ON CERTAIN APPLICATIONS OF THE KHUKHRO–MAKARENKO THEOREM

AHMET ARIKAN
Gazi Üniversitesi, Gazi Eğitim Fakültesi, Matematik Eğitimi Anabilim Dalı 06500 Teknikokullar, Ankara, Turkey
e-mail: arikan@gazi.edu.tr

HOWARD SMITH
Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA
e-mail: howsmith@bucknell.edu

and NADIR TRABELSI
Laboratory of Fundamental and Numerical Mathematics, Department of Mathematics,
University Ferhat Abbas of Setif, Algeria
e-mail: nadir_trabelsi@yahoo.fr

(Received 23 December 2011; revised 7 May 2012; accepted 9 May 2012; first published online 2 August 2012)

Abstract. Some recent results of Khukhro and Makarenko (see especially Lemma 2.1) establish that, for certain group-theoretic properties \(Y \), the existence of a \(Y \)-subgroup \(H \) of finite index in a group \(G \) ensures that there is a characteristic \(Y \)-subgroup \(C \) of finite index in \(G \). In the present paper we shall use these results to obtain generalisations of some well-known results on groups \(G \), in which all proper subgroups satisfy certain conditions, in several cases the condition in question being either ‘almost in the variety \(\mathcal{X}_\omega \)’ for some outer commutator word \(\omega \) (see for example Theorem 2.4) or ‘\(\mathcal{X}_\omega \)-by-Chernikov’ (see for example Theorem 2.5). We shall also obtain a generalisation of a result on barely transitive \(p \)-groups (see Theorem 2.3). Recall that a group

1. Introduction. Let \(F \) be a free group of countable rank with basis \(\{x_1, x_2, \ldots\} \). Then an outer commutator word of weight 1 is \(x_1 \), and an outer commutator word \(\omega \) of weight \(t > 1 \) is a word of the form

\[
\omega(x_1, \ldots, x_t) = [u(x_1, \ldots, x_r), v(x_{r+1}, \ldots, x_t)],
\]

where \(u, v \) are outer commutator words of weight \(r, t - r \) respectively. Let \(\omega \) be an outer commutator word of weight \(t \). We denote by \(\mathcal{X}_\omega \) the class of groups \(G \) satisfying \(\omega(g_1, \ldots, g_t) = 1 \) for all \(g_1, \ldots, g_t \in G \), i.e. \(\omega(G) = 1 \).

Some recent results of Khukhro and Makarenko (see especially Lemma 2.1) establish that, for certain group-theoretic properties \(\mathcal{Y} \), the existence of an \(\mathcal{Y} \)-subgroup \(H \) of finite index in a group \(G \) ensures that there is a characteristic \(\mathcal{Y} \)-subgroup \(C \) of finite index in \(G \). In the present paper we shall use these results to obtain generalisations of some well-known results on groups \(G \), in which all proper subgroups satisfy certain conditions, in several cases the condition in question being either ‘almost in the variety \(\mathcal{X}_\omega \)’ for some outer commutator word \(\omega \) (see for example Theorem 2.4) or ‘\(\mathcal{X}_\omega \)-by-Chernikov’ (see for example Theorem 2.5). We shall also obtain a generalisation of a result on barely transitive \(p \)-groups (see Theorem 2.3). Recall that a group
of permutations G of an infinite set Ω is called a barely transitive group if G acts transitively on Ω and every orbit of every proper subgroup is finite. Equivalently, G is barely transitive if G has a subgroup H such that $|G:H|$ is infinite, $\bigcap_{g \in G} H^g = 1$ and $|K:K \cap H|$ is finite for every proper subgroup K of G, where the subgroup H is called a point stabiliser. Finally, in Section 4 of the paper, we obtain some partial generalisations of the Khukhro–Makarenko results.

We shall use the following notation for the given classes of groups.

\begin{itemize}
 \item \mathfrak{A}: Abelian groups,
 \item \mathfrak{N}: Nilpotent groups,
 \item \mathfrak{S}: Soluble groups,
 \item \mathfrak{S}_d: Soluble groups of derived length at most d,
 \item \mathfrak{C}: Chernikov groups,
 \item \mathfrak{F}: Groups of finite (Prüfer) rank,
 \item \mathfrak{D}: Divisible (radicable) groups,
 \item \mathfrak{T}: Periodic groups,
 \item \mathfrak{L}: $(\mathfrak{F} \cap \mathfrak{D} \cap \mathfrak{A})$-groups.
\end{itemize}

We also denote the class of all \mathfrak{X}-by-\mathfrak{Y}-groups by $\mathfrak{X}\mathfrak{Y}$, and $\mathfrak{X}\mathfrak{X}$-groups by \mathfrak{X}^2.

2. $\mathfrak{X}_\omega\mathfrak{C}$-groups

We will use the following very useful result, referred to here as the Khukhro–Makarenko theorem.

Lemma 2.1 ([9, Theorem 1], [11, Theorem 1] or [13]). If a group G has a subgroup H of finite index n satisfying the identity $\chi(H) = 1$, where χ is an outer commutator word of weight w, then G has also a characteristic subgroup C of finite (n, w)-bounded index satisfying the same identity $\chi(C) = 1$.

Before we give an application of Lemma 2.1, we prove the following lemma.

Lemma 2.2. Let G be a group and let ω be an outer commutator word of weight $t \geq 2$; then $G^{(t-1)} \leq \omega(G)$. In particular,

1. if $\omega(G) = 1$, then G is in \mathfrak{S}_{t-1}, i.e. $\mathfrak{X}_\omega \leq \mathfrak{S}_{t-1}$,
2. if G is a perfect group, then $\omega(G) = G$.

Proof. We proceed by induction on t. If $t = 2$, then $G^{(t-1)} = G^{(1)} = G' = \omega(G)$. Now assume that $t \geq 3$; then there exist outer commutator words σ, τ of weight $1 \leq t_1, t_2 < t$, respectively, such that $t = t_1 + t_2$ and $\omega = [\sigma, \tau]$, and then $\omega(G) = [\sigma(G), \tau(G)]$. By induction hypothesis, we have $G^{(t_1-1)} \leq \sigma(G)$ and $G^{(t_2-1)} \leq \tau(G)$. Put $m = \max\{t_1, t_2\}$, then

$$G^{(m)} = [G^{(m-1)}, G^{(m-1)}] \leq [G^{(t_1-1)}, G^{(t_2-1)}] \leq [\sigma(G), \tau(G)] = \omega(G).$$

Clearly $t_1 + t_2 \geq m + 1$ and thus $t - 1 \geq m$. So $G^{(t-1)} \leq G^{(m)} \leq \omega(G)$ and the induction is complete.

1. If $\omega(G) = 1$, then $G^{(t-1)} = 1$. So G is in \mathfrak{S}_{t-1}.
2. Assume that G is a perfect group. Since $G^{(t-1)} \leq \omega(G)$, we have $G^{(t-1)} = G$, and hence $G = \omega(G)$, as desired.

As an application of the Khukhro–Makarenko theorem we present the following result.
ON CERTAIN APPLICATIONS OF THE KHUKHRO–MAKARENKO THEOREM 277

Theorem 2.3. Let G be a locally finite barely transitive p-group with a point stabiliser H and let ω be an outer commutator word of weight t. If $H \in \mathcal{X}_\omega$, then $G' \neq G$ and $G' \in \mathcal{X}_\omega$.

Proof. Let N be a proper normal subgroup of G; then $N \cap H \in \mathcal{X}_\omega$. Since $|N : N \cap H|$ is finite, by Lemma 2.1, N has a characteristic subgroup $K \in \mathcal{X}_\omega$ such that $N/K \in \mathcal{F}$. It is well known that G has no proper subgroup of finite index, so $N/K \leq Z(G/K)$. It follows that $N' \leq K$ and that $N' \in \mathcal{X}_\omega$. Since there exists a chain $\{N_i : i \in I\}$ of proper normal subgroups of G such that $G = \bigcup_{i \in I} N_i$, it follows that

$$G' = \bigcup_{i \in I} N'_i.$$

Consequently, we have $G' \in \mathcal{X}_\omega$ and $G \neq G'$ by Lemma 2.2(ii). \hfill \Box

Theorem 2.3 generalises [1] and [2, Theorem 2], and by using Lemma 2.2(i) we can obtain the same results as those in [1] and [2, Theorem 2]. The structure of imperfect locally finite barely transitive groups is described in [7].

Let $v(x_1, \ldots, x_s)$ and $u(x_1, \ldots, x_t)$ be two words. Then the composite of v and u, $v \circ u$ is defined as follows:

$$v \circ u = v(u(x_1, \ldots, x_t), \ldots, u(x_{(s-1)t+1}, \ldots, x_{st})).$$

If v is an outer commutator word and u is a word, then it is well known that $v \circ u(G) = v(u(G))$ for any group G (see for example [16, Lemma 2.5]).

We will use this definition to describe the structure of certain groups.

Let \mathcal{A} be a class of groups. Recall that a group G is called a minimal non-\mathcal{A}-group if every proper subgroup of G is a \mathcal{A}-group, but G itself is not. The minimal non-\mathcal{A}-groups are denoted by $MN\mathcal{A}$.

Now define the word θ as $\theta(x, y) = [x, y]$, which will be used in the sequel.

Theorem 2.4. Let G be an $MN\mathcal{X}_\omega\mathcal{F}$-group, where ω is an outer commutator word of weight $t > 1$. If G has no infinite simple images, then the following properties hold.

(i) G has no proper subgroup of finite index and no simple images.

(ii) $N' \in \mathcal{X}_\omega$ for every proper normal subgroup N of G.

(iii) G is not perfect, $G \in \mathcal{X}_\omega(\mathcal{L} \cap \mathcal{E})$ and $G' \in \mathcal{X}_\omega$. In particular, $G \in \mathcal{S}_t$.

(iv) $(\omega \circ \theta)(G) = 1$, i.e. $G \in \mathcal{X}_{\omega\theta\omega}$.

Proof. We first assume that G has a proper subgroup K of finite index. Since $K \in \mathcal{X}_\omega\mathcal{F}$, K has a normal subgroup $L \in \mathcal{X}_\omega$ such that $K/L \in \mathcal{F}$. Hence, $\text{core}_G L \in \mathcal{X}_\omega$ and has finite index in G, i.e. $G \in \mathcal{X}_\omega\mathcal{F}$. But this is a contradiction. So G has no proper subgroup of finite index and it has no simple images. Thus (i) holds.

Now let N be a proper normal subgroup of G. Since $N \in \mathcal{X}_\omega\mathcal{F}$, N has a characteristic subgroup $S \in \mathcal{X}_\omega$ of finite index in N by Lemma 2.1. Put $\overline{G} := G/S$, then $\overline{G} = C_{\overline{G}}(N)$, since G/S has no proper subgroup of finite index and so we have $[G, N] \leq S$. Since \mathcal{X}_ω is subgroup-closed, $N' \in \mathcal{X}_\omega$, and thus (ii) holds.

Now assume that G is perfect. Since G has no simple images, it is a union of a chain of proper normal subgroups. If N is a proper normal subgroup of G, then $N' \in \mathcal{X}_\omega$ by (ii) and so $G = G'$ is a union of \mathcal{X}_ω-groups. So $G \in \mathcal{X}_\omega$, a contradiction.

Thus, G is not perfect and G/G' has a proper subgroup R/G' such that $G/R \in \mathcal{L} \cap \mathcal{E}$. Now by Lemma 2.1, R has a characteristic subgroup $W \in \mathcal{X}_\omega$ such that $G/W \in \mathcal{E}$. Since G/W has no proper subgroup of finite index, we have $G/W \in \mathcal{L} \cap \mathcal{E}$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 04 Oct 2019 at 00:19:38, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089512000493
Consequently, \(G \in \mathcal{X}_\omega(\mathcal{L} \cap \mathcal{C}) \). In particular, \(G' \leq W \) and hence \(G' \in \mathcal{X}_\omega \). In particular, \(G \in \mathcal{S}_r \) by Lemma 2.2(i). So (iii) holds.

Finally, since \(G' \in \mathcal{X}_\omega \), we have \((\omega \circ \theta)(G) = \omega(G') = 1\), and (iv) holds. \(\square \)

The following is the \(\mathcal{X}_\omega \mathcal{C} \) version of Theorem 2.4.

Theorem 2.5. Let \(G \) be an \(MN \mathcal{X}_\omega \mathcal{C} \)-group. If \(G \) has no infinite simple images, then the following are satisfied.

(i) \(G \) has no proper subgroup of finite index and no simple images.

(ii) \(N' \in \mathcal{X}_{\omega t} \) for every proper normal subgroup \(N \) of \(G \), i.e. \(N \in \mathcal{X}_{\omega t} \).

(iii) \(G \) is not perfect and \(G \in \mathcal{X}_{\omega t}(\mathcal{L} \cap \mathcal{C}) \). In particular, \(G' \in \mathcal{X}_{\omega t} \) and \(G \in \mathcal{S}_{r+1} \).

Proof. By a similar argument to that used in the proof of Theorem 2.4, \(G \) has no proper subgroup of finite index. So (i) holds.

Now let \(N \) be a proper normal subgroup of \(G \), then it has a normal subgroup \(S \in \mathcal{X}_\omega \) such that \(N/S \in \mathcal{C} \). So \(N/S \) has a normal subgroup \(R/S \in \mathcal{L} \cap \mathcal{C} \) such that \(N/R \in \mathcal{C} \). Since \(R/S \) is in \(\mathcal{A} \), \(R \in \mathcal{X}_{\omega t} \). By Lemma 2.1 \(N \) has a characteristic subgroup \(M \in \mathcal{X}_{\omega t} \) such that \(N/M \in \mathcal{C} \) and hence \(N' \leq M \), i.e. \(N' \in \mathcal{X}_{\omega t} \). So (ii) holds.

Suppose next that \(G \) has a non-trivial \(\mathcal{C} \)-image \(G/N \). Then \(N \) has a normal subgroup \(S \in \mathcal{X}_\omega \) such that \(N/S \in \mathcal{C} \) and \(N/S \) has a normal subgroup \(M/S \in \mathcal{L} \cap \mathcal{C} \) such that \(N/M \in \mathcal{C} \). So \(N \in \mathcal{X}_{\omega t} \). By Lemma 2.1 \(N \) has a characteristic subgroup \(T \in \mathcal{X}_{\omega t} \) with \(N/T \in \mathcal{C} \). This implies that \(G/T \in \mathcal{C} \) and hence \(G/T \in \mathcal{L} \cap \mathcal{C} \) by (i) and \(G \in \mathcal{X}_{\omega t}(\mathcal{L} \cap \mathcal{C}) \) in this case.

Now if \(G \) is perfect, then as in the proof of Theorem 2.4, \(G \) is a union of proper normal subgroups and so we have \(G \in \mathcal{X}_{\omega t} \), and hence \(\omega(G) = 1 \), a contradiction. So \(G \) is not perfect and \(G/G' \) has a proper normal subgroup \(R/G' \) such that \(G/R \in \mathcal{L} \cap \mathcal{C} \). By the previous argument \(G \in \mathcal{X}_{\omega t}(\mathcal{L} \cap \mathcal{C}) \) and so \(G' \in \mathcal{X}_{\omega t} \) and \(G \in \mathcal{S}_{r+1} \) by Lemma 2.2(i). Thus, (iii) holds. \(\square \)

3. Applications to \(MN \mathcal{S}_n \mathcal{C} \) and \(MN \mathcal{S}_n \mathcal{F} \)-groups.

Since a group is in \(\mathcal{S} \mathcal{C} \) if and only if it is in \(\mathcal{S} \mathcal{F} \), we see that a group is in \(MN \mathcal{S} \mathcal{C} \) if and only if it is in \(MN \mathcal{S} \mathcal{F} \).

We know that the celebrated example of Heineken and Mohamed (see [15, Theorem 6.2.1]) is an \(MN \mathcal{S} \mathcal{F} \)-group which is in \(\mathcal{A} \mathcal{C} \). So an \(MN \mathcal{S}_n \mathcal{F} \)-group (for a positive integer \(n \)) is not in general an \(MN \mathcal{S}_n \mathcal{C} \)-group.

The locally graded groups with all proper subgroups in \(\mathcal{S} \mathcal{F} \) are classified by [6, Theorem C], as follows.

Theorem 3.1. Let \(G \) be a locally graded group with all proper subgroups in \(\mathcal{S} \mathcal{F} \). Then either

(i) \(G \) is locally soluble, or

(ii) \(G \in \mathcal{S} \mathcal{F} \), or

(iii) \(G \) is \(\mathcal{S} \)-by-\(PSL(2, \mathcal{F}) \), or

(iv) \(G \) is \(\mathcal{S} \)-by-\(S(\mathcal{F}) \).

where \(F \) is an infinite locally finite field with no infinite proper subfields.

By the remark above, we see that Theorem 3.1 also gives a classification of the locally graded groups with all proper subgroups in \(\mathcal{C} \).

If \(G \) is a countable locally graded simple group with all subgroups in \(\mathcal{S} \mathcal{F} \) (or in \(\mathcal{S} \mathcal{C} \)), then a super-inert subgroup \(R \) (see [6] for the definition) of \(G \) either has non-trivial Hirsch–Plokin radical or is in \(\mathcal{F} \), hence \(G \) is locally finite [6, Theorem 2]. So by [12]
ON CERTAIN APPLICATIONS OF THE KHUKHRO–MAKARENKO THEOREM

279

G is isomorphic either to $\text{PSL}(2, \mathbb{F})$ or to $S\mathbb{F}$ for some infinite locally finite field \mathbb{F} containing no infinite proper subfield.

THEOREM 3.2. There are infinite locally finite simple $MN\mathfrak{S}_2\mathfrak{F}$ and $MN\mathfrak{S}_3\mathfrak{F}$-groups.

Proof. Let $G := \text{PSL}(2, \mathbb{F})$ or $G := S\mathbb{F}$ for some infinite locally finite field \mathbb{F} containing no infinite proper subfield. In the first case every proper subgroup is either in \mathfrak{A}^2 or in \mathfrak{F} and so in $\mathfrak{S}_2\mathfrak{F}$ by [4, Example 3]. Clearly $G \notin \mathfrak{S}_2\mathfrak{S}$. So $G \in MN\mathfrak{S}_2\mathfrak{F}$.

In the second case every proper subgroup of G is in \mathfrak{S} or is \mathfrak{A}-by-locally cyclic (i.e. in $\mathfrak{S}_3\mathfrak{S}$) by the proof of [5, Lemma 2]. Consequently, G is in $MN\mathfrak{S}_3\mathfrak{F}$. □

Let G be a group, H a subgroup of G; then the isolator $IG(H)$ of H in G is defined as

$$IG(H) = \{x \in G \mid \text{there is a non-zero integer } n \text{ such that } x^n \in H\}.$$

We prove the following general lemma.

LEMMA 3.3. Let ω be an outer commutator word of weight t, and let H be a subgroup of the locally nilpotent torsion-free group G. Then

$$\omega(IG(H)) \leq IG(\omega(H)).$$

Proof. First let U and V be subgroups of G. Then with the notation of [14, Section 2.3] we have $IG(U) \sim U$ and $IG(V) \sim V$. It follows that $[IG(U), IG(V)] \sim [U, V]$ by [14, 2.3.5]. So we see that

$$[IG(U), IG(V)] \leq IG([U, V]).$$

Now we proceed by induction on t. If $t = 1$, then the result is immediate. If $t > 1$, then $\omega = [\varphi, \delta]$ for some outer commutator words φ and δ of weights $1 \leq t_1 < t$, $1 \leq t_2 < t$ such that $t_1 + t_2 = t$. By induction hypothesis and the above remark, we have

$$\omega(IG(H)) = [\varphi(IG(H)), \delta(IG(H))] \leq [IG(\varphi(H)), IG(\delta(H))] \leq IG([\varphi(H), \delta(H)]) = IG(\omega(H)),$$

and the proof is complete. □

THEOREM 3.4. Let G be a locally nilpotent torsion-free group.

(i) If all proper subgroups of G are in $\mathfrak{X}_\omega \mathfrak{S}$, then $G \in \mathfrak{X}_\omega$.

(ii) If all proper subgroups of G are in $\mathfrak{X}_\omega \mathfrak{A}$, then $G \in \mathfrak{X}_\omega (\mathfrak{A} \cap \mathfrak{M})$. In particular, G is in \mathfrak{S}.

Proof. (i) Let K be a proper subgroup of G. Then K has a normal subgroup $N \in \mathfrak{X}_\omega$ such that $K/N \in \mathfrak{S}$, and so $IK(N) = K$. By Lemma 3.3

$$\omega(K) = \omega(IK(N)) \leq IK(\omega(N)) = IK(1) = 1.$$

This means that every proper subgroup K of G is in \mathfrak{X}_ω.

If G is not finitely generated, then every finitely generated subgroup of G is in \mathfrak{X}_ω, and thus $G \in \mathfrak{X}_\omega$. Otherwise, G is finitely generated, and by [18, 5.2.21] it has a normal
subgroup \(H \in \mathcal{X}_\omega \) of finite index, since it is nilpotent. Hence, \(I_G(H) = G \) and as above \(\omega(G) = 1 \). So \(G \in \mathcal{X}_\omega \).

(ii) Assume for a contradiction that \(G \) is not in \(\mathcal{X}_\omega \alpha \), and first suppose that \(G \) has a proper normal subgroup of \(N \) such that \(N/M \in \alpha \). Then \(N \) has a normal subgroup \(M \) such that \(M \in \mathcal{X}_\omega \) and \(N/M \in \alpha \). By [10, Theorem 3], we may assume that \(M \) is characteristic in \(N \) so that \(M \) is normal in \(G \). Clearly \(G/M \) is in \(\alpha \), so \(G \in \mathcal{X}_\omega \alpha \), a contradiction. Therefore, \(G \) has no proper images which are in \(\alpha \) and hence it is perfect.

Let \(H \) be any proper normal subgroup of \(G \) and let \(K \) be a characteristic subgroup of \(H \) such that \(K \in \mathcal{X}_\omega \) and \(H/K \in \alpha \). If \(T/K \) denotes the torsion subgroup of \(H/K \), then \(T \in \mathcal{X}_\omega \mathcal{X} \) and hence \(T \in \mathcal{X}_\omega \) by (i). Since torsion-free locally nilpotent \(\alpha \)-groups are in \(\mathcal{X} \) [17, Theorem 6.36], we have \(H/T \in \alpha \). So \(H/T \) has a finite characteristic series whose factors are torsion-free \(\mathfrak{A} \cap \alpha \)-groups. If \(U \) is such a factor, then \(G/C_G(U) \) is nilpotent by [17, Part 2, Lemma 6.37] and hence \(G = C_G(U) \) since \(G \) is perfect. We deduce that \(H/T \) is contained in the hypercentre of \(G/T \), which equals the centre, as \(G \) is perfect. Thus, \(H/T \leq Z(G/T) \) and so \(H' \leq T \). We deduce that \(H' \in \mathcal{X}_\omega \). As before, since there exists a chain \(\{ N_i : i \in I \} \) of proper normal subgroups of \(G \) such that \(G = \bigcup_{i \in I} N_i \), it follows that \(G = G' = \bigcup_{i \in I} N_i' \). Consequently, we have \(G \in \mathcal{X}_\omega \), a contradiction. Therefore, \(G \in \mathcal{X}_\omega \alpha \).

Let \(N \) be a normal subgroup of \(G \) such that \(N \in \mathcal{X}_\omega \) and \(G/N \in \alpha \). If \(T/N \) denotes the torsion subgroup of \(G/N \), then again by (i) \(T \in \mathcal{X}_\omega \), and since \(G/T \) is a locally nilpotent torsion-free \(\alpha \)-group, it is in \(\alpha \). Therefore, \(G \in \mathcal{X}_\omega (\alpha \cap \alpha) \). By Lemma 2.2(i), we deduce that \(G \) is in \(\mathfrak{S} \), as claimed. \(\square \)

Let us define the outer commutator word \(\phi_j \) for every \(j \geq 0 \) as follows:
\[
\phi_0(x) = x \quad \text{and for } i \geq 1
\]
\[
\phi_i(x_1, \ldots, x_2^i) = [\phi_{i-1}(x_1, \ldots, x_2^{i-1}), \phi_{i-1}(x_2^{i-1}+1, \ldots, x_2^i)].
\]
Then \(G \) is in \(\mathfrak{S} \) if and only if there is a positive integer \(n \) such that \(\phi_n(G) = 1 \).

Theorem 3.5. Let \(G \) be a group without infinite simple images. Then the following are satisfied.

(i) If every proper subgroup of \(G \) is in \(\mathfrak{S}_n \mathfrak{S} \) for some fixed positive integer \(n \), then either \(G \in \mathfrak{S}_n \mathfrak{S}\) or \(G \in \mathfrak{S}_n (\mathfrak{L} \cap \mathfrak{C}) \). So if \(G \) is an \(M \mathfrak{S}_n \mathfrak{S}\)-group, then \(G \in \mathfrak{S}_n \mathfrak{C} \cap \mathfrak{S}_n+1 \).

(ii) If every proper subgroup of \(G \) is in \(\mathfrak{S}_n \mathfrak{C} \) for some fixed positive integer \(n \), then \(G \in \mathfrak{S}_n \mathfrak{L} \) or \(G \in \mathfrak{S}_{n+1} (\mathfrak{L} \cap \mathfrak{C}) \). So if \(G \) is an \(M \mathfrak{S}_n \mathfrak{C}\)-group, then \(G \in \mathfrak{S}_{n+1} \mathfrak{C} \cap \mathfrak{S}_{n+2} \).

Proof. (i) Take \(\omega = \phi_n \). If \(G \notin \mathfrak{S}_n \mathfrak{S} \), then \(G \) is an \(M \mathfrak{S}_n \mathfrak{S}\)-group. By Theorem 2.4 (iii) \(G \in \mathfrak{X}_{\phi_n} (\mathfrak{L} \cap \mathfrak{C}) \).

(ii) Again take \(\omega = \phi_n \) so that \(\omega \circ \theta = \phi_{n+1} \). If \(G \notin \mathfrak{S}_n \mathfrak{C} \), then by Theorem 2.5 (iii) \(G \in \mathfrak{X}_{\phi_{n+1}} (\mathfrak{L} \cap \mathfrak{C}) \), and the proof is complete. \(\square \)

The following lemma will be generalised in Section 4 (see Lemma 4.1), but since the ‘soluble’ version of the lemma is useful here, we shall prove it.

Lemma 3.6 (c.f. [3, Proposition 1]). Let \(G \) be in \(\mathfrak{L} \cap \mathfrak{M} \), \(A \in \mathfrak{G}_n (n \geq 1) \) a normal subgroup of \(G \) such that \(G/A \in \mathfrak{L} \). Then also \(G \in \mathfrak{G}_n \).

Proof. We proceed by induction on \(n \). If \(n = 1 \), then \(A \) is in \(\mathfrak{A} \) and hence \(A \leq C_G(A) \). So \(T := G/C_G(A) \in \mathfrak{L} \) is isomorphic to a subgroup of \(\text{Aut } A \). By [3, Lemma 1], \(A \leq Z(G) \), and by [15, Section 5.3.5] \(G \) is in \(\mathfrak{A} \). Now let \(n > 1 \) and consider \(G/A^{(n-1)} \).
Then
\[
\frac{G/A(n-1)}{A/A(n-1)} \in \mathcal{L} \text{ and } A/A(n-1) \in \mathcal{S}_{n-1}.
\]

By induction hypothesis \(G/A(n-1)\in \mathcal{S}_{n-1}\) and thus \(G(n-1) = A'(n-1)\). This implies that \(G^{(n)} = 1\) and \(G \in \mathcal{S}_n\), as desired. \(\square\)

Theorem 3.7. Let \(G\) be a locally graded \(\mathfrak{T}\)-group and suppose that every proper subgroup of \(G\) is in \(\mathcal{S}_n\mathcal{C}\) for some fixed positive integer \(n\). If \(G\) contains a normal \(\mathfrak{N}\)-subgroup \(N\) such that \(G/N \in \mathfrak{C}\), then \(G \in \mathcal{S}_n\mathcal{C}\).

Proof. Assume for a contradiction that \(G\) is an \(MN\mathcal{S}_n\mathcal{C}\)-group. Since \(G\) has no proper subgroup of finite index, we have \(G/N \in \mathcal{L}\) or \(G = N\). Hence, \(G' \neq G\) and thus \(1 \neq G/G' \in \mathcal{L}\). If \(N = G\), then we have the contradiction that \(G\) is in \(\mathfrak{A}\) by \([18, \text{Section 5.2.5}]\), since \(G\) is in \(\mathfrak{T} \cap \mathfrak{N}\). So \(N \neq G\) and hence \(N\) has a normal subgroup \(S \in \mathcal{S}_n\) such that \(N/S \in \mathcal{C}\). So \(N/S\) contains a maximal \(\mathcal{L}\)-subgroup \(R/S\) such that \(N/R \in \mathfrak{S}\). By Lemma 3.6, \(R \in \mathcal{S}_n\). Therefore, we can assume by Lemma 2.1 that \(R\) is characteristic in \(N\) and hence \(R\) is normal in \(G\). So \(G/R \in \mathfrak{C}\). Consequently, \(G \in \mathcal{S}_n\mathcal{C}\), a contradiction, and the proof is complete. \(\square\)

4. \(\mathfrak{N}\mathcal{C}\)-groups with certain characteristic subgroups.

Lemma 4.1. Let \(G\) be in \(\mathfrak{T} \cap \mathfrak{N}\), \(N\) a normal subgroup of \(G\), \(\omega\) an outer commutator word of weight \(t \geq 2\) such that \(\omega(N) = 1\). If \(G/N\) is in \(\mathfrak{A} \cap \mathfrak{D}\), then \(\omega(G) = 1\).

Proof. We proceed by induction on \(t\). If \(t = 2\), then \(\omega(x, y) = [x, y]\) and

\[
\omega(N) = [N, N] = 1,
\]
i.e. \(N\) is in \(\mathfrak{A}\). So \(G/C_G(N)\) is in \(\mathfrak{A} \cap \mathfrak{D}\) and isomorphic to a subgroup of \(\text{Aut } N\). By \([3, \text{Lemma 1}]\) \(G = C_G(N)\) and thus \(N \leq Z(G)\). Applying \([18, 5.3.5]\) we have that \(G\) is in \(\mathfrak{A}\). Let \(t > 2\); then \(\omega = [\psi, \phi]\) for some outer commutator words \(\psi, \phi\) of weight \(1 \leq t_1, t_2 < t\) such that \(t = t_1 + t_2\). Now \(G/N\) is in \(\mathcal{L}\) and \(\psi(N/\psi(N)) = 1\). If \(t_1 > 1\), then by induction hypothesis \(\psi(G/\psi(N)) = 1\), i.e. \(\psi(G) \leq \psi(N)\). Clearly \(\psi(N) \leq \psi(G)\) and it follows that \(\psi(G) = \psi(N)\). If also \(t_2 > 1\), then similarly \(\phi(G) = \phi(N)\), and we have

\[
\omega(G) = [\psi(G), \phi(G)] = [\psi(N), \phi(N)] = 1,
\]
as required. So we may assume that \(t_2 = 1\) and hence \(t_1 > 1\), since \(t > 2\). (If \(t_1 = 1\), then a similar argument works.) Then \(\omega(N) = [\psi(N), N] = 1\) and hence \(N \leq C_G(\psi(N))\).

We also have that \(\psi(N)\) is in \(\mathfrak{A}\). Then \(G/C_G(\psi(N))\) is in \(\mathfrak{A} \cap \mathfrak{D}\) and isomorphic to a subgroup of \(\text{Aut } \psi(N)\). So by \([3, \text{Lemma 1}]\) \(\psi(N) \leq Z(G)\); in other words \([\psi(N), G] = 1\). It follows that

\[
\omega(G) = [\psi(G), G] = [\psi(N), G] = 1,
\]
and the proof is complete. \(\square\)

Theorem 4.2. Let \(G\) be a \(\mathfrak{T}\)-group and let \(N \in \mathfrak{N}_c \cap \mathfrak{X}_\omega\) be a normal subgroup of \(G\) such that \(G/N \in \mathfrak{C}\) for some outer commutator word \(\omega\). Then \(G\) contains a characteristic...
(even invariant under all surjective endomorphisms) subgroup $S \in \mathfrak{N}_c \cap \mathfrak{X}_\omega$ such that $G/S \in \mathfrak{C}$.

Proof. Let $W := (N^\alpha \mid \alpha \in \text{Aut } G)$, then W is characteristic in G and $W/N \in \mathfrak{C}$. By [8, Lemma 4.7] W is in \mathfrak{H}. We also have that W/N has a normal $\mathfrak{A} \cap \mathfrak{D}$-subgroup $R/N \in \mathfrak{H}$ such that W/R is in \mathfrak{G}. Now by Lemma 4.1 we have $R \in \mathfrak{N}_c \cap \mathfrak{X}_\omega$. By Lemma 2.1 W has characteristic (even invariant under all surjective endomorphisms) subgroups $S_1 \in \mathfrak{N}_c$ and $S_2 \in \mathfrak{X}_\omega$ such that W/S_i is in \mathfrak{G} for $i = 1, 2$. Put $S = S_1 \cap S_2$, then $|W : S| < \infty$ and S is contained in $\mathfrak{N}_c \cap \mathfrak{X}_\omega$. Since W is characteristic in G, we see that S is characteristic in G, and since $G/W \in \mathfrak{C}$ and W/S is finite, we have $G/S \in \mathfrak{C}$. The proof is complete.

If we take $\omega = \gamma_{c+1}$, then

$$\mathfrak{N}_c \cap \mathfrak{X}_\omega = \mathfrak{N}_c \cap \mathfrak{N}_c = \mathfrak{N}_c.$$

Hence, we obtain the following result.

Corollary 4.3. Let G be a \mathfrak{Z}-group and let $N \in \mathfrak{N}_c$ be a normal subgroup of G such that $G/N \in \mathfrak{C}$. Then G contains a characteristic (even invariant under all surjective endomorphisms) subgroup $S \in \mathfrak{N}_c$ such that $G/S \in \mathfrak{C}$.

Corollary 4.3 sharpens [8, Lemma 4.7] and generalises [3, Lemma 3] and [9, Corollary 1(i)] in the periodic case.

In [8, p. 321] Hartley gives an example that shows that the ‘periodicity’ condition cannot be removed from the hypothesis of Corollary 4.3 and defined Chernikov-subnormality (\mathfrak{C}-subnormality, in short) as follows:

A subgroup N of a group G is called \mathfrak{C}-subnormal in G if there is a finite series

$$N = N_0 \trianglerighteq N_1 \trianglerighteq \cdots \trianglerighteq N_r = G$$

such that $N_{i+1}/N_i \in \mathfrak{C}$ for $0 \leq i \leq r - 1$.

Corollary 4.4. Let G be a \mathfrak{Z}-group containing a \mathfrak{C}-subnormal subgroup $N \in \mathfrak{N}_c$. Then G contains a characteristic (even invariant under all surjective endomorphisms) subgroup $S \in \mathfrak{N}_c$ such that $G/S \in \mathfrak{C}$.

Proof. The result follows by Corollary 4.3 and a simple induction.

We can give an immediate application of Corollary 4.3 by considering the following result due to Hartley.

Theorem 4.5 [8, Theorem B]. If G is a locally finite group admitting an involutory automorphism ϕ such that $C_G(\phi)$ is in \mathfrak{C}, then both $[G, \phi]$ and $G/[G, \phi]$ are in \mathfrak{C}.

As Shumyatsky mentions in [19, p. 160], if we take $N = C_G(\phi)([G, \phi])$, then $N \in \mathfrak{N}_2$, $G/N \in \mathfrak{C}$ and N is ϕ-invariant. So by Corollary 4.3, G has a characteristic subgroup $S \in \mathfrak{N}_2$ such that $G/S \in \mathfrak{C}$.

We record here the following theorem, which is an immediate consequence of Lemma 2.1.

Theorem 4.6. Let G be a group and let $N \in \mathfrak{X}_\omega$ be a normal subgroup of G for some outer commutator word ω such that $G/N \in \mathfrak{C}$. Then G contains a characteristic (even invariant under all surjective endomorphisms) subgroup $S \in \mathfrak{X}_{\omega \circ \theta}$ such that G/S is finite.
ON CERTAIN APPLICATIONS OF THE KHUKHRO–MAKARENKO THEOREM 283

Proof. Since $G/N \in \mathcal{C}$, there exists a normal $\mathfrak{A} \cap \mathfrak{D}$-subgroup R/N of G/N such that G/R is in \mathfrak{F}. Since $N \in \mathcal{X}_\omega$ and R/N is in \mathfrak{A}, we have $R \in \mathcal{X}_\omega \mathfrak{A}$. By Lemma 2.1 G has a characteristic subgroup (even invariant under all surjective endomorphisms) $S \in \mathcal{X}_\omega \mathfrak{A}$ such that G/S is in \mathfrak{F}, and the result is established. □

Of course, if we replace the condition $G/N \in \mathcal{C}$ with $G/N \in \mathfrak{A} \mathfrak{F}$ in Theorem 4.6, then the result remains true.

REFERENCES

2. V. V. Belyaev and M. Kuzucuoglu, Locally finite barely transitive groups, Algebra Logic 42 (2003), 147–152 (translated from Algebra i Logika 42 (2003), 261–270).