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Abstract. If K is a field with a non-trivial non-Archimedean absolute value
(multiplicative norm) | |, we describe all non-Archimedean K-algebra norms on the
polynomial algebra K[X, ..., X;] which extend | |.
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1. Introduction. Let K be a field with a non-trivial non-Archimedean absolute
value (multiplicative norm) | |. In this paper, we study K-algebra non-Archimedean
norms on K[X}, ..., X,] which extend | |. Some problems connected with the norms
on p-adic vector spaces were solved by I. S. Cohen [5] and A. F. Monna [8], and then
O. Goldmann and N. Iwahori were concerned in [6] with the intrinsic structure that is
carried by the set of all norms on a given finite dimensional vector space over a locally
compact field. When r = 1, the case of K-algebra non-Archimedean norms on K[X]
which are multiplicative and extend | | has been treated in [1-3]. In Section 2 below
we consider generalizations of the Gauss valuation. We investigate the case when a
K-vector space norm is a K-algebra norm and we also address the question of when
two norms are equivalent. In Section 3 we then discuss possible types of norms on
K[Xi, ..., X;] which extend a given non-trivial non-Archimedean absolute value on
K. The completion of K[X7, ..., X,] with respect to a non-Archimedean Gauss norm
is given in Section 4.

There are many applications of non-Archimedean multiplicative norms on
K[Xi, ..., X;] in algebraic geometry where a basic tool is to describe all the absolute
values on K(Xj, ..., X,) which extend | |. In [7] F.-V. Kuhlmann determined which
value groups and which residue fields can possibly occur in this case. In the case r = 1
the r.t. extensions | |; of | | to L = K(X) have been considered by M. Nagata [9], who
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conjectured that L, |, is a simple transcendental extension of a finite algebraic extension
of K. This problem has been affirmatively solved (see for example [1]). Some results

on the corresponding problem for K(X7, ..., X;) are given in Section 5.
2. Gauss norms on K[X;,...,X,]. Let K be a field with a non-trivial non-
Archimedean absolute value (multiplicative norm) | |, i.e. | | : K — [0, 0o) such that

foralla, B € K
Al. o] =04 a=0;
Al. lapl = lal|Bl;
A3. o+ Bl < max{lal, |Bl};
A4. there exists y € K different from zero such that |y| # 1.

Then (K, | |) is called a valued field.

In what follows we work with the polynomial algebra K[X1, ..., X;], and study
the K-algebra norms || || : K[X}, ..., X;] — [0, co) which extend | |, i.e. || || satisfies, for
all P, Q € K[X}, ..., X;], the conditions Al, A3 and for all« € K and P, Q € K[X],

X
NI. [l P|| = || ||P]l;
N2. [IPOIl < [IPIIIQIl;
N3. [loe| | = ex].

Ifn=(n,...,n)e N, weput N(m) = n; +--- + n,. We order the elements of N"
in the following manner: i < j if either N(i) < N(j) or N(i) = N(j) and i is less than j
with respect to the lexicographical order. Hence it follows that for each j there are only

a finite number of i such that i < j. For simplicity, for any m = (my, ..., m,) € N, we
denote X™ = X" - -- X/ and am = ay,,..m,- We also denote X = (X1, ..., X;).
If
P=>) " aXi e K[X], (1)
i<n
denote

E(P)={jeN :j<n, g0}

and d(P) = n is the greatest element of E(P) with respect to the lexicographical order.
If aqcp) = 1 the polynomial P is called monic.

Let (K, | |) be a valued field as above and || || a K-algebra norm on K[X] which
extends | |. In what follows we define a non-Archimedean norm on the polynomial
algebra K[X] which is a generalization of the Gauss valuation.

We start with the following simple lemma.

LEMMA 1. Suppose that K is a field and F = {Pj}jen- a sequence of polynomials from
KI[X] such that, for every j, d(P;) = j and ordered with respect to the order defined on N'.
Then every Q € K[X] can be represented uniquely in the form

0= ) bp;, 2)

i=d(Q)

where b € K.
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Proof- 1f Q = 3y p0) XY, Pai) = Lier(pyg) X then 0 = cagty g Paco) +0.
where i = d(Q;) and i < d(Q). By putting bgg) = cd(Q)a;(IQ) the statement follows easily
by induction with respect to d(Q). O

We denote

Er(Q) =(ieN :b;#0. in(2).

Suppose that (K, | |) is a valued field, 7 = {Pj}jen+ a sequence of polynomials from
K[X] such that, for every j, d(P;) = j, ordered with respect to the order defined on N"
and N = {$j}jenr a sequence of positive real numbers such that 8¢, o) = 1. We call F
and N admissible sequences of polynomials and positive numbers, respectively.

For every Q € K[X] written in the form (2) we define

F = max {|b;|5; s 3
”Q” N j<d( ){| ]| ]} ( )
Wlthj € E]:(Q) IfPS, Pt e , then by Lemma 1

PPi= ) (s, 0P y(s.t) € K, )

i<s+t

where (s, t) = yj(t, s), for every j. Then we set

ps,¢ = max{|y(s, t)|5;}. ®)
j<s+t

PROPOSITION 1. Suppose that (K, | |) is a valued field, F and N admissible sequence
of polynomials and real numbers, respectively. Then | ||z n, defined by (3) is a K-vector

space non-Archimedean norm on K[X] which extends | |. Moreover || || ., is a K-algebra
norm on K[X] if and only if

Ps,t = 658& (6)
for everys, t.

Proof. The first statement is easily verified. For the second part we consider P, Q €
KI[X], where P = };_yp)aiPi and Q is given by (2). Then, by (4),

PQ = Z ( Z avwava) = Z Z avbw Z )/]'(V, W)P]

u<d(PQ) \vt+w=u u<d(PQ) \vtw=u ji<u

- 3 (S( S abeom) ) = ¥ o
u<d(PQ) \ j<u \v+w=u (<dP0)
where

G = Z (Z avbwy;(v, w)) @)

i<u<d(PQ) \vt+w=u
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and since only a finite number of ay, by, are different from zero, all the sums are finite.
Then, if (6) holds,

< max { max {max {|avbw7/j(V» W)|}}5i}

IPOllF N < max { max {

j=d(PQ) |i<u=d(PQ)

D abwyi(v, w)

vV+w=u
T j=d(PQ) |j<u=d(PQ) | v+w=u

< max {max {|avbw|pviw}} < max {max {|avbw|8v8w}}
u<d(PQ) | v+w=u ’ u<d(PQ) | v+w=u

< il & bi| 8t = || P .
_irg%{lall l}jrir}%{\ il 8} = 1Pl Ollr
This completes the proof of the proposition. O

We call the norm given by (3) the Gauss norm on K[X] defined by F and V.
If || |z 1s a K-algebra norm on K[X], then by (5) and (6) it follows that

8 0;
b < min { L } (3)
i+j=n [¥a(, §)]
If
Pi=> X, )
i<j
then
PPi= Y X,
j<s+t
where

G = E y,sly t,

uHv=j
and all the sums are finite. We consider i; the greatest element of E(PsP¢—
Ys+t(8, O Pgy¢). Thus, by (4),
Vi (S, t) = ¢iy — diy st (10)
By induction with respect to the defined order it follows that
Yis, t) = T — Gy e1t, §=12.13, ..., (11)

where igy=s+t>i >ip>..., iy is the greatest eclement of FE(PsP;—
Zi:>ik,1 vi.(s,t)P;), Tj is a polynomial with integral coefficients in ayy with either
w<s+torw=s+tandv>j.

Now for ke {l,2,...,r} we consider ¢, =(0,...,1,...,0) e N". If ne N,
N(n) > 1 we denote n_ € N, the greatest element such that n = n_ + e;, for some
k e{l,2,...,r}. In this case we denote e, = e(n).
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The following result shows that for every admissible N = {§;}jenr such that

8.
C=inf{ﬂ}>o, (12)
ik S

and satisfying (8) one can construct Gauss norms on K[X] of the form | ||z A
trivial case is when we take Pj(X) = X!, but also we can find Gauss norms such that
Ps+t 7é PsPt-

We put w0,0,...0) = 1 and for any n with N(n) > 1,

n = i i%j(» Tn = i n» mJ- 1
* irfjg}l{asl} ¢ N(m)rilzlvrgn)fl{ﬂ Chim} (13)

PROPOSITION 2. Suppose that (K, | |) is a valued field and N" = {8;}jen an admissible
sequence of real numbers verifying (8) and (12). Then there exist infinitely many sequences
of admissible polynomials F = {Pj}jen: such that || ||z n defined by (3) is a Gauss norm
of K-algebra on K[X].

Proof. We construct sequences of monic polynomials 7 = {Pj}jen- such that || || 7 a
defined by (3) is a Gauss norm of K-algebra on K[X]. We put Py = landifj=e, =
0,...,0,1) e N, Py = g; + X}, with an arbitrary a; € K. Generally, if N(j) = 1, we
take an arbitrary monic polynomial Pj = Zifj .ai,in, wherea;j € K. Ifj=(0,...,0,2)
we take the monic polynomial Pj = ) a; X', with E(P)) \ {j} a subset of the union
of all E(P;) with i < j. Then by (4), we can write Pﬁr = Pi+>_,_in(e, )Py and by
(11) we can find the coefficients a; j such that

lyi(er, e.)|6; < 73, 1 <].

By choosing arbitrary the coefficients a; j wheniisnotin Ex, (Pgr), where Fj = {Pi}icj, we
find E(P;). In the same manner we can construct all the polynomials Pj = > ;_; @i X',
with N(j) = 2. Then by induction, we consider n € N’, and suppose that for all s with
N(s) < N(n) — 1 and t € Ex(Ps) we have

lye(er, s8¢ < Ts 1o [, DS < &85, i+i=s, ke{l,2,....r} (14)
By (11) we can choose the coefficients of P, such that the first condition of (14) holds

for s = n. To verify the second condition we consider i + j = n, with N(i) and N(j) less
than N(n). Then, without loss of generality, we may suppose that e(j) = e(n) and we

obtain
Pe(n)Pn_ = L"e(n) (Pin_ - Z Vt(i7 j)Pt)
t<n_
=Pi ) yi(em), i )Pi— Y ili, i) Pe Py
t<j t<n_

= PiPi+ Y wnem). i) Y wi0Pu— Y ni) D wlem), 0P,
t<j u<i+t t<n_ u<e(n)+t

=PiPi+ Yy Y nem),inG0Pu— Y > wij)yu(em), Py
t<j u<itt t<n_ u<e(n)+t
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Hence, for a fixed u,

va(em),n) = (@, D+ Y vlem), j)nd 0

t<j
u<i+t
= Y wniownem), o). (15)
t<n_
u<em+t
Now by (14) it follows that
. X T; 8;8 ;6 .
lye(e(m), i )va(i, O] < 22— < 22 (i, i) ale(m), t)]
8¢ Su Su
- 8i8i_ Ttte() - 8i8i. Crue - %
a 8t 8u - St 5u - 8u

Hence one has (14) for s = n and by Proposition 1, it follows that we can find infinitely
many sequences of monic polynomials F = {P;}jenr such that || ||z - defined by (3) is
a Gauss norm of K-algebra on K[X]. O

Next, we study when two Gauss norms are equivalent.

PROPOSITION 3. Suppose that (K, | |) is a valued field and || || £, v,, ¢ = 1, 2, where
Fo = {Pjatiens No = {8jalijen, are two Gauss norms on K[X]. If by (2)

Pio = ch)Pi,ya, a=12, (16)

i<j
then the norms are equivalent if and only if there exist positive constants Cy, C, such that
81 = Cilel? |80, Cr8i2 = |81y, for any i, j, withi <j (17)
i1 = C1]6Gi]%2, L2052 = |6 (%1, yLj, =)

Proof. If the norms are equivalent, then there exist positive constants Cy, C; such
that for every Q € K[X]

CilIlamn = 191A . < GlIONFE N

Consequently, we obtain

5= 1Pl 2 G| i = Cimax|

1
o
i<j ’

|5

i<j

Fa. N>

Conversely, suppose that (17) holds. If Q € K[X], then

Q= Z bij,2= Z bj 26‘;?1)“ = Z ch(,zi)bi Pjyl.

i=d(Q) i=d(Q) i<j i=d(Q) \ izj
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<G lga(tx {|b 18i2} = Gl QN7 0

Hence it follows that

10154 = max Zc,,b i Sjrg%{rriljtjx”“b

REMARK 1. Consider || ||z, @ Gauss K-algebra norm on K[X] defined by F =
{PiYienrs N = {8j}jenr. If for every j € N', ¢j is an element different from zero from K
and P} = ¢iPj, & = |¢ilé;, then by Proposition 3 it follows easily that the Gauss norm
deﬁned by F* = {P Yienr, N = {6;}jenr is a K-algebra norm on K[X] and the norms
Il |7 A || l7Ac are equivalent. Hence it follows that up to an equivalence we can
consider a Gauss norm defined by a family of monic polynomials.

ExaMPLE 1. Suppose (K,|]) 1is a valued field and S={(Br1,...,

Br.r)ti=1 1s a fixed sequence of elements ofK where K_ By(0,1) ={x € K;|x| < 1}.
We take F| = {Xl}]ENr F> = {Pj2}jenr, where

Po= [T Gi=8) [T a=8e2).. [] K= Ben)-

0<k=j 0<k=<y 0<k<,

Then it follows eas11y that all c ] ,a = 1,2, defined by (16) belong to I%
We put N} = N, = {§j}jenr Where, for every j, s, t € NF withj <s+t,

8 < 85t

For example we may take either §; = ¢V with a > 1, for all j, or & = (N(j) + 1) with
p afixed positive integer, for all j. Since all y;, @ = 1, 2, defined by (4) belong to X, by
Proposition 1 it easily follows that || || x; and || || 5., are K-algebra norms on K[X]
and (17) holds with C; = C, = 1. Hence the norms are equivalent.

Let (K, | |) be a valued field and || || a non-Archimedean norm on K[X] which
extends | |. If j € N, put

MO = (Q e K[X] monic. dQ) = i}, M) = {I10l;0e MV} (1)

On K[X] there are non-Archimedean norms which are not Gauss norms (see
Remark 3). The following result gives a criterion for a non-Archimedean norm on
K[X] to be a Gauss norm.

PrROPOSITION 4. Let (K, ||) be a valued field and let || | be a K-algebra non-
Archimedean norm on K[X] which extends | |. Then | || is a Gauss norm defined by
a family of monic polynomials if and only if for every j € N, there exists Pj € MY such
that | Py = inf M{{. In this case | || is defined by F = {Pi} . N' = (I Pill}icns-

Proof. If || || is a Gauss norm defined by a family of monic polynomials F =
{Pi};cnr» then by (3) it follows that for every j € N, and 0 € MY, ||Q|| = §;. Since

1 Pjll = &, it follows that || Pj|| = inf M, )||
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Conversely, if for every j € N’ there exists Pj € MY such that | P;|| = inf M‘(j)”,
then we can take 7 = {Pi}i .y, N = {I[Pill}jcp- Since || Porell < [1PsPell < || Pl Pell and
1P|l < W, where i is the greatest element of E(PsP¢ — Psy¢), by induction with
respect to thle given order it follows that F and A verify the conditions of Proposition 1.
We take Q € K[X] and prove by induction on q = d(Q), with respect to the given order
that | Q|| = || Q|| =.a- It is enough to consider the case when Q is a monic polynomial.
Ifq=1(0,...,0,1) we can write Py = X% —agand Q0 =X%—-b, a,b € K. Since

Q=Py+a—b, (19)
we obtain

IQIl < max {[|Pgll, la — bI} = [|Qll = n- (20)

If | Pqll # la — b], by (19) it follows that || Q|| = ||Qll7.a. Otherwise, by the definition
of Py and by (20) we obtain [|Py[l < QI < |Qllzn = ||Pqll and [|QI = Ol .v, for
q=(0,...,0,1).

Now suppose that || P|| = || P|| =, for all the polynomials with d(P) < q and let
Q € K[X] such that d(Q) = q. Then

Q = bqPq + Oi, 21
where by € K and d(Q;) =i < q. Hence

1 1
[ Pqll S—||Q||SmaX{HPqH,—HQiH}- (22)
|bg| |bg|
Thus,
1bgl I Pll < 1QIl < maX{HquqH, ”Qi”F,N} = Ol (23)
If | Qillz nr = llbgPqll, by (23) it follows that || Q|| = || Q|| 7 . Otherwise by by (21) we
obtain || Q|| = ||Q|lx.A and the proposition is proved. Il

Now we prove that in the case of p-adic fields all non-Archimedean norms on K[X]
which extend | | are Gauss norms.

COROLLARY 1. Suppose K is a locally compact field and | || is a K-algebra non-
Archimedean norm on K[X] which extends | |. Then || || is a Gauss norm.

Proof. By Proposition 4 it follows that it is enough to show that for j € N,
there exists Pj € M such that |Pjl| = inf Ml(lj)H' Thus for a fixed j € N” we choose
a sequence {Pj;}ien of elements from MW such that for every i, | Pi.ill = IIPjit1ll, and
lim;_, o || Pjill = inf M, ﬁj)”. If Py, = Ztsj aj,,-,tX‘, we distinguish two cases:

(1)The set of coefficients of all polynomials P;; is bounded in K. Then, since K is
locally compact, for every t there exists a subsequence {aj, ¢}men Of {gj i ¢}ien Which
converges to an element aj¢ € K. If we put Pj =3, _;a;X', it follows easily that

Py e MY and ||Pj|| = inf M.
(ii) The above set of coefficients is unbounded. If Bx(0, 1) = {x € K;|x| < 1} then
its maximal ideal Bg(0,1) = {x € K;|x| < 1} is a principal ideal generated by an

element 7. We take b;, the smallest positive integer such that f; = nbij’ ; € Bg(0, D[X].
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Choosing, if it is necessary, a subsequence we may assume that lim;_, ., b; = co. Since
Bk(0,1) is a compact set, there exists a subsequence {f; }scny Which converges to a
polynomial f € Bg(0, 1)[X]. From our choice of b; it follows that f; is primitive for
any i. Hence it follows that f is primitive, in particular f # 0. Since || Pj;ll < ||Pj1]]
for each i, we obtain that f = lim, . ||f;|| = 0, a contradiction which implies the
corollary. ]

3. Types of non-Archimedean norms on K[X]. In order to describe all the non-
Archimedean norms on K[X] which extend | | we first establish the following lemma.

LEMMA 2. Suppose that (K, ||) is a valued field and {| |:},c; is a family of non-
Archimedean norms on K[X] which extend | | such that for any Q, Q2, Q3 € K[X] there
exists an iy € I verifying

iifellf{HQjHi} =19l j=1,2,3.
Then, if for all R € K[X] we define

IRl = inf {||R]l;}, (24)
iel

we obtain a non-Archimedean norm on K[X] which extends | |. Furthermore, if for every
iel, || |l; is a K-algebra norm, then also the norm given by (24) is a K-algebra norm.

Proof. If Q, R € K[X], we consider for example Q; = 0+ R, 0» = 0, 03 = R.
Then there is an iy € I such that

10+ RIl = 10 + Rll;, < max {||Qll;, IRl;,} = max{[|Q], [ RI}.
The other required properties are similarly proved. ]

Let || || be a non-Archimedean norm on K[X] which extends | |. For every j € N”
we construct a sequence of polynomials ITj = {P; ;},.n, with Pj; € MW in the following

way. If there exists O € MY such that || Q;|| = inf M, I(Ij)H’ we fix this polynomial and for
every i € N we put Pj; = O, otherwise we take {P;;},_y, such that | Pj ;1| < || Py, for

any i, and lim;_, o || P; ;|| = inf Mhi)“. We consider
Y= {o = {Sitienr, Si € N}, (25)

and for every o = {si};

Fo = {Pjvvi}jeN"’ No = {”Pi»sl'”}jew’ Py € T;. (26)

REMARK 2. If inf M ‘(‘j)” is not attained, for each j, then for each P € MY there

exists Q € MW such that ||Q|| < ||P|. Then | P| = |a|||(P — Q)/al|, where a € K and
(P — Q)/a € MV withi < j. Hence, by induction it follows that the values of the norm
coincide with the valuation group |K*|.

We are ready to prove the following result.

THEOREM 1. Let (K, | |) be a valued field and let || || be a non-Archimedean norm
on K[X] which extends | |. If, for every j € N', there exists Py € MY such that | P;|| =
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inf MI(IDII’ then || || is a Gauss norm defined by F = {Pj}jEN,-, N = {”Pi”}jeN“ where P;
can be chosen in T1;. Otherwise, the set of K-vector space norms {|| |7, n, }, x5 verifies
the conditions from Lemma 2 and || || is equal to the norm defined by (24).

Proof. The first case follows by Proposition 4, where P; can be chosen in IT;.
In the second case, we prove that {|| || £, A }, .5 verifies the conditions from Lemma
2. We take the monic polynomials Q; € K[X] with q; = d(Q)), j = 1, 2, 3 and put

b = ;felg {10/l7 .}, j=1,2,3.

. (q7) . _ p
If |Q;ll = inf M, we choose Pq/.,sqf with sq, = 0, otherwise we can take P‘lf"*'«/ € I,
such that ||Q;ll > ||qu.,sq]_||. Then Q; = Pq/,xqj_ +aq}1)7jQq;n’j, where qu.”,j 1S monic,

dQ,) = q" < q;and

101 = max {I1Pg.s, Il g ;040 1} @7
. . . . ")

Now we choose polynomials qu o) such that either Sy = 0, if || qujll = inf M

2l "qj J v
or ||Qq;_nqj|| > ||Pq;1>,sq(.l) I, otherwise. Hence qu.”,j = Pq;l)’sq(ll) + aq;_z) qukjv where Qq;z,!j 1s
J J
monic and d(Qq(z) j) = q}z) < q}l) . Thus
), . .
||Qq§_1>‘,«|| = max {”Pq;])qum Il, ||flq;_2> Qq§_2>t,||} (28)
J

and

= P, aw .Pa a @ 2) .
9 sy T Ay 05,0 + q})Qqﬁ)J’
J

where ao = aqm&qm. In this way after a finite number of steps we obtain
y Vi J

= Py a o P ao .Po e a .
Qj 4.5, + q}- ) q}- )’sq(,l) + q}- ) q}- )’Sq(,z) + + a,...,0),
I I

Hence

101l < max { 1Pg.5 11> llagn ;P

J

<v1)“Y W ||, ||Clq<_2).qu(_2).S o ||, veey |a(0,m_0),j| . (29)
af AR A
By using (27) and (28), it follows that one has equality in (29). Moreover, one can
choose the same polynomials P for all the polynomials Q;, j=1,2,3. Now we
choose o = {fj}ienr € T such that, if ¢ = max; ;<3 {q;}, then fori < qandi= q](-"), 4=
syo- It follows that | Q| = 1Qjllx, x, = 6; and {|| |l%, &, },c5 verifies the conditions of
v

Lemma 2.

Lastly, take R € K[X]. Since | R|| < || R, x;, , it can be proved in the same manner
that the norm is equal to the norm defined by (24). O

REMARK 3. On K[X] there exist non-Archimedean norms which are not Gauss
norms and extend | |. Even in the case of multiplicative norms and r = 1 such examples
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can be found. For instance, one may take K = Q, p a prime number and x € Q, a
transcendental element over Q. Then we consider on @[x] the absolute value induced
by the p-adic absolute value | |, defined on Q,. If {a,},>1 is a sequence of rational
numbers which tends to x in Q,, the polynomials P,(X) = X — a, € Q[X] define a
sequence such that |P,(x)|, tends to zero. Hence, by Proposition 4, it follows that one
obtains a norm as in the second case of Theorem 1.

4. Completions of K[X] with respect to non-Archimedean norms. We now proceed
to study the completion of K[X] with respect to a Gauss norm || ||z . We denote by
K the completion of K with respect to | |, and consider the set of formal sums

K[X] = = aiPi; ;€ K, lim |a]8=0%. 30
X] =1/ ZNj Jlim_ il (30)

—

If f € K[X], define

W llFar = sup {|ai| 8i}. (D

THEOREM 2. Suppose that (K, | |) is a valued field and || ||z n is a Gauss norm of

K-algebra on K[X]. Then K[X] is a K-algebra which contains K[X]. Furthermore the map

given by (31) is a K-algebra norm and K[X] is the completion of K[X] with respect to the
Gauss norm.

Proof It f,g = Y yeny biPj € K[X], then

fg: ZCuPua

uelN"
with
Ca = Z rv(“), rv(“) = Z Awby_wVu(W, v — W). (32)
u<v W<V

Since, for v > u,

(33)

Sy
|7 | < max {|awby—wyu(W, v — W)} < max {Iawl |by—w — w} :
w<v w<v

Su

it follows that lim yy)— 00 rv(") = 0and ¢, € K. Moreover, limy - oo Icul 6w = 0 and fg €

—~— ——

K[X]. Then it follows easily that K[X] is a K-algebra which contains K[X]. Since

/gl n = sup {Icul éu}
uelN"
by (32) and (33) we obtain that the map given by (31) is a K-algebra norm on I?[\X/]

We need to show that (K[X], || l7.x) is complete. Let /1 =", a.P;i € K[X],
t > 1 a Cauchy sequence. Since, for a fixed i,

Y — £ 2 5

5 : (34)

|G 141 — Gig| <
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it follows that each sequence a;,, t =1, 2, ... s a Cauchy sequence in K.Forie N, let

a; € K be the limit of this sequence and f = Y ienv @iPi. We have to prove that f € I/(_[\)Z]
and lim,_, , |f — /1|7 v = 0. By restricting to a subsequence we may assume that

1
W =N < - (35)

~

for all s>1¢ t=1,2,.... By (34) and (35) we obtain |a;, — ai | < 5, s=11+
1,... and hence |g —ai,| < rlai’ for any ieN", > 1. Since ¢ K[X], we
obtain limyg)-c lai/|éi = 0. But, for every ¢, |ai|di < max({|ai,|s;, %}. Hence
limygi)soo |ail&i = 0 and f € K[ ]. Then |If — fW)l 7. n = supjeny {|a@i — aif| &) < % and

lim,_ oo |[f — /1 £.x = 0. This proves the theorem.

5. Non-Archimedean absolute values on K(X). In the following we deal with non-
Archimedean absolute values (multiplicative norms) on K[X] which extend an absolute
value of K.

Let (K, | |) be a valued field and | |, an absolute value on L = K(X) which extend
||. We call | |, a residual transcendental (r.t.) extension of || if the residue field
L, |, is a transcendental extension of K| of transcendence degree r. We call | |, a
Gauss absolute value if its restriction to K[X] is a non-Archimedean Gauss norm.
If a Gauss absolute value | |, is defined by F = {Pj}jenr and N = {| P; |L} o> Where

Py=P. .. Pl P, = X; — a; and o; € K, then it is called a canonical Gauss absolute
value. In this case we denote | |1 = | |(«,.8)).....(ar.5,)>» Where §; = | X; — o] Forr = 1 and
K a fixed algebraic closure of K, we denote by | |; a fixed extension of | | to K. If
| |k(x) is an extension of | | to L = K(X), then there exists an extension | |y, of | |k(x)
to K(X) which is also an extension of | |z. Moreover, if | | Kk(x) is an r.t. extension of
| |, then | |g(x, is an r.t. extension of | | and there exist @ € K and § € |K*| such that
| [k(x) = | l@.s) 18 @ canonical Gauss absolute value. The pair (e, 9) is called a pair of
definition for | |g(y). It is known that two pairs (@1, 61) and (2, &) define the same
valuation | |y, if and only if

81 =08 and |a; — ozl < 81. (36)

By a minimal pair (of definition) (see [1-3]) for | | gy, we mean a pair of definition («, )
such that [K(«) : K] is minimal.

PROPOSITION 5. Let | |1, be a residual transcendental extension of | |. Then there exist
polynomials f1, . .., f., with f; € K[X1, ..., X;], which are algebraically independent over
K, such that the restriction | |4 of | | to A = K[f1, ..., f;] is a Gauss absolute value with
P, =fi, fori=1,2,...,r and §; =1 for every j. Moreover, if K = K(f1, ..., f;) and
| |k, is the canonical extension of | |4 to K, then L is an algebraic extension of K| and
| | is an extension of | |k,.

Proof. Consider a transcendence basis Fi, ..., F, of L;|, over K||. Since | |1
is a residual transcendental extension of || and K C K(X)) C K(X1,X3) C ... C
K(Xi,...,X,), we can choose F; € K(X1, ..., X;). Then for every i |F;|, = 1, and if
P= Zi ajFj € K[F], there exists a € K such that aP € B;(0, 1). Hence we may suppose

that P € B;(0, 1) and at least a coefficient of P has absolute value equal to 1. Since
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Fy, ..., F, are algebraically independent over K| it follows that |P|; = max; {|ql}.
Thus |K{‘ |k, = |K*| and the index e of the subgroup |[K*| in |[L*|; is finite (see [4],
Ch.VI, §8, Sec. 1, Lemma 2). Since F; = j;— with g;, h; € K[X, ..., X;]and |F;|p = 11t
follows that |g;|; = |A;|r and |g;]] € |[K*|. But Fe, ..., Ff are algebraically independent
over | |x. Hence we may suppose |g;|; € |K*|x and there exist elements b; € K* such
that |g;|; = |b;|. Thus we can consider |g;| = |hi|L = 1.

Now we prove that one can replace Fi,..., F, by polynomials. Since F) is
transcendental over K(F>, ..., F,) at least one of g; and /; is transcendental over
K(F,,...,F,). Thus we can replace F; by a polynomial f; € K[X]]. Since F; is
transcendental over K(f1, F3, ..., F;) we can replace F, by a polynomial f, € K[ X7, X3]
and the proposition follows by induction on i. O

COROLLARY 2. [If, in Proposition 5, K is an algebraically closed valued field,

then |K*| = |L*|. and we can choose the polynomials f; to be irreducible for every
i=1,2,...,r

Proof. Since, in this case, the group | K| is divisible, it follows that |K*| = |L*|.
By Proposition 5, | |1 is a canonical Gauss absolute value with §; = 1. If f; = ]_[7;1 Jijs
where f; ; are irreducible polynomials, there exists jy such that f; ;, is transcendental
over K(f>, ..., f;). Hence by multiplying by suitable elements from K, the corollary
follows by induction. ]

REMARK 4. Let (K, | |) be an algebraically closed valued fieldand r = 1. If | L isa
non-Archimedean absolute Value on L = K(X) which extends | |x and there exists P; €

MW such that |P1 |, = inf MV '1,» then for all positive j there exists Q; € M such that
|Qjl, = inf MY e = 1P I’L and | |1 is a canonical Gauss absolute value defined by P; =
P’l and §; = | P;|. To prove this statement it is enough to take Q € M (f)..Then 0= _(X —
ap)...(X — ;) with o; € K. Hence |Q|;, > (minj<<; | X — oyl > |P1f;. Since |P)|, =
| Py |jL, the remark follows.

Now let (K,||) be a (not necessarily algebraically closed) valued field. We
consider a r.t. extension | |z of || to L = K(X) and | |z, the restriction of | |z to
Li=KX,...,X;),i=0,1,2,...,r, with Ly =K and L, = L. Then | |, is a .t.
extension of | |,. Let us denote by L; a fixed algebraic closure of L; such that

KcLic...cL,

and by | |1 a fixed extension of | |7, to L,i=0,1,...,r

THEOREM 3. Let (K, | |) be a valued field and | | a r.t. extension of | | to L = K(X).
Then there exist pairs (a;, 8;) witha; € Li_y, 8; € |Z‘i><—l|z,>1’ i=1,2,...,r suchthat| |
is defined by | | in the following manner. If P € K[X] and P; = (X, — o, , then

pP= Z bi(X; — @), bj € L1,
j=d(P)

and

|P|. = max {Ib 7,80} (37)
Jj<d(P
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Then by using, for each j the minimal polynomial of b; over L,_ one can compute by (3)
its absolute value | |7 by means of | |;,_,, a,1, 8,1, and so on.

Proof. Since | |7 is an absolute value it is enough to define it on K[ X1, ..., X;]. By
[1], Proposition 1.1 it follows that | |z, , isar.t. extension of | |z, and [L |7, = |LY|z,.
From Corollary 2, for i = r, it follows that | |,,, is defined in (37) by means of | |, and
a pair (a;, 8;), where o; € L; is the root of an irreducible polynomial P; of degree 1 and
8; = | P;|z,- Now the theorem follows by induction on i. O

COROLLARY 3. With the hypotheses and notations of Theorem 3 there exist B, y; €
Ly,.i=12,...,rj=12, ..., 5 such that the following conditions are satisfied.:

((,Z) L\ L = K\ I(,Bl,l cees /31,1117 Y1, .82,1’ s ,Bz,ny V2sonns ,Br,h s ,Br,nﬂ J/r)-

(®) v1, V2, - . ., yr are algebraically independent over K |.

(¢c) For every i,j, Bi; is an algebraic element over K (Bi 1, ..., Bim, Vi, ---»
Bi—t,15 -+ Bictn_1s Yie1)-

(d) The algebraic closure of K| | in L, is a finite dimensional extension of K |.

Proof. Since ||g,, is a rt. extension of ||z, by [1] Corollary 2.3
there exist Bi1.1, .- -, Bivtm» Virl € Lig Ity such that L;y, oy = Liyy, (Bis11s - - -
Bi+1.m.r» Vir1) and yip is transcendental over L;; |, . Now the statements (a)—(c) follow
by induction, and (d) holds because (c) implies that the algebraic closure of K| in L,
is a finitely generated extension of K| |. g

Next, we consider the problem when L, |, is a transcendental extension of a finite
algebraic extension of K| (Nagata’s problem) in the case r > 2. We need the following
three lemmas.

LEMMA 3. Let (K, | |) be a valued field, L = K(X) and | |1, the absolute value defined
on K[X] by

Z anj

]

= max |q;|. (38)
L J

If X7, i=1,2,...,r is the image of X; in Ly, then X},..., X} are algebraically
independent over K| |.

Proof. If
> o pxH =0,
i
where b; € Bx(0, 1), then

< 1.
L

‘ > X
i

By (38), it follows that all b; € Bg(0, 1). Hence b!fk =0and X7, ..., X are algebraically
independent over X |. g

LEMMA 4. Let (K, | |) be a valued field, L = K(X). Then there exists a uniquely
defined absolute value | | on K(X) which extends | | such that for every i, | X;|p = 1 and
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X}, ..., X} are algebraically independent over K, |. Moreover

|K*| = |L*|;,, and L, |, = K| |(X*). (39)

i1,

Proof. The proof is similar to the proof of Proposition 2, Ch.VI, §10 of [4]. To
show the uniqueness it is enough to show that if | |, is an absolute value on K[X] which
extends | | such that forevery i, | X;|, = land X7, ..., X" are algebraically independent
over K| |, then it is defined by (38).

Without loss of generality we can consider P € K[X] given by (1) such that all
aj € Bx(0, 1) and at least one of the coefficients has the absolute value equal to one.
Since for every i, | X;|, = 1, it follows that

Pr=>Y"axH.
i

By using the fact that X7, ..., X;* are algebraically independent over K| |, we obtain
that P* # 0 and |P|;, = 1 = max;|qgj|.

Now we prove the existence of the absolute value | |;. It is easy to see that the
absolute value defined by (38) extends | |, for every 7, |X;|, =1 and |K*| = [L*],,.

From Lemma 3 it follows that X7, ..., X" are algebraically independent over K| . To
prove that L, = K| (X*) we consider R € L. Then we can write
N 4 X
R= (LiaX (40)
2ibiX

where ¢, a;, b € Bg(0, 1) and at least one of the coefficients ¢; and b; has the absolute
value equal to one. Thus |R|;, = 1 if and only if |c| = 1. In this case

o CXaXe

= —Z' I (41)
and this completes the proof of the lemma. ]

LEMMA 5. Let (K, | |) be a valued field. If | |1 = | |(.1)..... (.8, With 8; € |[K*| is a
canonical Gauss absolute value defined on L = K(X), then K|, is algebraically closed in
Ly,

Proof. We take 1; € K* such that for every i, |t;] = §;. Then |@| =1 and every
polynomial P € K[X] can be written in the form

i . X —a\
P:Xi:ai(X—a)_Xi:bl< - > (42)

where (X;“)i = (Xlr;f“‘)il ()('%f‘")i", bi = a7’ and

|P|; = max |b;|. (43)

By Lemma 3 it follows that (X‘T—_I“‘)* e (%)* are algebraically independent over K|

and from Lemma 2 we obtain that L, |, = K| |(XT;°‘)*. Hence K| is algebraically closed
in L| I+ [
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Now we consider a valued field (K,||), | |z an extension of || to K and

.....

pair (a1, 8;) defines a canonical Gauss absolute value on K(X;) C K(X;) such that

‘ > bilXi — )

Similarly, (a2, 8,) defines a canonical Gauss absolute value on K(X7, X>) = K(X))(X>)
which is an extension of | |, ,s,) such that

= max {|bi| g8}, b € K}. (44)
(@1.81) !

Z (X2 — Y

= max {|¢le.0)8 ), ¢ € K(X)). (45)
] (@.8) 7

Hence

Z%’(Xl —a1)(Xo — o)
ij

= max
j

3 (X — ) ag}
i (a1,81)

(01,81),(e12,82)
and for every P € K[X}, X»] = K[X,][X>],

IPl(ar,60),(02,8) = [Plies,0)- (46)

By induction it follows that for every P € K[X1, ..., Xi] = K[X1, ..., Xi_1] [Xi], and
for every i,

[Pl (c1,80),ns(er8) = 1 Plicr,sy)- 47)

The following result shows that Nagata’s conjectures holds for » > 1, if | | is a canonical
Gauss absolute value.

THEOREM 4. Suppose that (K, | |) is a valued field, L = K(X), | |1 an absolute value

that:

(@[L*|L : K™ k] < oo.

(b) For every i, (a;, 8;) is a minimal pair of definition for the absolute value | |5,
defined on K(X1, ..., Xi—1)(X)).
(@.8,) IS ar.t. absolute value on L(X) and there exists a finite algebraic
extension Ky of K such that Ky, C Ly and

Ly, = Kij (Y9, (48)

with YT, ..., Y* € Ly, algebraically independent over Ky, .

Proof. We denote K| = K(ay, ..., ), n; = [K(ay, ...,®;): K(ay, ..., a,_1)] and
we prove that Ky, C L. If P =) ai(X — «)' € L and for every i the degree d; of
| P| with respect to X; is less than »;, then by (47) and Theorem 2.1 from [1] it follows
that

IPXOIL = 1P(X1, . Xt @)l = - = [Plan, o2, ook (49)

https://doi.org/10.1017/50017089509990115 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089509990115

NON-ARCHIMEDEAN K - ALGEBRA NORMS 17

Now, if y € K| there exists P € L with d; < n; such that y = P(«). Then by (49) it
follows that

Y|k =Pz =Pz

and K1| Iz C L‘ -

We show that K| is the algebraic closure of K|| in L;|,. We choose ¢; the
smallest natural number such that 5141 = |01|g, where 6; € K; and we take 8, a root of
the polynomial Z!" — 6;. Since

q1 < e(Ki(B1)/K1) < [Ki(B1) : Ki] < q1,

it follows that f(K1(B1)/K1) = 1. Hence Ki(B1) |, = K| |- Similarly, we choose ¢> the
smallest natural number such that 6;’2 = |62|g, where 0, € K;(B1) and we take B, a
root of the polynomial ZJ* — 6,. Then we obtain K;(B1, o), I = Ki1(B1)), and by
induction, for every i,

Ki(Brs -y B g = Ki(Bus - - Bi1)) g (50)

Now, by (50) and Lemma 5 for M = Ki(Bi, ..., B)(X), it follows that Ky, =
Ki(Bi, ..., B 1s algebraically closed in M), Then the canonically defined
commutative diagram

SDewenlarbr) *

K
I I

implies that the algebraic closure of K|| in L, , is included in Kj|,. Since Kj |, is a
finite extension of K|, it follows that K. is the algebraic closure of K| | in L, .

Finally, we prove (48). Since the multiplicative group G/H, where G = |L*|,
H = |K*|, is generated by the images i, ..., 8, of 81, ..., 8., from (a) it follows that
G/H is a finite commutative group. Hence it is a direct product of cyclic groups:

G/H=<g>X<g >X...X <g >, (51)

where it is possible that some of g; = 1. We denote by o, the order of g;. If P € K[X] is
given by (42), then

r=3n(%2). (52

where (%)i = (%)i1 (Xp+°‘)’ bi = a;B'. Since |X‘ﬁ_i°"'|,-((x) =1 it follows that
|P|y = 1 if and only if

miax{|ai,3i|,-<} = miax{|ai|1-<5i} =1. (53)
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Because, in G/H, g =35,"""...5""", then (53) holds if and only if 57 ...5" =
g ...go%, for each i such that |a|gé'=1. If we put Yi*z(%)*m(ﬁl)”l
. (Xzeeyem(ino: it follows that for P € By (0, 1) we have

B

P =) BY®, (54)

which implies (48). O

REMARK 5. In order to prove that Nagata’s conjecture does not hold generally
we can take, for an odd prime p, K =Q,, | | =| |, the p-adic absolute value, L =
K(X1, X3), | |1 an absolute value which is the restriction of a Gauss absolute value
| 1(0,1),(a0,5,) 0N K(X1)(X>) such that: X + «f = 1, with ¢ an odd prime different from
p, 8 & |K*| and its order in the group |L*|./|K*| is finite. Then ool gy = 1 and
by using the notations from the proof of Theorem 4 we find K| | = [, (the field with
p elements) and L;|, = F,(X}, o3, (%)*). Hence it is easy to see that L;|, is not a
transcendental extension of a finite extension of K.
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