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1. Introduction and statement of main results.

1.1. Notation. Let � be an irreducible, reduced root system of rank n. We write Y , X ,
X∨ and Y∨ for the root, weight, co-root, and co-weight lattice, respectively. Note that
Y ⊆ X and X∨ ⊆ Y∨. We also write � for the corresponding set of roots of the root
system.

Denote by W the Weyl group of �. Let F be the Weyl fan in Y∨ ⊗� � and Fn ⊂ F
be the set of chambers (i.e. cones of maximal dimension) in F . The elements of Fn are
the Weyl chambers cut out by the root hyperplanes of �.

We study the complex toric variety V , whose fan is F , co-character lattice is
N := Y∨ and character lattice is M := Y . The toric variety V has been studied by
many authors, e.g. [3, 4, 5, 14, 17, 20, 24]. It is a smooth, projective toric variety for
the torus T1 = Spec(�[Y ]) � (�×)n. It is a well-known fact (although we do not use
it) that those toric varieties are closures of generic torus orbits in the flag variety G/B
where G is the reductive group associated to � and B ⊆ G is a Borel subgroup.

Since T1 acts on V , the torus T = Spec(�[X ]) also acts on V via the canonical
projection T � T1. LetL be a T-equivariant ample line bundle on V . Such line bundles
(or, more precisely, the isomorphism classes thereof) are in one-to-one correspondence
(see, e.g. [13]) with convex polytopes P ⊂ X⊗�� = M ⊗� � satisfying the following
property: The vertices of P are given by a set {μσ : σ ∈ Fn} ⊂ X , and for any two
vertices μσ and μσ ′ of P, where σ and σ ′ are adjacent chambers, μσ − μσ ′ = rσ,σ ′ ασ,σ ′ ,
for some number rσ,σ ′ ∈ �>0, where ασ,σ ′ ∈ � is the unique root that is positive on σ

and negative on σ ′. Such polytopes are called ‘ample’.(In, e.g. [1], the sets {μσ } are
called ‘strictly positive orthogonal sets’ in this case.) Here we use the negative notation
of [13]: what we call P corresponds to −P there.
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We denote by �(P) the set of points x ∈ P ∩ X whose image in X/Y coincides
with the images in X/Y of the vertices of P, i.e. �(P) = P ∩ {y + μσ | y ∈ Y} for any
choice of Weyl chamber σ . Note that the character x ∈ X occurs in H0(X,L) if and
only if x ∈ �(P), where P is the polytope corresponding to L (and then it occurs with
multiplicity one); see, e.g. [21, Section 23.1, p. 496].

To every chamber σ ∈ Fn there corresponds a basis {αi,σ : i ∈ I} ⊆ � of Y
consisting of elements of �, where I := {1, . . . , n} (in other words, a choice of simple
roots). More precisely, once and for all we fix a set of simple roots which is dominant
for a fixed chamber, say σ0, and then obtain all of these bases by the action of the Weyl
group so that αi,w·σ0 = w · αi,σ0 for all w ∈ W . Here we say that an element x ∈ X ⊗� �

is σ -dominant (or dominant for σ ) if, for all y ∈ σ , 〈x, y〉 ≥ 0. The pairing 〈−,−〉 here
is the �-bilinear extension of the usual pairing X × X∨ → �, and the element α∨

i,σ is
the co-root of � corresponding to the root αi,σ . We can conclude from the definition
of αi,σ that x is σ -dominant if and only if 〈x, α∨

i,σ 〉 ≥ 0 for all i.
We impose a restriction on the type of polytopes P that we consider, which is

essential to our method of proof:
(†) For every σ ∈ Fn, the element μσ is σ -dominant.

Following Kottwitz ([21, Section 12.9, p. 44]), we call ample polytopes satisfying
the property (†) special.1 In what follows, we will primarily be interested in special ample
polytopes. Note that the Weil divisors of such ample polytopes, in particular, must have
strictly positive coefficients of all prime T-invariant divisors (but this condition does
not imply speciality).

The condition to be special says that all of the vertices of the polytope lie in their
corresponding Weyl chambers; geometrically this roughly says that the polytope is ‘not
too thin in any root direction’. Precisely, we give below examples of special and non-
special polytopes in the case of the root system A2. Denote the simple roots by α and
β and the simple co-roots by α∨ and β∨. Thus, the set of positive roots is {α, β, α + β},
and the set of positive co-roots is {α∨, β∨, α∨ + β∨}.

EXAMPLE 1.1. Two special polytopes for the root system A2 are as follows. These
differ only by shifting (i.e., they define the same non-equivariant bundle). Note that
most shifts of this polytope are not special: we require that each vertex corresponding
to a given chamber remain in that chamber, or on its boundary (the second example
has vertices on the boundary of their chambers). Note that, by ampleness, we are
already restricted to hexagons whose sides are perpendicular to the axes drawn.

1More generally, Kottwitz [21] defines special orthogonal sets, where an orthogonal set is a collection
{μσ } where μσ − μ′

σ = rσ,σ ′ ασ,σ ′ for rσ,σ ′ ∈ �, not necessarily positive. A special orthogonal set is then
one satisfying property (†). They necessarily satisfy rσ,σ ′ ≥ 0 for all adjacent σ, σ ′ (i.e. they are ‘positive
orthogonal sets’), but the rσ,σ ′ need not be positive (i.e. {μσ } need not be strictly positive, as in the ample
case). The associated divisors are in particular a non-negative linear combination of prime T-invariant
divisors.
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EXAMPLE 1.2. Another special polytope, which is not symmetric under the Weyl
group (after a shift), is given by

EXAMPLE 1.3. Any of the above special ample polytopes can be easily made non-
special by shifting in a direction so that the vertices are no longer in the appropriate
chambers. For example, one such non-special polytope is:

EXAMPLE 1.4. An example of a non-special ample polytope for the root system A2

which cannot be shifted to obtain a special ample polytope is as follows:

1.2. Statement of main results. Our first main result is the following, which will be
proved in Section 2.

THEOREM 1.5. Let P be a special ample polytope as above and let m ∈ �>0. Consider
the dilated polytope mP := {mx : x ∈ P}. Then any point z ∈ �(mP) can be written as a
sum z = z1 + · · · + zm, with zi ∈ �(P), ∀i = 1, . . . , m.

The toric interpretation of the theorem is as follows. Call an equivariant line bundle
L on V special ample if it corresponds to a special ample polytope P.
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COROLLARY 1.6. Let L be a special ample line bundle on V. Then the canonical map

H0(V,L) ⊗ H0(V,L) ⊗ · · · ⊗ H0(V,L) −→ H0(V,Lm)

is a surjection for all m ≥ 1, i.e. L is projectively normal.

REMARK 1.7. The above corollary is a special case of Oda’s Conjecture which
claims that the statement of the corollary is true for any ample line bundle on a non-
singular, projective toric variety. In the case of root systems of type A, the conjecture,
and therefore the corollary, is known to be true (see [19]).

Next, consider the semi-group SP ⊂ X × � generated by (x, 1) for x ∈ �(P). Then
the main theorem is equivalent to the statement that SP is normal, i.e. it is saturated
in X × �. In other words, it equals its saturation, SP := ⋃

m≥1(�(mP)) × {m}, i.e. the
intersection of the cone �>0 · (P × {1}) with the lattice {(y + tμσ , t) | y ∈ Y, t ∈ �} for
any fixed σ ∈ Fn.

If we instead begin with the semi-group SP, then Theorem 1.5 is equivalent to the
statement that this semi-group is generated in degree one with respect to the grading
deg(x, m) = m, for x ∈ X and m ∈ �.

Our second main result is as follows.

THEOREM 1.8. Let P be special ample. Then the semi-group SP = SP is presented by
quadratic relations. In other words, SP = 〈�(P) × {1}〉/(R), where R is spanned by the
elements

(x, 1)(y, 1) − (x′, 1)(y′, 1),

for x, y, x′, y′ ∈ �(P) such that x + y = x′ + y′.

REMARK 1.9. Put differently, the semi-group ring �[SP] = �[SP] is quadratic. We
will actually prove a stronger version of the above theorem, which roughly says that,
when P is special, (R) is spanned by moves which replace (x1, . . . , xm) ∈ �(P)m by
(x1, . . . , xi + α, xi+1 − α, . . . , xm) for α ∈ �. See Section 1.3 for a precise statement.

Since �[SP] ∼= ⊕
m≥0 H0(V,Lm), the toric interpretation of Theorems 1.5 and 1.8

is as follows.

COROLLARY 1.10. Let L be a special ample line bundle on V. Then the ring⊕
m≥0 H0(V,Lm) is quadratic.

REMARK 1.11. The above corollary is a special case of Sturmfels’s conjecture [29,
Conjecture 13.19], which states that, for any projective non-singular toric variety X
and ample projectively normal line bundle L, the associated ring

⊕
m≥0 H0(X,Lm)

is quadratic. (If Oda’s conjecture is true, then the projectively normal assumption is
automatic.)

This leaves open the natural

QUESTION 1.12. Is the ring �[SP] Koszul?

See Sections 1.4 and 6 for such a result in a related situation.

REMARK 1.13. It is clear that all of the above results remain true if we replace a
special ample polytope P with the polytope ν + P, where ν ∈ X (we still require that
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P satisfies property (†)). Geometrically, the corresponding line bundles are isomorphic
as non-equivariant bundles, which explains why the results continue to hold.

1.3. Strengthening Theorems 1.5 and 1.8. Rather than prove Theorem 1.8, we will prove
the following, which generalizes it and Theorem 1.5. For yet another strengthening,
see Appendix A.

DEFINITION 1.14. Suppose P1, . . . , Pm are special ample polytopes and
(x1, . . . , xm) ∈ �(P1) × · · · × �(Pm). Further suppose that β ∈ � is a root and i and j
are indices such that xi + β ∈ �(Pi) and xj − β ∈ �(Pj). Then we say that

(x1, . . . , xm) ∼ (x1, . . . , xi−1, xi + β, xi+1, . . . , xj−1, xj − β, xj+1, . . . , xm). (1.15)

Call this a root move. Extend ∼ to the equivalence relation generated by this, i.e.
(x1, . . . , xm) ∼ (x′

1, . . . , x′
m) if the two are related by a sequence of root moves.

Note that, since root moves are reversible, a tuple is related to another tuple by
root moves if and only if one can be obtained from the other by a sequence of root
moves.

The following result strengthens Theorems 1.5 and 1.8.

THEOREM 1.16. If P1, . . . , Pm are special ample polytopes and x ∈ �(P1 + · · · +
Pm), then

(i) there exists a tuple (x1, . . . , xm) ∈ �(P1) × · · · × �(Pm) such that x1 + · · · +
xm = x;

(ii) if (x1, . . . , xm) and (x′
1, . . . , x′

m) are two such tuples, then (x1, . . . , xm) ∼
(x′

1, . . . , x′
m).

Specializing to the case m = 2 and P = P1 = P2, part (ii) implies that the
permutation (x1, x2) �→ (x2, x1) is a series of root moves inside �(P)2. Therefore, in the
case P = P1 = · · · = Pm for arbitrary m, the relation ∼ is actually generated by root
moves (1.15) with j = i + 1. This explains Remark 1.9, and hence Theorem 1.16.(ii)
implies Theorem 1.8.

Our motivation for allowing P1, . . . , Pm to be distinct polytopes is that it allows
one to inductively prove the theorem on m: one deduces the result for m > 2 from the
pair (P1 + · · · + Pm−1, Pm).

A toric interpretation of part of the theorem is as follows. LetL1, . . . ,Lm be special
ample line bundles on V and

ϕL1,...,Lm : H0(V,L1) ⊗ · · · ⊗ H0(V,Lm) −→ H0(V,L1 ⊗ · · · ⊗ Lm)

be the canonical map.

COROLLARY 1.17.
(i) ϕL1,...,Lm is surjective.

(ii) The kernel of ϕL1,...,Lm is spanned by the canonical subspaces

ker(ϕLi,Lj ) ⊗
⊗

k/∈{i,j}
H0(V,Lk) ⊆ ker(ϕL1,...,Lm ).

Namely, Theorem 1.16.(i) implies Corollary 1.17.(i), since if Pi are the polytopes
such that �(Pi) is a basis of H0(V,Li) for all i, then P1 + · · · + Pm is the polytope
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such that �(P1 + · · · + Pm) is the basis of H0(V,L1 ⊗ · · · ⊗ Lm). Similarly, Theorem
1.16.(ii) implies Corollary 1.17.(ii) since the moves generating the equivalence relation
∼ are multiples of quadratic relations in SP1+···+Pm of the form txi txj = txi+βtxj−β ,
for xi, xi + β ∈ �(Pi), xj, xj − β ∈ �(Pj), and β ∈ � a root, where for xi ∈ �(Pi) we
denote by txi the corresponding basis element of H0(V,Li).

Similarly, we can apply this to the Cayley sum polytope of polytopes P1, . . . , Pk.
Recall that this is defined as the polytope inside (X ⊗� �) × �k, which is the convex
hull of (P1 × {e1}) ∪ · · · ∪ (Pk × {ek}), where e1, . . . , ek are the standard basis of �k.
The resulting polytope is denoted by P1 ∗ P2 ∗ · · · ∗ Pk and is considered with respect
to the lattice Y × �k.

COROLLARY 1.18. 2 Let P1, . . . , Pk be special ample polytopes. Then the Cayley sum
polytope P = P1 ∗ · · · ∗ Pk is normal, and �[SP] is quadratic.

The corollary follows from Theorem 1.16 as follows: For every m1, . . . , mk ≥ 0,
apply the theorem to the product �(P1)m1 × · · · × �(Pk)mk , with m = m1 + · · · + mk.
Note here that the (degree-one) generators of �[SP] are the elements ((y, ei), 1) ∈
(�(Pi) × �k) × �, where 1 ≤ i ≤ k.

Finally, we give the toric interpretation of the corollary. Let L1, . . . ,Lk be special
ample line bundles on V . Given a vector bundle U , let Symm(U) denote its mth
symmetric power.

COROLLARY 1.19. The ring
⊕

m≥0 H0(V, Symm(L1 ⊕ · · · ⊕ Lk)) is quadratic.

1.4. Diagonal splitness. A closely related toric variety to V , studied in, e.g. [23], is the
one whose fan is such that its rays (i.e. one-dimensional cones) are generated by the
elements of �: so its initial lattice is Y , dual to the initial lattice of V . Denote this
variety by U .

Suppose that Q is an orthogonal polytope corresponding to the fan associated to
U , i.e. one which describes an equivariant line bundle on U . Then in [23] it was proved
that Q is always diagonally split (see [23] or Section 6). This property was intended
to prove Koszulity (and in particular normality and quadraticity) of �[SQ], although
since the publication of Payne’s paper [23] (and the submission of the present one) a
counterexample (the 3 × 3 Birkhoff polytope) to [23, Theorem 1.4] was found.

Nonetheless, we explain in Section 6 that, unlike in the situation of [23], the ample
polytopes P associated to the toric variety V considered in this paper are not diagonally
split except in the cases A1, A2, A3 and B2.

1.5. Organization of the paper. In Section 2 we prove Theorem 1.5, where a crucial
step involves using a lemma of Stembridge ([28, Cor. 2.7]) stating that in the usual
partial order of σ -dominant weights, a weight ν covers another one ν ′ if and only if
the difference ν − ν ′ is a root that is positive with respect to σ . In Section 3 we recall
the numbers game with a cutoff (from [15]; see also [18]), which gives a useful language
to prove Theorem 1.16. The proof of the theorem is then given in Sections 4 and 5.
Note that one of our auxiliary results (Lemma 4.4) generalizes the above lemma of
Stembridge. In Section 6 we show that ample polytopes for the toric varieties V as
above are not diagonally split (with the exception of the cases when the root system �

is of type A1, A2, A3 or B2).

2Thanks to S. Payne for observing this corollary.
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In Appendix A, we give a generalization of Theorem 1.16 in terms of the numbers
game: these allow one to restrict the type of tuples needed in the equivalence ∼ above.

2. Proof of Theorem 1.5. Recall that for a cone σ ∈ Fn, we denote by {αi,σ : i ∈
I} ⊂ � the corresponding set of simple roots. For a root γ ∈ �, we say that it is positive
or negative with respect to the chamber σ if γ can be written as a non-negative or non-
positive linear combination of the elements of {αi,σ : i ∈ I} respectively. We write Dσ

for the set of σ -dominant elements of X ⊗� �.
Note that P is the convex hull of the points {μσ ∈ X : σ ∈ Fn}. The next two

lemmas will allow us to better understand the shape of the polytope P. The first one
uses the fact that P is ample and the second one that P is special.

LEMMA 2.1. (see, e.g. [21, Lemma 12.1, p. 445]).

P =
⋂
σ∈Fn

C∗
σ ,

where C∗
σ := {μσ − ∑n

i=1 tiαi,σ : ti ∈ �≥0}.
LEMMA 2.2. (see, e.g. [21, Lemma 12.2, p. 445]).

P ∩ Dσ = C∗
σ ∩ Dσ .

Specializing to the points in �(P), we obtain

�(P) ∩ Dσ = {ν ∈ Dσ ∩ X : ν
σ� μσ }, (2.3)

where
σ� stands for the partial order in X determined by the chamber σ , i.e. ν

σ� μσ if
μσ − ν is a non-negative integral linear combination of the roots {αi,σ : i ∈ I}.

Fix a chamber σ ∈ Fn. Since W acts simply transitively on {Dτ : τ ∈ Fn} and since
�(mP) = ⋃

w∈W (�(mP) ∩ (wDσ )), it suffices to prove the statement of Theorem 1.5
for z ∈ �(mP) ∩ Dσ .

By (2.3), every element z ∈ �(mP) ∩ Dσ satisfies z
σ� mμσ . Clearly, for z = mμσ

the assertion of Theorem 1.5 is true. So to prove the theorem, it suffices to show that,
whenever it holds for x ∈ �(mP) ∩ Dσ , then it also holds for every z ∈ �(mP) ∩ Dσ

such that x covers z. Here x covers z means that z
σ� t

σ� x and t ∈ Dσ ∩ X implies that
t = z or t = x.

So assume that the statement of the theorem is true for x ∈ �(mP) ∩ Dσ and that x
covers z ∈ �(mP) ∩ Dσ . By a lemma of Stembridge ([28, Cor. 2.7]; see also [27, Lemma
2.3] and Remark 4.5), there exists a σ -positive root β such that x − z = β. Since z is
σ -dominant and β is σ -positive, 〈z, β∨〉 ≥ 0, and thus 〈x − β, β∨〉 ≥ 0, i.e.

〈x, β∨〉 ≥ 2.

By assumption, x can be written as a sum x = x1 + · · · + xm, with xi ∈ �(P), ∀i =
1, . . . , m. The last inequality guarantees that 〈xj, β

∨〉 ≥ 1 for at least one j ∈ {1, . . . , m}.
The proposition below then ensures that xj − β ∈ P.
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PROPOSITION 2.4. Let y ∈ �(P) and β ∈ �. If 〈y, β∨〉 ≥ 1, then y − β ∈ �(P).

We now put zi = xi,∀i �= j, and zj = xj − β, and then z = z1 + · · · + zm, which
verifies the theorem. This concludes the proof of Theorem 1.5, and it only remains to
prove the last proposition.

2.1. Proof of Proposition 2.4. Let y ∈ �(P) and β ∈ � be such that 〈y, β∨〉 ≥ 1.

We must show that, for every σ ∈ Fn, y − β
σ� μσ . Note that, since y ∈ �(P), there

exist non-negative integers hi,σ , i = 1, . . . , n, such that

μσ − y =
n∑

i=1

hi,σ αi,σ . (2.5)

Let β = ∑n
i=1 bi,σ αi,σ . Then μσ − (y − β) = ∑n

i=1(hi,σ + bi,σ )αi,σ . If the chamber σ is

such that β is positive with respect to it, then clearly y − β
σ� μσ .

We are therefore left to consider only the chambers with respect to which β is
negative (recall that β must be positive or negative with respect to each chamber).
Denote the set of such chambers by F−. Then we can write F− as a disjoint union
F− = F ′

− ∪ F ′′
−, where

F ′
− = {τ ∈ F− : τ is adjacent to a chamber with respect to which β is positive},

and F ′′
− = F− \ F ′

−.
Since P is special, 〈μσ , β∨〉 ≤ 0,∀σ ∈ F−. Moreover, we claim that 〈μσ , β∨〉 ≤

−1,∀σ ∈ F ′′
−. This follows from the previous statement because P is ample: indeed,

if σ ∈ F ′′
−, then by definition −β is positive but not simple for σ , so there exists αi,σ

(necessarily not equal to −β) such that 〈αi,σ ,−β∨〉 ≥ 1. Therefore, if 〈μσ , β∨〉 = 0,
then if σ ′ is the chamber adjacent to σ corresponding to αi,σ , it follows that
〈μσ ′ , β∨〉 = 〈μσ − rσ,σ ′αi,σ , β∨〉 ≥ rσ,σ ′ > 0. However, σ ′ ∈ F− by definition, which
furnishes a contradiction.

To prove the proposition, we claim that it suffices to show that y − β
σ� μσ when

σ ∈ F ′
−. Since 〈y − β, β∨〉 ≥ −1 by assumption, it will then follow that y − β lies

in all of the half-spaces whose intersection defines P (whose boundaries are maximal-
dimensional facets of P), except possibly for those whose boundary planes meet vertices
of P only in F ′′

−. Suppose, for the sake of contradiction, that y − β /∈ P. Let 0 ≤ t < 1
be maximal such that y − tβ ∈ P. Then y − tβ lies on a boundary plane meeting
vertices of P only in F ′′

−. Since 〈μσ , β∨〉 ≤ −1,∀σ ∈ F ′′
−, it follows that 〈y − β, β∨〉 <

〈y − tβ, β∨〉 ≤ −1. This is impossible, since 〈y, β∨〉 ≥ 1. Thus, y − β ∈ P, as desired.

Thus, take σ ∈ F ′
−. In the remainder of the proof, we show that y − β

σ� μσ .
Denote by τ a chamber in F that is adjacent to σ and such that β is positive with
respect to τ . We write αi instead of αi,τ for the simple roots corresponding to τ . Since
β is negative with respect to σ , there exists j ∈ I such that β = αj = −αj,σ . Moreover,

αi = αi,σ + 〈αi, β
∨〉β. (2.6)
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Since P is ample, μσ = −rτ,σ β + μτ , for rτ,σ > 0. Thus, using (2.5) and applying
(2.6), we get

n∑
i=1

hi,σ αi,σ = −rτ,σ β +
n∑

i=1

hi,τ (αi,σ + 〈αi, β
∨〉β).

Since {αi,σ : i ∈ I} is the basis for � and αj,σ = −β, from the last identity we deduce
that

hi,σ = hi,τ ,∀i ∈ I \ { j}, and

hj,σ = rτ,σ − hj,τ −
∑

i∈I\{ j}
hi,τ 〈αi, β

∨〉. (2.7)

Now μσ − (y − β) = (
∑n

i=1 hi,σ αi,σ ) − αj,σ , so in order to prove that y − β
σ� μσ ,

it suffices to show that hj,σ ≥ 1. For a contradiction, assume hj,σ = 0. From (2.7) we
then get

hj,τ − rτ,σ = −
∑

i∈I\{ j}
hi,τ 〈αi, β

∨〉. (2.8)

Next, recall that 〈y, β∨〉 ≥ 1, so

〈μσ , β∨〉 = 〈μτ − rτ,σ β, β∨〉 =
〈

y +
n∑

i=1

hi,τ αi , β
∨
〉

− 2rτ,σ

≥ 1 + 2hj,τ − 2rτ,σ +
∑

i∈I\{ j}
hi,τ 〈αi, β

∨〉 = 1 −
∑

i∈I\{ j}
hi,τ 〈αi, β

∨〉,

where to get the last equality we used (2.8). But the last expression is strictly positive
(since 〈αi, β

∨〉 = 〈αi, α
∨
j 〉 ≤ 0 for all i �= j), and, since the polytope P is special,

〈μσ , α∨
j 〉 ≤ 0, a contradiction. This ends the proof that y − β

σ� μσ and concludes
the proof of Proposition 2.4.

3. The numbers game with a cutoff. In order to prove Theorem 1.8, we use the
language of the numbers game with a cutoff, from [16] (see also [18]). In this section we
recall what we will need.

3.1. The usual numbers game. We first recall Mozes’s numbers game [22], which has
been widely studied in, e.g. [6, 7, 8, 9, 10, 11, 12, 25, 26, 30, 31]). Fix an unoriented,
finite graph with no loops and no multiple edges. Let I be the set of vertices. Fix also
a Cartan matrix C = (cij)i,j∈I ∈ �I × �I such that cii = 2 for all i, cij = 0 whenever i
and j are not adjacent, and otherwise cij, cji < 0, and either cijcji = 4 cos2( π

nij
) for nij ≥ 1

integers or cijcji ≥ 4.
We will only need to consider the case where our graph is the underlying graph

of a Dynkin diagram (undirected and without multiple edges), and C is the standard
Cartan matrix for the diagram, i.e. cij = 〈αi, α

∨
j 〉. In particular, cij ∈ � for all i, j. Hence,

the reader may assume this if desired.
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The configurations of the game consist of vectors from �I . The moves of the
game are as follows: For any vector v ∈ �I and any vertex i ∈ I such that vi < 0, one
may perform the following move, called firing the vertex i: v is replaced by the new
configuration fi(v), defined by

fi(v)j = vj − cijvi.

The entries vi of the vector v are called amplitudes. The game terminates if all the
amplitudes are non-negative. Let us emphasize that only negative-amplitude vertices
may be fired.3

PROPOSITION 3.1. [12]. The numbers game is strongly convergent: If the game can
terminate, then it must terminate, and in exactly the same number of moves and arriving
at the same configuration, regardless of the choices made.

3.2. The numbers game with a cutoff. In [15], the numbers game with a cutoff was
defined: The moves are the same as in the ordinary numbers game, but the game
continues (and in fact starts) only as long as all amplitudes remain greater than or
equal to −1. Such configurations are called allowed. Every configuration which does
not have this property is called forbidden, and upon reaching such a configuration
the game terminates (we lose). We call a configuration winning if it is possible, by
playing the numbers game with a cutoff, to reach a configuration with all non-negative
amplitudes.

In [18], a simple criterion was given to determine when the numbers game with
a cutoff is winning. We will restrict to the Dynkin case, with C the standard Cartan
matrix. Let � be the set of roots. Pick simple roots corresponding to the vertices of the
Dynkin diagram, and write � = �+ � −�+, where �+ is the set of positive roots.

We can view � ⊆ �I and �+ ⊆ �I
≥0. For i ∈ I , let αi be the simple root

corresponding to i, which as an element of �I is the elementary vector (αi)j = δij.
Note that, since αi refers to a vector in �I , in the case that α ∈ �I , we will never use αi

to refer to a component of α, reserving it exclusively for the elementary vector αi ∈ �I .
A useful description of � is

� =
⋃
i∈I

W · αi,

where W is the Weyl group generated by the simple reflections si : �I → �I , for all
i ∈ I , given by

si(β)j =
{

βj, if j �= i
−βi − ∑

k�=i ckiβk, if j = i
.

PROPOSITION 3.2. [18, Theorem 3.1, Corollary 5.10.(a)]. Fix a Dynkin diagram with
standard Cartan matrix C. Beginning with a configuration v ∈ �I , the numbers game
with a cutoff is winning if and only if

v · α ≥ −1,∀α ∈ �+, (3.3)

3In some of the literature, the opposite convention is used, i.e. only positive-amplitude vertices may be fired.
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and in this case, one always wins the numbers game with a cutoff, no matter which moves
are made, and arrives at the same final configuration in the same total number of moves.

Here, · is the dot product of v ∈ �I with α ∈ �I , i.e. v · (∑
i ciαi

) = ∑
i civi, for

ci ∈ �.

3.3. Relation to the polytope P. Proposition 2.4 has the following consequence in terms
of the numbers game with a cutoff. We consider the embedding

ι : X ↪→ �I , x �→ ι(x), ι(x)i := 〈
x, α∨

i

〉
.

In this language, condition (3.3) translates for x ∈ X as follows: The configuration ι(x)
is winning if and only if

〈x, α∨〉 ≥ −1,∀α ∈ �+. (3.4)

Then Proposition 2.4 implies the following.

COROLLARY 3.5. If x, y ∈ X and ι(y) can be obtained from ι(x) by playing the numbers
game with a cutoff, then x ∈ �(P) if and only if y ∈ �(P).

Proof. Suppose that u ∈ X and ι(u) ∈ �I is obtained along the way from ι(x) to ι(y).
From u, any move in the numbers game with a cutoff is of the form u �→ u + ι(αi) for
some i ∈ I such that ui = −1. Hence, 〈u, α∨

i 〉 = −1 and (u + ι(αi))i = 〈u + αi, α
∨
i 〉 = 1.

We therefore conclude from Proposition 2.4 that u ∈ �(P) if and only if u + αi ∈ �(P).
The corollary follows. �

Note that the choice of simple roots was arbitrary, so the corollary in fact holds
for any choice of simple roots (equivalently, any choice of dominant chamber).

REMARK 3.6. The corollary extends to the case where y is obtained from x in the
usual numbers game by firing vertices only of amplitude −1, i.e. we can continue the
numbers game even if there is an amplitude less than −1 as long as we never fire such
vertices. (This seems to be a reasonable variation on the numbers game with a cutoff.)

4. Proof of Theorem 1.16. It is convenient to abuse notation slightly, by omitting
the map ι:

NOTATION 4.1. If x ∈ X and ι(x) is winning, we also say that x is winning. Moreover,
if x, y ∈ X and ι(y) is obtained from ι(x) by playing the numbers game (with or without
a cutoff), we also say that y is obtained from x by playing the numbers game (with or
without a cutoff respectively).

Fix once and for all a dominant chamber σ , and write D, ≺, �, and μ, instead of

Dσ ,
σ≺,

σ�, and μσ , respectively. We omit σ from now on, and by a dominant element
we always mean an element of D.

Next, given special ample polytopes P1, . . . , Pm, we let μ1, . . . , μm denote the
vertices μ1, . . . , μm ∈ D of each corresponding to the dominant chamber.

Finally, we recall the notion of length of roots. For simply laced root systems (i.e.
types An, Dn and En, since we only consider the Dynkin case), we say that all roots
have the same length. For the other root systems, the set of roots � is partitioned into
the subsets of short and long roots, and we say that the long roots are longer than the
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short roots. One way to define the partition (which will be useful to us) is that, if β ∈ �

is at least as long as α ∈ � and α �= ±β, then 〈α, β∨〉 ∈ {−1, 0, 1}. Recall also that the
partition is preserved by the Weyl group action. We emphasize that, for us, 〈α, α∨〉 = 2
for all α ∈ �, long or short; the terminology of length comes from the norm under the
symmetrized Cartan form, which we will not use.

4.1. Outline of the proof. First, Theorem 1.16.(i) follows in exactly the same manner as
Theorem 1.5. We give a short proof in the spirit of this section, based on Proposition
2.4, in Section 4.4.

Our strategy underlying the proof of Theorem 1.16.(ii) is to perform induction on
the sum x1 + · · · + xm, which we can assume is winning (in fact, we could assume it
is dominant using the action of the Weyl group). The induction will be over a certain
partial order on the sum polytope P = P1 + · · · + Pm.

The proof is broken into three parts: First we prove results about the partial order
on the winning locus of P, which boil down to the strengthening of the lemma of
Stembridge mentioned earlier. Second, we prove the theorem in the case m = 2. Third,
we inductively deduce the theorem for general m. In what follows, we will explain the
proof modulo some lemmas whose proofs will be provided in Section 5.

4.2. Partial ordering on the winning locus of P. Let P be a special ample polytope.

DEFINITION 4.2. Suppose x ∈ �(P). If x �= μ, then a simple root α is P-progressive
for x if either x is dominant and α has minimum length such that x + α � μ, or else
〈x, α∨〉 ≤ −1.

It is immediate that, for all x �= μ, there exists a simple root which is P-progressive
for x.

This subsection is devoted to the proof of the following.

PROPOSITION 4.3. If α is P-progressive for x, then x + α ∈ �(P). Moreover, if x is
winning, so is x + α.

Proof. First suppose that α is a simple root such that 〈x, α∨〉 ≤ −1. By Proposition
2.4, x + α ∈ �(P). If x is winning, then x + α is obtained from x by a move of the
numbers game, and hence it is winning.

If x is dominant and α is a simple root of minimum length such that x + α � μ,
the result follows from the case y = μ of the Lemma 4.4. Namely, by Corollary 3.5,
to show that x + α ∈ �(P), it suffices to show that z ∈ �(P), where z is the result of
playing the numbers game with a cutoff beginning with x + α. Next, if β ∈ �+ is any
positive root such that x + β � μ, then β must be at least as long as α; otherwise β

would be short and α long, and there would exist a short simple root γ such that
γ � β. In the latter case, x + γ � x + β � μ, contradicting our assumption that α has
minimum length such that x + α � μ. Therefore, we may apply Lemma 4.4 with y = μ.
We conclude that x + α is winning, i.e. z is dominant, and also z � μ. Then, z ∈ �(P)
by (2.3). �

LEMMA 4.4. Suppose x ≺ y and x, y ∈ X ∩ D. Let α ∈ �+ be a positive root of
minimum length such that x + α � y. Then x + α is winning, and if z is the result of
playing the numbers game with a cutoff, then x + α � z � y.

The lemma will be proved in Section 5.1.
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REMARK 4.5. Lemma 4.4 strengthens the aforementioned result of Stembridge.
Specifically, if y covers x, then y = z, i.e. y is obtainable from x + α by playing the
numbers game with a cutoff. In this case, y = x + β, where β ∈ �+ is obtained from
α by playing the numbers game (using the same firing sequence as for x + α �→ x + β,
which involves firing only vertices of amplitude −1). This was our motivation for
replacing μ by y in the statement of the lemma.

4.3. The case m = 2 of Theorem 1.16.(ii). The heart of the proof of Theorem 1.16.(ii) is
contained in the case m = 2. Then general m will be a straightforward generalization.
In turn, the case m = 2 is based on the following lemma.

LEMMA 4.6. Let P1 and P2 be special ample polytopes, (x1, x2) ∈ �(P1) × �(P2),
P = P1 + P2, and x = x1 + x2 ∈ �(P). If α is P-progressive for x, then there exists
(x′

1, x′
2) and an index i ∈ {1, 2} such that (x1, x2) ∼ (x′

1, x′
2) and α is Pi-progressive for

x′
i.

This will be proved in Section 5.2. Here we explain how it implies Theorem 1.16.(ii)
in the case m = 2.

Proof of Theorem 1.16.(ii) for m = 2. As remarked earlier, it is enough to prove the
theorem in the case that x is winning (in fact, it is enough to prove the theorem in the
case x is dominant, by applying a suitable element of the Weyl group simultaneously
to x as well as to all of the xi). Let μ = μ1 + μ2 (where by convention μi is the
vertex of Pi corresponding to the dominant chamber). The theorem is immediate in
the case that x = μ, since x = x1 + x2 implies that x1 = μ1 and x2 = μ2 (and vice
versa). Inductively, suppose that x ∈ �(P) is winning, and for some P-progressive α,
the theorem holds for x + α.

Suppose that (x1, x2), (x′
1, x′

2) ∈ �(P1) × �(P2) are pairs such that x1 + x2 = x =
x′

1 + x′
2. Let α be P-progressive for x. By Lemma 4.6 (applied to both (x1, x2) and

(x′
1, x′

2) separately), it is enough to assume that there exist indices i and j such that α

is Pi-progressive for xi and Pj-progressive for x′
j. Without loss of generality, suppose

that i = 1. Let (y1, y2) and (y′
1, y′

2) be given by y1 = x1 + α, y2 = x2, y′
j = x′

j + α and
y′

k = x′
k for k �= j. Since x1 + x2 + α = x + α = x′

1 + x′
2 + α, by hypothesis, (y1, y2) ∼

(y′
1, y′

2). By induction on the number of root moves (1.15) required to realize the
latter equivalence, Lemma 4.7 then implies that either (x1, x2) ∼ (y′

1 − α, y′
2) ∈ �(P1) ×

�(P2) or (x1, x2) ∼ (y′
1, y′

2 − α) ∈ �(P1) × �(P2) (where, for the purposes of induction,
we drop the assumption that α is P1-progressive for x1 and assume only that x1 + α ∈
�(P1), and similarly for x′

j and Pj). If the result is (x′
1, x′

2), we are done. If not, the
result must be (x′

1 ± α, x′
2 ∓ α), which is related to (x′

1, x′
2) by a single root move. �

Above we needed the following lemma, whose proof will be given in Section 5.3.

LEMMA 4.7. Suppose that (x1, x2) ∈ �(P1) × �(P2), and α is a simple root such that
x = x1 + x2 satisfies 〈x, α∨〉 ≥ −1, and such that x1 + α ∈ �(P1). If β ∈ � is such that
(x1 + α + β, x2 − β) ∈ �(P1) × �(P2), then either (x1 + β, x2 − β) ∈ �(P1) × �(P2)
or (x1 + α + β, x2 − α − β) ∈ �(P1) × �(P2). In the latter case, either α + β ∈ �, or
(x1 + α, x2 − α) ∈ �(P1) × �(P2).

4.4. Proof of Theorem 1.16 for general m. Let μ = μ1 + · · · + μm, where μi is the
vertex of Pi corresponding to the dominant chamber. The theorem is immediate in the
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case x = μ. It is enough to prove the theorem when x is winning under the inductive
hypothesis that the theorem holds for x + α where α is P-progressive for x.

To prove part (i), suppose that (y1, . . . , ym) ∈ �(P1) × · · · × �(Pm) with y1 + · · ·
+ ym = x + α. Then for some index i, 〈yi, α

∨〉 ≥ 1, and by Proposition 2.4,
(y1, . . . , yi−1, yi − α, yi+1, . . . , ym) ∈ �(P1) × · · · × �(Pm), with the desired sum x.

For part (ii), we will additionally induct on m, i.e. we assume that the theorem
holds for smaller values of m. Let Q := P1 + · · · + Pm−1 so that P = Q + Pm. Let
y = x1 + · · · + xm−1 and y′ = x′

1 + · · · + x′
m−1. Then, by the previous section, there

exist root moves relating (y, xm) to (y′, x′
m). To turn this into root moves relating

(x1, . . . , xm) and (x′
1, . . . , x′

m), it is enough to apply the theorem for the case m − 1 (i.e.
for (P1, . . . , Pm−1)) together with the following lemma.

LEMMA 4.8. Suppose that y ∈ Q = P1 + · · · + Pm−1, β ∈ � and y + β ∈ Q. Assume
Theorem 1.16.(i) holds for (P1, . . . , Pm−1). Then there exists a tuple (y1, . . . , ym−1) ∈
�(P1) × · · · × �(Pm−1) such that y = y1 + · · · + ym−1 and an index j such that yj + β ∈
�(Pj).

The lemma will be proved in Section 5.4.

5. Proof of lemmas.

5.1. Proof of Lemma 4.4. We will use the following general result.

CLAIM 5.1. If x ∈ �I is dominant and α ∈ �+ is any positive root, and the usual
numbers game on x + α does not involve firing any vertices corresponding to simple roots
shorter than α, then x + α is winning.

In particular, if α is a short positive root and x ∈ �I is dominant, then x + α is
winning (equivalently, all short positive roots are themselves winning).

Proof. Let us play the usual numbers game on x + α. If we fire a vertex i
corresponding to a simple root β whose length is at least that of α, then since
〈α, β∨〉 ≥ −1, the amplitude at vertex i is −1. Since the length of α + β is equal to that
of α, we can replace α with α + β, and then x + (α + β) takes one fewer move under
the numbers game to reach a dominant configuration. By induction on the number of
moves required to play the numbers game on x + α, we see that all vertices fired have
amplitude −1, and hence x + α is winning. �

Suppose that y ∈ X ∩ D and α is a positive root of minimum length such that
x + α � y. Let us play the numbers game with a cutoff on x + α. We claim that this
only involves firing vertices corresponding to simple roots of length of at least α. Then,
by Claim 5.1, x + α is winning. Moreover, the result z of playing the numbers game with
a cutoff is the dominant configuration obtained from x + α by adding the minimum
positive combination of simple roots. Since y is dominant and x + α � y, y is also such
a configuration, and it follows that z � y.

It remains to show that playing the numbers game beginning with x + α does not
involve firing a vertex corresponding to a simple root of length shorter than α. For
a contradiction, suppose not, and consider the first vertex fired corresponding to a
shorter simple root. Call this simple root γ . It follows as above that every dominant
configuration is obtainable from x + α by adding simple roots adds γ as well. Therefore,
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since x + α � y and y is dominant, also x + α + γ � y and hence x + γ � y, which is
a contradiction.

5.2. Proof of Lemma 4.6. First, if x is not dominant, then 〈x, α∨〉 ≤ −1, and hence
〈xi, α

∨〉 ≤ −1 for some i, which shows that α is Pi-progressive for xi. So we can restrict
to the dominant case. Thus, α has minimal length among simple roots such that
x + α � μ.

Given a simple root α, let Pα denote the maximum-dimensional boundary facet
of P meeting μ which is parallel to the span of all simple roots other than α. In other
words (using Lemma 2.1), x ∈ �(Pα) if and only if x ∈ �(P) but x + α �� μ.

CLAIM 5.2. If any element xi of the pair (x1, x2) is dominant, then either xi ∈ �(Pα
i ),

or else α is Pi-progressive for xi.

Proof. If xi /∈ �(Pα
i ), then α must be of minimal length with this property, since

xi /∈ �(Pβ
i ) implies that x1 + x2 /∈ �(Pβ), which implies by assumption that β is at least

as long as α. �

Now we prove the lemma. If, for any simple root β, 〈x1, β
∨〉 ≤ −1 but 〈x2, β

∨〉 ≥ 1,
we can perform a move (x1, x2) �→ (x1 + β, x2 − β). So after performing such moves,
we can assume that this does not happen. Since x = x1 + x2 is dominant, this implies
that x1 is dominant. By Claim 5.2, we are done unless x1 ∈ Pα

1 . So assume this is
the case. By performing moves of the form (x1, x2) �→ (x1 − β, x2 + β) for simple
roots β �= α (which may make x1 no longer dominant, but preserves the property that
x1 ∈ Pα

1 ), we can assume that 〈x2, β
∨〉 ≥ 0 for all simple roots β �= α, without changing

the assumption that x1 ∈ Pα
1 . Then either 〈x2, α

∨〉 ≤ −1, or x2 is dominant. In the
former case, α is P2-progressive for x2, as desired. In the latter case, by Claim 5.2, it is
enough to suppose that x2 ∈ Pα

2 . However, in this case, x = x1 + x2 ∈ Pα
1 + Pα

2 = Pα,
contradicting our assumption that x + α � μ.

5.3. Proof of Lemma 4.7. First, if 〈x1 + α + β, α∨〉 ≥ 1, then x1 + β ∈ �(P1) by
Proposition 2.4. Since x2 − β ∈ �(P2) by assumption, this proves the lemma.
Next, suppose that 〈x1 + α + β, α∨〉 ≤ 0, i.e. 〈x1 + β, α∨〉 ≤ −2. Since x = (x1 +
β) + (x2 − β) satisfies 〈x, α∨〉 ≥ −1, it follows that 〈x2 − β, α∨〉 ≥ 1. By Proposition
2.4, x2 − β − α ∈ �(P2). Since x1 + α + β ∈ �(P1) by assumption, this proves that
(x1 + α + β, x2 − β − α) ∈ �(P1) × �(P2). It remains to prove the final assertion.
Suppose that (x1 + α, x2 − α) /∈ �(P1) × �(P2). By assumption x1 + α ∈ �(P1), so
x2 − α /∈ �(P2). In view of Proposition 2.4, 〈x2, α

∨〉 ≤ 0. Since 〈x2 − β, α∨〉 ≥ 1 (as
observed above), this implies that 〈β, α∨〉 ≤ −1. In this case, α + β must be a root.

5.4. Proof of Lemma 4.8. First, consider the case that 〈y, β∨〉 < 0. Then we can let
(y1, . . . , ym−1) ∈ �(P1) × · · · × �(Pm−1) be arbitrary such that y = y1 + · · · + ym−1,
and then for some j one must have 〈yj, β

∨〉 < 0 as well so that yj + β ∈ �(Pj) by
Proposition 2.4. Similarly, if 〈y, β∨〉 ≥ 0, then 〈y + β, β∨〉 > 0, and we can take any
(z1, . . . , zm−1) ∈ �(P1) × · · · × �(Pm−1) such that y + β = z1 + · · · + zm−1. Then there
exists some j such that 〈zj, β

∨〉 > 0, so again by Proposition 2.4, zj − β ∈ �(Pj). Hence,
the tuple (z1, . . . , zj−1, zj − β, zj+1, . . . , zm) satisfies the needed conditions.
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6. Ample polytopes are not diagonally split, after Payne. As mentioned in the
Introduction, Payne (in [23]) considers a toric variety, U , similar to the one we consider,
V , but for which the rays of the fan are �≥0 · α, for all α ∈ �. He proves that, in types
A, B, C and D, for all lattice polytopes P corresponding to a torus-equivariant line
bundle on U (even if not ample), the corresponding semi-group SP is normal, and
the ring �[SP] is Koszul. This follows from the fact, that he proves, that such lattice
polytopes are diagonally split for some integer q ≥ 2.

Here we show that ample polytopes for the varieties V considered in this paper
are diagonally split for some integer q ≥ 2 only in the cases A1, A2, A3 and B2(= C2).

Recall from [23] the following definition. Let � be a lattice with dual lattice �∨,
and let �� := � ⊗� � and �∨

� := �∨ ⊗� �. Let P ⊆ � ⊗� � be a lattice polytope (with
vertices in �). Let v1, . . . , vk ∈ �∨ be the primitive lattice generators of the inward
normal rays of the facets of P. Define

�◦
P := {u ∈ �� | −1 < 〈u, vi〉 < 1,∀i = 1, . . . , k}. (6.1)

Let q ≥ 2 be an integer. Then P is diagonally split for q if and only if every element
z ∈ ( 1

q�)/� has a representative z̃ ∈ �◦
P ∩ 1

q�.
Note that, in our case, � = Y . It is clear that all lattice polytopes corresponding

to equivariant line bundles on a toric variety are diagonally split if and only if
the polytopes corresponding to ample bundles are diagonally split. Moreover, such
polytopes are diagonally split if and only if any one such polytope is diagonally split.

PROPOSITION 6.2. An ample polytope (in Y�, with vertices in Y ) is diagonally split
for some q ≥ 2 if and only if the root system is of type A1, A2, A3 or B2(= C2). For A1

and A2, ample polytopes are diagonally split for all q ≥ 2, and for A3 and B2, ample
polytopes are diagonally split for odd but not even q ≥ 2.

Proof. The inward primitive normal vectors for an ample polytope are the images
under the Weyl group of the fundamental co-weights ωi, i ∈ I . Hence, the polytope is
diagonally split for q if and only if, for all z ∈ 1

q Y/Y , there is a representative z̃ ∈ 1
q Y

such that −1 < 〈wz̃, ωi〉 < 1 for all i ∈ I and all w ∈ W .
We first prove that such polytopes are not diagonally split if the root system is not

listed above. Such root systems contain, as a subsystem, either a root system of type
A4, D4, B3, C3 or G2. It is clear that, for this direction, it suffices to show that, for every
q ≥ 2, ample polytopes for these five root systems are not diagonally split. To do so, it
suffices to exhibit in each of these cases a particular element z ∈ 1

q Y/Y such that, for

all representatives z̃ ∈ 1
q Y , there exists w ∈ W and i ∈ I such that |〈wz̃, ωi〉| ≥ 1.

We use the standard labelling of roots as in [2, Section VI.4] (which we will also
recall). Also, for every i ∈ I , we denote by si the simple reflection corresponding to the
simple root αi.

First, let us consider a root system of type A3 and even q, and show that P is
not diagonally split. Recall that, for An type, the simple roots α1, . . . , αn are linearly
ordered along a line segment. We consider the element z := 1

2α1 + 1
2α3. Then, for every

z̃ ∈ z + Y , either |〈z̃, ωi〉| ≥ 1 for some i, or z̃ is in the same Weyl orbit as z. But
〈s2z, ω2〉 = 1, which yields the desired inequality. In particular, ample polytopes for
any root system containing A3 are not diagonally split for even q. Also, the same is true
for root systems containing B3 or C3. Thus, for the cases A4, D4, B3 and C3, it suffices
to restrict our attention to the case where q is odd.
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From now on, fix an odd integer q ≥ 3 and set p := q−1
2 . Suppose that the root

system is of type A4. Then we consider the element

z := p + 1
q

α1 + p + 1
q

α3 + 1
q
α4. (6.3)

The only elements z̃ ∈ z + 1
q Y that we need to consider are the eight elements

z̃ = z − δ1α1 − δ3α3 − δ4α4, δi ∈ {0, 1}. (6.4)

First, consider the case that (δ1, δ3) �= (1, 1). If also (δ1, δ3) �= (0, 0), then |〈s2s1̃z, ω2〉| =
1. If (δ1, δ3) = (0, 0), then 〈s2̃z, ω2〉 = q+1

q > 1.

Next, consider the case that δ1 = δ3 = 1 and δ4 = 0. Then s3z̃ = − p
qα1 + p+1

q α3 +
1
qα4, which is the case we have already considered in the preceding paragraph.

Thus, it remains to consider the case δ1 = δ3 = δ4 = 1. Then s4z̃ = − p
qα1 −

p
qα3 + p

qα4. Hence, s3s4z̃ = − p
qα1 + q−1

q α3 + p
qα4. Finally, s2s1s3s4z̃ = p

qα1 + p+q−1
q α2 +

q−1
q α3 + p

qα4, and hence 〈s2s1s3s4z̃, ω2〉 ≥ 1.
Hence, ample polytopes for root systems containing A4 are not diagonally split

for odd q ≥ 3, and together with the even case above, they are not diagonally split for
any q ≥ 2.

Next, consider the root system D4. As in [2, Section VI.4], α2 is the simple root
corresponding to the node, and α1, α3 and α4 are the other simple roots. Define the
element

z = p
q

(α1 + α3 + α4). (6.5)

Similar to the A4 case, we only need to consider the elements

z̃ = z − δ1α1 − δ3α3 − δ4α4, δi ∈ {0, 1}. (6.6)

If δ1 = δ3 = δ4 then we see that |〈s2z̃, ω2〉| ≥ 1. For the other cases, using symmetry,
we may assume that δ1 = δ3 = 0 and δ4 = 1. Then |〈s2s4z̃, ω2〉| > 1. Hence, ample
polytopes containing D4 are not diagonally split.

Consider now the root system B3, with simple roots α1, α2, α3 so that α2

corresponds to the central vertex and α3 is the short simple root. Let z = p
q (α1 + α3).

Then |〈s3s2z, ω3〉| ≥ 1, and the same is true if we replace z by z − (α1 + α3), s1(z − α1)
or s3(z − α3). This proves the desired inequality so that ample polytopes containing B3

are not diagonally split.
Similarly, consider the root system C3 with simple roots α1, α2, α3 such that α2

corresponds to the central vertex and α3 is the long simple root. Let z := p
q (α1 + α3).

Then |〈s2z, ω2〉| ≥ 1, and the same is true if we replace z by z − (α1 + α3), s1(z − α1) or
s3(z − α3).

Finally, consider the root system G2, and now allow q ≥ 2 to be any integer. Let
p = � q

2�. Let α1 be the short simple root and α2 be the long simple root. Consider
z := p

qα2. Then |〈s1z, ω1〉| ≥ 1. The same is true if we replace z by s2(z − α2). This
proves that ample polytopes are not diagonally split for G2.

This completes the proof that ample polytopes for root systems other than
A1, A2, A3 and B2 are not diagonally split for any q ≥ 2. We also claim that ample
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polytopes are not diagonally split in the case where q is even and the root system is
of type B2. For this, let α1 be the long simple root and α2 be the short simple root.
Consider the element z = 1

2α1. Then the same argument as in the case G2 applies.
It remains to prove the claims that ample polytopes are diagonally split for odd

q in the cases A1, A2, A3 and B2, and in the case of A1 and A2, also for even q. For
the case A1, this is clear, and in the case A2, it follows by choosing, for any z ∈ 1

q Y/Y ,

the representative z̃ ∈ 1
q Y such that 〈z̃, ωi〉 ∈ [0, 1) for both fundamental co-weights

ωi. Next, consider the case B2, and let q ≥ 3 be odd. Let α1 be the long root and α2 be
the short root. Then, for any z ∈ 1

q Y/Y , choose the representative z̃ ∈ 1
q Y such that

|〈z̃, ω1〉| < 1
2 , |〈z̃, ω2〉| < 1 and 〈z̃, ω1〉 and 〈z̃, ω2〉 are either both non-negative or both

non-positive. It is easy to verify that z̃ ∈ �◦
P ∩ 1

q�, as required.
Finally, consider the case A3 with q odd. Let α1, α2 and α3 be the simple roots,

with α2 corresponding to the central vertex. Then, for any z ∈ 1
q Y/Y , first suppose that

〈z̃, ω2〉 is integral for all representatives z̃ of z. In this case, choose the representative
z̃ so that 〈z̃, ω2〉 = 0 and |〈z̃, ωi〉| < 1

2 for i ∈ {1, 3}. Otherwise, if 〈z̃, ω2〉 is not integral
for any representative z̃ of z, choose z̃ such that |〈z̃, ωi〉| < 1 for all i, either all 〈z̃, ωi〉
are non-negative or all are non-positive, and such that |〈z̃, ω1 + ω3〉| ≤ 1 (where α2

corresponds to the central vertex). A straightforward computation verifies that this
yields a diagonal splitting. �

Appendix A. Sharpening Theorem 1.16 to preserve winning conditions. Here we
explain that if one restricts to tuples (x1, . . . , xm) ∈ �(P1) × · · · �(Pm) such that the xi

are winning, then restricting the equivalence relation ∼ and the root moves to these
tuples, Theorem 1.16 continues to hold.

THEOREM A.1. Suppose that x ∈ �(P1 + · · · + Pm) is winning. Then
(i) there exists a tuple (x1, . . . , xm) ∈ �(P1) × · · · × �(Pm) of winning elements such

that x = x1 + · · · + xm;
(ii) if (x1, . . . , xm), (x′

1, . . . , x′
m) ∈ �(P1) × · · · × �(Pm) are two tuples of winning

elements such that x1 + · · · + xm = x = x′
1 + · · · + x′

m, then the tuples are related
by a sequence of root moves that only pass through tuples of winning elements.

This sharpens the theorem, and further explains its proof.

REMARK A.2. Note that, in contrast to Theorem 1.16 itself, even when P1 = · · ·
= Pm, it is not necessarily true that all root moves through tuples of winning elements
are generated by root moves involving only adjacent indices j = i + 1 in (1.15). This is
because adjacent elements in a tuple (x1, . . . , xm) of winning elements with x1 + · · · +
xm winning need not themselves sum to a winning element. So one cannot deduce
that there is a sequence of root moves between adjacent elements that swaps the two
elements while only passing through pairs of winning elements.

The theorem rests on the following observation.

LEMMA A.3. Suppose that x ∈ �(P) is winning. If 〈x, α∨
i 〉 ≥ 1, then x − αi ∈ �(P)

is also winning.

Proof. Suppose that x ∈ �(P) is winning and 〈x, α∨
i 〉 ≥ 1. First note that x − αi ∈

�(P) by Proposition 2.4. Next, if 〈x, α∨
i 〉 = 1, then x − αi �→ x under the numbers

game, so x − αi is also winning. Suppose now that 〈x, α∨
i 〉 ≥ 2. By firing vertices other
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than i which are not adjacent to i, we may assume that 〈x, α∨
j 〉 ≥ 0 whenever j is not

adjacent to i. Since for j adjacent to i, 〈x, α∨
j 〉 ≥ −1, and also 〈αi, α

∨
j 〉 ≤ −1, it follows

that 〈x − αi, α
∨
j 〉 ≥ 0 for all j adjacent to i. Moreover, since 〈αi, α

∨
i 〉 = 2, it also follows

that 〈x − αi, α
∨
i 〉 ≥ 0. Hence, x − αi is dominant, and therefore winning. (Without

assuming that 〈x, α∨
j 〉 ≥ 0 whenever j is not adjacent to i, we then see that x − αi will

be winning, but not dominant in general.) �

A.1. Simple moves.

DEFINITION A.4. Let (x1, . . . , xm) ∈ Xm. Suppose that α is a simple root and
j, k are indices such that 〈xj, α

∨〉 ≤ −1 and 〈xk, α
∨〉 ≥ 1. Then setting x′

j = xj + α and
xk = xk − α, and x′

� = x� for � /∈ {j, k}, we say (x′
1, . . . , x′

m) is obtained from (x1, . . . xm)
by a simple move.

Note that a simple move is a very special type of root move, in the case that all the
elements of the tuples are in the relevant polytopes. In fact, it is enough to check this
for one of the tuples.

LEMMA A.5. If P1, . . . , Pm are special ample polytopes, (x1, . . . , xm) ∈ �(P1) × · · ·
× �(Pm), and (x′

1, . . . , x′
m) is obtained from (x1, . . . , xm) by simple moves, then also

(x′
1, . . . , x′

m) ∈ �(P1) × · · · × �(Pm).

The lemma is an immediate consequence of Proposition 2.4. Furthermore, using
Lemma A.3, we can prove the following.

LEMMA A.6. If (x1, . . . , xm) ∈ �(P1) × · · · × �(Pm) is a tuple of winning elements,
then any simple move results in another tuple of winning elements.

Proof. It is clear enough to assume m = 2. Without loss of generality, the move is
(x1, x2) �→ (x1 + α, x2 − α) where 〈x1, α

∨〉 < 0 and 〈x2, α
∨〉 > 0. Since x1 is winning,

〈x1, α
∨〉 = −1 and x1 + α is obtained by playing a move of the numbers game. Hence,

x1 + α is winning. Also, x2 − α is winning by Lemma A.3. �
Also, the proof of Lemma 4.6 actually implies.

LEMMA A.7. Let P1 and P2 be special ample polytopes, (x1, x2) ∈ �(P1) × �(P2),
P = P1 + P2 and x = x1 + x2 ∈ �(P). If α is P-progressive for x, then there is a sequence
of simple moves taking (x1, x2) to a pair (x′

1, x′
2) such that, for some i ∈ {1, 2}, α is Pi-

progressive for x′
i.

Hence, if (x1, x2) additionally has the property that x1 and x2 are winning, Lemma
A.6 implies that all pairs obtained along the way from (x1, x2) to (x′

1, x′
2) (along with

(x′
1, x′

2) itself) consist of winning elements.

A.2. The case m = 2 of Theorem A.1.(ii). In order to explain the general result, it is
best to begin with the case m = 2.

Proof of Theorem A.1.(ii) for m = 2. Without the winning conditions, this is the
case m = 2 of Theorem 1.16.(ii). Let x = x1 + x2 and let α be P-progressive for x. We
assume the statement for tuples of winning elements which sum to x + α. In the proof
of Theorem 1.16.(ii), the moves taken are either simple, which preserve the property
of elements being winning by Lemma A.6, or else are moves obtained by Lemma 4.7
from root moves for a tuple whose sum is x + α. As in the proof of Theorem 1.16.(ii),
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the first such move of the latter type begins with a tuple (x1, x2) of winning elements
such that α is P1-progressive for x1. By Proposition 4.3, then x1 + α is winning and
in �(P1). By induction on the number of such moves required, we can then assume
that the latter root move is of the form (x1 + α, x2) �→ (x1 + α + β, x2 − β) for β ∈ �

such that x1 + α + β and x2 − β are winning. Thus, it remains to prove the following
sharpening of Lemma 4.7. �

LEMMA A.8. Suppose that (x1, x2) ∈ �(P1) × �(P2), x1 and x2 are winning, and
α is a simple root such that x1 + α is winning and in �(P1), and x = x1 + x2 satisfies
〈x, α∨〉 ≥ −1. If β ∈ � is such that (x1 + α + β, x2 − β) ∈ �(P1) × �(P2) is a tuple
of winning elements, then either (x1 + β, x2 − β) ∈ �(P1) × �(P2) or (x1 + α + β, x2 −
α − β) ∈ �(P1) × �(P2), and it is a pair of winning elements. Furthermore, in the latter
case, either (x1 + α, x2 − α) is in �(P1) × �(P2) and is a pair of winning elements, or
else α + β ∈ �.

Proof. To prove the first assertion, we only need to check that, following the
proof of Lemma 4.7, the final tuple (x1 + β, x2 − β) or (x1 + α + β, x2 − α − β) is a
tuple of winning elements. In the first case, we had 〈x1 + α + β, α∨〉 ≥ 1, and x1 +
α + β is winning, so Lemma A.3 implies that x1 + β is winning; x2 − β is winning by
assumption. In the second case, we had 〈x2 − β, α∨〉 ≥ 1 and x2 − β is winning, and
hence x2 − β − α is winning by Lemma A.3; x1 + α + β is winning by assumption.
For the final statement, we note that if (x1 + α, x2 − α) is not winning, then in view
of Lemma A.3 〈x2, α

∨〉 ≤ 0, and the statement then follows as in the proof of Lemma
4.7. �

A.3. Proof for general m. As in the proof of Theorem 1.16, let P = P1 + · · · + Pm and
α be a simple root that is P-progressive for x.

(i) This follows from the proof of Theorem 1.16.(i). We note that if (y1, . . . , ym) is
a tuple of winning elements with y1 + · · · ym = x + α and 〈yi, α

∨〉 ≥ 1, then yi − α is
still winning by Lemma A.3, and hence (y1, . . . , yi−1, yi − α, yi+1, . . . , ym) is a tuple of
winning elements summing to x.

(ii) We adapt the proof of Theorem 1.16.(ii). Let Q := P1 + · · · + Pm−1, y =
x1 + · · · + xm−1, and y′ = x′

1 + · · · + x′
m−1. We assume the statement of the theorem

for tuples whose sum is x. The proof below will be slightly more complicated than the
proof of Theorem 1.16.(ii), because we cannot in general assume that y is winning, and
hence cannot apply the statement of the theorem to y itself (and in particular, we do
not need to assume the statement of the theorem for smaller values of m).

By performing simple moves, we can assume that α is either Q-progressive for y or
Pm-progressive for xm. In the case it is Q-progressive for y, we can iterate this procedure
on the tuple (x1, . . . , xm−1) until there exists an index i such that α is Pi-progressive
for xi. So we assume this. By doing the same for (x′

1, . . . , x′
m), we can suppose

that α is Pj-progressive for x′
j. By hypothesis, (x1, . . . , xi−1, xi + α, xi+1, . . . , xm) and

(x′
1, . . . , x′

j−1, x′
j + α, x′

j+1, . . . , x′
m) are related by root moves which pass only through

winning tuples (since these are tuples whose sum is x + α).
It is then enough to show that for a single root move (x1, . . . , xi−1, xi +

α, xi+1, . . . , xm) �→ (y1, . . . , ym) (with x�, y� ∈ �(P�) winning for all �, and
xi + α ∈ �(Pi) winning), there exists an index k such that yk − α is in �(Pk) and
winning, and such that (x1, . . . , xm) is related to (y1, . . . , yk−1, yk − α, yk+1, . . . , ym)
by root moves that pass only through tuples of winning elements. If there exists an
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index k such that xk = yk and 〈xk, α
∨〉 ≥ 1, then the statement follows immediately.

If not, then the root move is of the form (xi + α, xj) �→ (xi + α + β, xj − β) for some
β ∈ �, and 〈x�, α

∨〉 ≤ 0 for all � /∈ {i, j}. Since 〈x + α, α∨〉 ≥ 1 (as α is P-progressive
for x), it follows that 〈(xi + α) + xj, α

∨〉 ≥ 1, and hence 〈xi + xj, α
∨〉 ≥ −1. Now the

statement follows from Lemma A.8 (applied to the pair (xi, xj) together with α and
β); k will then be either i or j.
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29. B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8,
(American Mathematical Society, Providence, RI, 1996).

30. N. J. Wildberger, A combinatorial construction for simply-laced Lie algebras, Adv. in
Appl. Math. 30 (2003), 385–396.

31. N. J. Wildberger, Minuscule posets from neighbourly graph sequences, Euro. J. Combin.
24 (2003), 741–757.

https://doi.org/10.1017/S0017089513000542 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000542

