in \mathbb{N}^r} \{|a_{\mathbf{i}} - a_{\mathbf{i},t}| \delta_{\mathbf{i}}\} \le \frac{1}{t}$ and $\lim_{t \to \infty} ||f - f^{[t]}||_{\mathcal{F},\mathcal{N}} = 0$. This proves the theorem.

5. Non-Archimedean absolute values on K(X). In the following we deal with non-Archimedean absolute values (multiplicative norms) on K[X] which extend an absolute value of K.

Let (K, | |) be a valued field and $| |_L$ an absolute value on $L = K(\mathbf{X})$ which extend | |. We call $| |_L$ a residual transcendental (r.t.) extension of | | if the residue field $L_{| |_L}$ is a transcendental extension of $K_{| |}$ of transcendence degree r. We call $| |_L$ a Gauss absolute value if its restriction to $K[\mathbf{X}]$ is a non-Archimedean Gauss norm. If a Gauss absolute value $| |_L$ is defined by $\mathcal{F} = \{P_j\}_{j \in \mathbb{N}^r}$ and $\mathcal{N} = \{|P_j|_L\}_{j \in \mathbb{N}^r}$, where $P_j = P_{\mathbf{e}_1}^{i_1} \dots P_{\mathbf{e}_r}^{i_r}$, $P_{\mathbf{e}_i} = X_i - \alpha_i$ and $\alpha_i \in K$, then it is called a canonical Gauss absolute value. In this case we denote $| |_L = | |_{(\alpha_1,\delta_1),\dots,(\alpha_r,\delta_r)}$, where $\delta_i = |X_i - \alpha_i|_L$. For r = 1 and \bar{K} a fixed algebraic closure of K, we denote by $| |_{\bar{K}}$ a fixed extension of $| | \text{to } \bar{K}$. If $| |_{K(X)}$ is an extension of | | to L = K(X), then there exists an extension $| |_{\bar{K}(X)}$ of $| |_{K(X)}$ to $\bar{K}(X)$ which is also an extension of $| |_{\bar{K}}$. Moreover, if $| |_{K(X)}$ is an r.t. extension of $| |_{\bar{K}(X)}$ is an r.t. extension of $| |_{\bar{K}(X)}$ and there exist $\alpha \in \bar{K}$ and $\delta \in |\bar{K}^{\times}|$ such that $| |_{\bar{K}(X)} = | |_{(\alpha,\delta)}$ is a canonical Gauss absolute value. The pair (α,δ) is called a pair of definition for $| |_{\bar{K}(X)}$. It is known that two pairs (α_1,δ_1) and (α_2,δ_2) define the same valuation $| |_{\bar{K}(X)}$ if and only if

$$\delta_1 = \delta_2 \text{ and } |\alpha_1 - \alpha_2|_{\bar{K}} \le \delta_1.$$
 (36)

By a *minimal pair* (of definition) (see [1–3]) for $| |_{\tilde{K}(X)}$ we mean a pair of definition (α, δ) such that $[K(\alpha) : K]$ is minimal.

PROPOSITION 5. Let $| \mid_L$ be a residual transcendental extension of $| \mid$. Then there exist polynomials f_1, \ldots, f_r , with $f_i \in K[X_1, \ldots, X_i]$, which are algebraically independent over K, such that the restriction $| \mid_A$ of $| \mid_L$ to $A = K[f_1, \ldots, f_r]$ is a Gauss absolute value with $P_{\mathbf{e}_i} = f_i$, for $i = 1, 2, \ldots, r$ and $\delta_{\mathbf{j}} = 1$ for every \mathbf{j} . Moreover, if $K_1 = K(f_1, \ldots, f_r)$ and $| \mid_{K_1}$ is the canonical extension of $| \mid_A$ to K_1 , then L is an algebraic extension of K_1 and $| \mid_L$ is an extension of $| \mid_{K_1}$.

Proof. Consider a transcendence basis $\bar{F}_1, \ldots, \bar{F}_r$ of $L_{||L}$ over $K_{||}$. Since ||L| is a residual transcendental extension of || and $K \subset K(X_1) \subset K(X_1, X_2) \subset \ldots \subset K(X_1, \ldots, X_r)$, we can choose $F_i \in K(X_1, \ldots, X_i)$. Then for every $i ||F_i||_L = 1$, and if $P = \sum_j a_j \mathbf{F}^j \in K[\mathbf{F}]$, there exists $a \in K$ such that $aP \in \bar{B}_L(0, 1)$. Hence we may suppose that $P \in \bar{B}_L(0, 1)$ and at least a coefficient of P has absolute value equal to 1. Since

 $ar{F}_1,\ldots,ar{F}_r$ are algebraically independent over $K_{||}$ it follows that $|P|_L=\max_{\mathbf{j}}\{|a_{\mathbf{j}}|\}$. Thus $|K_1^\times|_{K_1}=|K^\times|$ and the index e of the subgroup $|K^\times|$ in $|L^\times|_L$ is finite (see [4], Ch.VI, §8, Sec. 1, Lemma 2). Since $F_i=\frac{g_i}{h_i}$ with $g_i,h_i\in K[X_1,\ldots,X_i]$ and $|F_i|_L=1$ it follows that $|g_i|_L=|h_i|_L$ and $|g_i|_L^e\in |K^\times|$. But $ar{F}_1^e,\ldots,ar{F}_r^e$ are algebraically independent over $|\cdot|_K$. Hence we may suppose $|g_i|_L\in |K^\times|_K$ and there exist elements $b_i\in K^\times$ such that $|g_i|_L=|b_i|$. Thus we can consider $|g_i|_L=|h_i|_L=1$.

Now we prove that one can replace F_1, \ldots, F_r by polynomials. Since F_1 is transcendental over $K(F_2, \ldots, F_r)$ at least one of g_1 and h_1 is transcendental over $K(F_2, \ldots, F_r)$. Thus we can replace F_1 by a polynomial $f_1 \in K[X_1]$. Since F_2 is transcendental over $K(f_1, F_3, \ldots, F_r)$ we can replace F_2 by a polynomial $f_2 \in K[X_1, X_2]$ and the proposition follows by induction on i.

COROLLARY 2. If, in Proposition 5, K is an algebraically closed valued field, then $|K^{\times}| = |L^{\times}|_{L}$ and we can choose the polynomials f_i to be irreducible for every i = 1, 2, ..., r.

Proof. Since, in this case, the group $|K^{\times}|$ is divisible, it follows that $|K^{\times}| = |L^{\times}|_L$. By Proposition 5, $|I_L|$ is a canonical Gauss absolute value with $\delta_{\mathbf{j}} = 1$. If $f_1 = \prod_{j=1}^{n_1} f_{1,j}$, where $f_{1,j}$ are irreducible polynomials, there exists j_0 such that f_{1,j_0} is transcendental over $K(f_2, \ldots, f_r)$. Hence by multiplying by suitable elements from K, the corollary follows by induction.

REMARK 4. Let $(K, | \cdot|)$ be an algebraically closed valued field and r = 1. If $| \cdot|_L$ is a non-Archimedean absolute value on L = K(X) which extends $| \cdot|_K$ and there exists $P_1 \in M^{(1)}$ such that $|P_1|_L = \inf M^{(1)}_{|\cdot|_L}$, then for all positive j there exists $Q_j \in M^{(j)}$ such that $|Q_j|_L = \inf M^{(j)}_{|\cdot|_L}, = |P_1|_L^j$ and $|\cdot|_L$ is a canonical Gauss absolute value defined by $P_j = P_1^j$ and $\delta_j = |P_j|_L$. To prove this statement it is enough to take $Q \in M^{(j)}$. Then $Q = (X - \alpha_1)...(X - \alpha_j)$ with $\alpha_i \in K$. Hence $|Q|_L \ge (\min_{1 \le i \le j} |X - \alpha_i|_L)^j \ge |P_1|_L^j$. Since $|P_1^j|_L = |P_1|_L^j$, the remark follows.

Now let (K, | |) be a (not necessarily algebraically closed) valued field. We consider a r.t. extension $| |_L$ of | | to $L = K(\mathbf{X})$ and $| |_{L_i}$ the restriction of $| |_L$ to $L_i = K(X_1, \ldots, X_i)$, $i = 0, 1, 2, \ldots, r$, with $L_0 = K$ and $L_r = L$. Then $| |_{L_{i+1}}$ is a r.t. extension of $| |_{L_i}$. Let us denote by \bar{L}_i a fixed algebraic closure of L_i such that

$$\bar{K} \subset \bar{L}_1 \subset \ldots \subset \bar{L}$$
.

and by $| |_{\bar{L}_i}$ a fixed extension of $| |_{L_i}$ to \bar{L}_i , $i = 0, 1, \ldots, r$.

THEOREM 3. Let $(K, | \cdot|)$ be a valued field and $| \cdot|_L$ a r.t. extension of $| \cdot|$ to $L = K(\mathbf{X})$. Then there exist pairs (α_i, δ_i) with $\alpha_i \in \overline{L}_{i-1}$, $\delta_i \in |\overline{L}_{i-1}^{\times}|_{\overline{L}_{i-1}}$, i = 1, 2, ..., r, such that $| \cdot|_L$ is defined by $| \cdot|_K$ in the following manner. If $P \in K[\mathbf{X}]$ and $P_j = (X_r - \alpha_r)^j$, then

$$P = \sum_{j \le d(P)} b_j (X_r - \alpha_r)^j, b_j \in \bar{L}_{r-1},$$

and

$$|P|_{L} = \max_{j \le d(P)} \left\{ |b_{j}|_{\bar{L}_{r-1}} \delta_{r}^{j} \right\}.$$
 (37)

Then by using, for each j the minimal polynomial of b_j over L_{r-1} one can compute by (3) its absolute value $| \mid_{\bar{L}_{r-1}}$ by means of $| \mid_{\bar{L}_{r-2}}$, α_{r-1} , δ_{r-1} , and so on.

Proof. Since $| \ |_L$ is an absolute value it is enough to define it on $K[X_1, \ldots, X_r]$. By [1], Proposition 1.1 it follows that $| \ |_{\bar{L}_{i+1}}$ is a r.t. extension of $| \ |_{\bar{L}_i}$ and $| \ \bar{L}_{i+1}^{\times} |_{\bar{L}_{i+1}} = | \ \bar{L}_i^{\times} |_{\bar{L}_i}$. From Corollary 2, for i = r, it follows that $| \ |_{L_{i+1}}$ is defined in (37) by means of $| \ |_{L_i}$ and a pair (α_i, δ_i) , where $\alpha_i \in \bar{L}_i$ is the root of an irreducible polynomial P_i of degree 1 and $\delta_i = |P_i|_{\bar{L}_i}$. Now the theorem follows by induction on i.

COROLLARY 3. With the hypotheses and notations of Theorem 3 there exist $\beta_{i,j}$, $\gamma_i \in L_{||L|}$, i = 1, 2, ..., r, $j = 1, 2, ..., n_i$ such that the following conditions are satisfied:

- (a) $L_{||_L} = K_{||}(\beta_{1,1}, \ldots, \beta_{1,n_1}, \gamma_1, \beta_{2,1}, \ldots, \beta_{2,n_2}, \gamma_2, \ldots, \beta_{r,1}, \ldots, \beta_{r,n_r}, \gamma_r).$
- (b) $\gamma_1, \gamma_2, \ldots, \gamma_r$ are algebraically independent over $K_{||}$.
- (c) For every $i, j, \beta_{i,j}$ is an algebraic element over $K_{||}(\beta_{1,1}, \ldots, \beta_{1,n_1}, \gamma_1, \ldots, \beta_{i-1,1}, \ldots, \beta_{i-1,n_{i-1}}, \gamma_{i-1})$.
 - (d) The algebraic closure of $K_{||}$ in $L_{||_L}$ is a finite dimensional extension of $K_{||}$.

Proof. Since $| |_{\bar{L}_{i+1}}$ is a r.t. extension of $| |_{\bar{L}_i}$, by [1] Corollary 2.3 there exist $\beta_{i+1,1},\ldots,\beta_{i+1,n_{i+1}},\gamma_{i+1}\in L_{i+1}|_{L_{i+1}}$ such that $L_{i+1}|_{L_{i+1}}=L_{i||_{L_i}}(\beta_{i+1,1},\ldots,\beta_{i+1,n_{i+1}},\gamma_{i+1})$ and γ_{i+1} is transcendental over $L_{i||_{L_i}}$. Now the statements (a)–(c) follow by induction, and (d) holds because (c) implies that the algebraic closure of $K_{||}$ in $L_{||_{L_i}}$ is a finitely generated extension of $K_{||}$.

Next, we consider the problem when $L_{||L}$ is a transcendental extension of a finite algebraic extension of $K_{|||}$ (Nagata's problem) in the case $r \ge 2$. We need the following three lemmas.

LEMMA 3. Let (K, | |) be a valued field, $L = K(\mathbf{X})$ and $| |_L$ the absolute value defined on $K[\mathbf{X}]$ by

$$\left|\sum_{\mathbf{i}} a_{\mathbf{j}} \mathbf{X}^{\mathbf{j}} \right|_{L} = \max_{\mathbf{j}} |a_{\mathbf{j}}|. \tag{38}$$

If X_i^* , i = 1, 2, ..., r is the image of X_i in $L_{||_L}$, then X_1^* , ..., X_r^* are algebraically independent over $K_{||}$.

Proof. If

$$\sum_{\mathbf{i}} b_{\mathbf{j}}^* \mathbf{X}^{*\mathbf{j}} = 0,$$

where $b_{\mathbf{j}} \in \bar{B}_K(0, 1)$, then

$$\left|\left.\sum_{\mathbf{j}}b_{\mathbf{j}}\mathbf{X}^{\mathbf{j}}\right|_{L}<1.\right.$$

By (38), it follows that all $b_j \in B_K(0, 1)$. Hence $b_j^* = 0$ and X_1^*, \dots, X_r^* are algebraically independent over $K_{|\cdot|}$.

LEMMA 4. Let (K, | |) be a valued field, $L = K(\mathbf{X})$. Then there exists a uniquely defined absolute value $| |_L$ on $K(\mathbf{X})$ which extends | | such that for every $i, |X_i|_L = 1$ and

 X_1^*, \ldots, X_r^* are algebraically independent over $K_{||}$. Moreover

$$|K^{\times}| = |L^{\times}|_{||I|} \text{ and } L_{||I|} = K_{||I|}(\mathbf{X}^{*}).$$
 (39)

Proof. The proof is similar to the proof of Proposition 2, Ch.VI, §10 of [4]. To show the uniqueness it is enough to show that if $| |_L$ is an absolute value on K[X] which extends | | such that for every $i, |X_i|_L = 1$ and X_1^*, \ldots, X_r^* are algebraically independent over $K_{||}$, then it is defined by (38).

Without loss of generality we can consider $P \in K[X]$ given by (1) such that all $a_j \in \bar{B}_K(0, 1)$ and at least one of the coefficients has the absolute value equal to one. Since for every i, $|X_i|_L = 1$, it follows that

$$P^* = \sum_{\mathbf{i}} a_{\mathbf{j}}^* \mathbf{X}^{*\mathbf{j}}.$$

By using the fact that X_1^*, \ldots, X_r^* are algebraically independent over $K_{||}$, we obtain that $P^* \neq 0$ and $|P|_L = 1 = \max_i |a_i|$.

Now we prove the existence of the absolute value $|\cdot|_L$. It is easy to see that the absolute value defined by (38) extends $|\cdot|_r$, for every i, $|X_i|_L = 1$ and $|K^\times| = |L^\times|_{|\cdot|_L}$. From Lemma 3 it follows that X_1^*, \ldots, X_r^* are algebraically independent over $K_{|\cdot|}$. To prove that $L_{|\cdot|_L} = K_{|\cdot|}(\mathbf{X}^*)$ we consider $R \in L$. Then we can write

$$R = \frac{c\sum_{\mathbf{i}} a_{\mathbf{i}} \mathbf{X}^{\mathbf{i}}}{\sum_{\mathbf{i}} b_{\mathbf{i}} \mathbf{X}^{\mathbf{i}}},\tag{40}$$

where $c, a_i, b_i \in \overline{B}_K(0, 1)$ and at least one of the coefficients a_i and b_i has the absolute value equal to one. Thus $|R|_L = 1$ if and only if |c| = 1. In this case

$$R^* = \frac{c^* \sum_{\mathbf{i}} a_{\mathbf{i}}^* \mathbf{X}^{*\mathbf{i}}}{\sum_{\mathbf{i}} b_{\mathbf{i}}^* \mathbf{X}^{*\mathbf{i}}}.$$
 (41)

and this completes the proof of the lemma.

LEMMA 5. Let (K, | |) be a valued field. If $| |_L = | |_{(\alpha_1, \delta_1), \dots, (\alpha_r, \delta_r)}$, with $\delta_i \in |K^{\times}|$ is a canonical Gauss absolute value defined on $L = K(\mathbf{X})$, then $K_{||}$ is algebraically closed in $L_{||_L}$.

Proof. We take $\tau_i \in K^{\times}$ such that for every i, $|\tau_i| = \delta_i$. Then $|\frac{X_i - \alpha_i}{\tau_i}| = 1$ and every polynomial $P \in K[X]$ can be written in the form

$$P = \sum_{\mathbf{i}} a_{\mathbf{i}} (\mathbf{X} - \alpha)^{\mathbf{i}} = \sum_{\mathbf{i}} b_{\mathbf{i}} \left(\frac{\mathbf{X} - \alpha}{\tau} \right)^{\mathbf{i}}, \tag{42}$$

where $\left(\frac{\mathbf{X}-\alpha_1}{\tau}\right)^{\mathbf{i}} = \left(\frac{X_1-\alpha_1}{\tau_1}\right)^{i_1} \dots \left(\frac{X_r-\alpha_r}{\tau_r}\right)^{i_r}$, $b_{\mathbf{i}} = a_{\mathbf{i}}\tau^{\mathbf{i}}$ and

$$|P|_L = \max_{\mathbf{i}} |b_{\mathbf{i}}|. \tag{43}$$

By Lemma 3 it follows that $(\frac{X_1-\alpha_1}{\tau_1})^*\dots(\frac{X_r-\alpha_r}{\tau_r})^*$ are algebraically independent over $K_{||}$ and from Lemma 2 we obtain that $L_{||L}=K_{||}(\frac{\mathbf{X}-\alpha}{\tau})^*$. Hence $K_{||}$ is algebraically closed in $L_{||L}$.

Now we consider a valued field (K, | |), $| |_{\bar{K}}$ an extension of | | to \bar{K} and $| |_{(\alpha_1, \delta_1), \dots, (\alpha_r, \delta_r)}$, with $\alpha_i \in \bar{K}$, a canonical Gauss absolute value on $\bar{K}(X)$. Then the pair (α_1, δ_1) defines a canonical Gauss absolute value on $\bar{K}(X_1) \subset \bar{K}(X_1)$ such that

$$\left| \sum_{i} b_{i} (X_{1} - \alpha_{1})^{i} \right|_{(\alpha_{1}, \delta_{1})} = \max_{i} \left\{ |b_{i}|_{\bar{K}} \delta_{1}^{i}, \ b_{i} \in \bar{K} \right\}. \tag{44}$$

Similarly, (α_2, δ_2) defines a canonical Gauss absolute value on $\bar{K}(X_1, X_2) = \bar{K}(X_1)(X_2)$ which is an extension of $|\cdot|_{(\alpha_1, \delta_1)}$ such that

$$\left| \sum_{j} c_{j} (X_{2} - \alpha_{2})^{j} \right|_{(\alpha_{2}, \delta_{2})} = \max_{j} \left\{ |c_{j}|_{(\alpha_{1}, \delta_{1})} \delta_{2}^{j} \right\}, \ c_{j} \in \bar{K}(X_{1}).$$
 (45)

Hence

$$\left| \sum_{i,i} a_{ij} (X_1 - \alpha_1)^i (X_2 - \alpha_2)^j \right|_{(\alpha_1, \delta_1), (\alpha_2, \delta_2)} = \max_j \left\{ \left| \sum_{i} a_{ij} (X_1 - \alpha_1)^i \right|_{(\alpha_1, \delta_1)} \delta_2^j \right\}$$

and for every $P \in \bar{K}[X_1, X_2] = \bar{K}[X_1][X_2]$,

$$|P|_{(\alpha_1,\delta_1),(\alpha_2,\delta_2)} = |P|_{(\alpha_2,\delta_2)}. \tag{46}$$

By induction it follows that for every $P \in \overline{K}[X_1, \dots, X_i] = \overline{K}[X_1, \dots, X_{i-1}][X_i]$, and for every i,

$$|P|_{(\alpha_1,\delta_1),\dots,(\alpha_i,\delta_i)} = |P|_{(\alpha_i,\delta_i)}. \tag{47}$$

The following result shows that Nagata's conjectures holds for $r \ge 1$, if | | is a canonical Gauss absolute value.

THEOREM 4. Suppose that (K, | |) is a valued field, $L = K(\mathbf{X}), | |_L$ an absolute value which is the restriction of a canonical Gauss absolute value $| |_{(\alpha_1, \delta_1), \dots, (\alpha_r, \delta_r)}$ on $\bar{K}(\mathbf{X})$ such that:

- $(a)[|L^{\times}|_L:|K^{\times}|_K]<\infty.$
- (b) For every i, (α_i, δ_i) is a minimal pair of definition for the absolute value $| |_{(\alpha_i, \delta_i)}$ defined on $\overline{K(X_1, \ldots, X_{i-1})}(X_i)$.

Then $| \ |_{(\alpha_1,\delta_1),...,(\alpha_r,\delta_r)}$ is a r.t. absolute value on $L(\mathbf{X})$ and there exists a finite algebraic extension K_1 of K such that $K_{1||_{\bar{K}}} \subset L_{||}$ and

$$L_{|\,|_L} = K_{1|\,|_{\bar{K}}}(\mathbf{Y}^*),\tag{48}$$

with $Y_1^*, \ldots, Y_r^* \in L_{|\cdot|_L}$ algebraically independent over $K_{1|\cdot|_{\bar{K}}}$.

Proof. We denote $K_1 = K(\alpha_1, \ldots, \alpha_r)$, $n_i = [K(\alpha_1, \ldots, \alpha_i) : K(\alpha_1, \ldots, \alpha_{i-1})]$ and we prove that $K_{1||_{\bar{K}}} \subset L_{||_L}$. If $P = \sum_{\mathbf{i}} a_{\mathbf{i}} (\mathbf{X} - \alpha)^{\mathbf{i}} \in L$ and for every i the degree d_i of |P| with respect to X_i is less than n_i , then by (47) and Theorem 2.1 from [1] it follows that

$$|P(\mathbf{X})|_{L} = |P(X_{1}, \dots, X_{r-1}, \alpha_{r})|_{(\alpha_{r-1}, \delta_{r-1})} = \dots = |P(\alpha_{1}, \alpha_{2}, \dots \alpha_{r})|_{\bar{K}}.$$
 (49)

Now, if $\gamma \in K_1$ there exists $P \in L$ with $d_i < n_i$ such that $\gamma = P(\alpha)$. Then by (49) it follows that

$$|\gamma|_{\bar{K}} = |P(\alpha)|_{\bar{K}} = |P|_L$$

and $K_{1|_{\bar{K}}} \subset L_{||}$.

We show that $K_{1||_{\bar{K}}}$ is the algebraic closure of $K_{||}$ in $L_{||_{L}}$. We choose q_1 the smallest natural number such that $\delta_1^{q_1} = |\theta_1|_{\bar{K}}$, where $\theta_1 \in K_1$ and we take β_1 a root of the polynomial $Z_1^{q_1} - \theta_1$. Since

$$q_1 \le e(K_1(\beta_1)/K_1) \le [K_1(\beta_1):K_1] \le q_1,$$

it follows that $f(K_1(\beta_1)/K_1)=1$. Hence $K_1(\beta_1)_{||_{\bar{k}}}=K_{1||_{\bar{k}}}$. Similarly, we choose q_2 the smallest natural number such that $\delta_2^{q_2}=|\theta_2|_{\bar{k}}$, where $\theta_2\in K_1(\beta_1)$ and we take β_2 a root of the polynomial $Z_2^{q_2}-\theta_2$. Then we obtain $K_1(\beta_1,\beta_2)_{||_{\bar{k}}}=K_1(\beta_1)_{||_{\bar{k}}}$ and by induction, for every i,

$$K_1(\beta_1,\ldots,\beta_i)_{|_{\bar{k}}} = K_1(\beta_1,\ldots,\beta_{i-1})_{|_{\bar{k}}}.$$
 (50)

Now, by (50) and Lemma 5 for $M=K_1(\beta_1,\ldots,\beta_r)(\mathbf{X})$, it follows that $K_{1|\mid_{\bar{k}}}=K_1(\beta_1,\ldots,\beta_r)_{\mid\mid_{\bar{k}}}$ is algebraically closed in $M_{\mid\mid_{(\alpha_1,\delta_1),\ldots,(\alpha_r,\delta_r)}}$. Then the canonically defined commutative diagram

implies that the algebraic closure of $K_{||}$ in $L_{||_L}$ is included in $K_{1||_{\bar{k}}}$. Since $K_{1||_{\bar{k}}}$ is a finite extension of $K_{||}$, it follows that $K_{1||_{\bar{k}}}$ is the algebraic closure of $K_{||}$ in $L_{||_L}$.

Finally, we prove (48). Since the multiplicative group G/H, where $G = |L^{\times}|_L$, $H = |K^{\times}|$, is generated by the images $\bar{\delta}_1, \ldots, \bar{\delta}_r$ of $\delta_1, \ldots, \delta_r$, from (a) it follows that G/H is a finite commutative group. Hence it is a direct product of cyclic groups:

$$G/H = \langle g_1 \rangle \times \langle g_2 \rangle \times \ldots \times \langle g_r \rangle, \tag{51}$$

where it is possible that some of $g_i = 1$. We denote by o_i the order of g_i . If $P \in K[X]$ is given by (42), then

$$P = \sum_{i} b_{i} \left(\frac{\mathbf{X} - \alpha}{\beta} \right)^{i}, \tag{52}$$

where $(\frac{\mathbf{X}-\alpha}{\beta})^{\mathbf{i}} = (\frac{X_1-\alpha_1}{\beta_1})^{i_1} \dots (\frac{X_r-\alpha_r}{\beta_r})^{i_r}$, $b_{\mathbf{i}} = a_{\mathbf{i}}\beta^{\mathbf{i}}$. Since $|\frac{X_i-\alpha_i}{\beta_i}|_{\tilde{K}(\mathbf{X})} = 1$ it follows that $|P|_L = 1$ if and only if

$$\max_{i} \{|a_{i}\beta^{i}|_{\bar{K}}\} = \max_{i} \{|a_{i}|_{\bar{K}}\delta^{i}\} = 1.$$
 (53)

Because, in G/H, $g_i = \overline{\delta}_1^{m(i,1)} \dots \overline{\delta}_r^{m(i,r)}$, then (53) holds if and only if $\overline{\delta}_1^{i_1} \dots \overline{\delta}_r^{i_r} = g_1^{\sigma_1 s_1} \dots g_r^{\sigma_r s_r}$, for each \mathbf{i} such that $|a_i|_{\overline{K}} \delta^i = 1$. If we put $Y_i^* = (\frac{X_1 - \alpha_1}{\beta_1})^{*m(i,1)\sigma_1} \dots (\frac{X_r - \alpha_r}{\beta_r})^{*m(i,r)\sigma_r}$, it follows that for $P \in \overline{B}_L(0,1)$ we have

$$P^* = \sum_{\mathbf{s}} b_{\mathbf{s}}^* \mathbf{Y}^{*\mathbf{s}},\tag{54}$$

which implies (48).

REMARK 5. In order to prove that Nagata's conjecture does not hold generally we can take, for an odd prime p, $K = \mathbb{Q}_p$, $|\cdot| = |\cdot|_p$ the p-adic absolute value, $L = K(X_1, X_2)$, $|\cdot|_L$ an absolute value which is the restriction of a Gauss absolute value $|\cdot|_{(0,1),(\alpha_2,\delta_2)}$ on $\overline{K(X_1)}(X_2)$ such that: $X_1^q + \alpha_2^q = 1$, with q an odd prime different from p, $\delta_2 \not\in |K^\times|$ and its order in the group $|L^\times|_L/|K^\times|$ is finite. Then $|\alpha_2|_{\overline{K(X_1)}} = 1$ and by using the notations from the proof of Theorem 4 we find $K_{|\cdot|} = \mathbb{F}_p$ (the field with p elements) and $L_{|\cdot|_L} = \mathbb{F}_p(X_1^*, \alpha_2^*, (\frac{X_2 - \alpha_2}{\beta_2})^*)$. Hence it is easy to see that $L_{|\cdot|_L}$ is not a transcendental extension of a finite extension of $K_{|\cdot|}$.

REFERENCES

- 1. V. Alexandru, N. Popescu and A. Zaharescu, A theorem of characterization of residual transcendental extensions of a valuation, *J. Math. Kyoto Univ.* **28**(4) (1988), 579–592.
- 2. V. Alexandru, N. Popescu and A. Zaharescu, All valuations on K(X), J. Math. Kyoto Univ. 30(2) (1990), 281–296.
- **3.** V. Alexandru, N. Popescu and A. Zaharescu, Minimal pairs of definition of a residual transcendental extension of a valuation, *J. Math. Kyoto Univ.* **30**(2) (1990), 207–225.
 - 4. N. Bourbaki, Algèbre commutative, Ch. VI Valuations (Hermann, Paris, 1964).
 - 5. I. S. Cohen, On non-Archimedean normed spaces, *Indag. Math.* 10 (1948), 244–249.
- 6. O. Goldman and N. Iwahori, The space of p-adic norms, *Acta Math.* 109 (1963), 137–177.
- 7. F.-V. Kuhlmann, Value groups, residue fields and bad places of rational function fields, *Trans. Amer. Math. Soc.* **356**(11) (2004), 4559–4600.
- **8.** A. F. Monna, Sur les espaces linéaires normés I–IV, *Indag. Math.* **8** (1946), 643–660, 682–700.
- **9.** M. Nagata, A theorem on valuation rings and its applications, *Nagoya Math. J.* **29** (1967), 85–91.