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Abstract. We study the values of the zeta-function of the root system of type
G2 at positive integer points. In our previous work we considered the case when all
integers are even, but in the present paper we prove several theorems which include the
situation when some of the integers are odd. The underlying reason why we may treat
such cases, including odd integers, is also discussed.
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1. Introduction. Let � be the set of positive integers, �0 = � ∪ {0}, � the ring
of rational integers, � the rational number field, � the real number field and � the
complex number field.

The present paper is the continuation of our series of papers [7, 10, 11, 15] (and
also [5,6,8,9]), in which we have developed the theory of zeta-functions of root systems.
Motivated by the work of Witten [23] in quantum gauge theory, Zagier [24] defined the
Witten zeta-function as

ζW (s, g) =
∑

ϕ

(dim ϕ)−s

associated with any complex semi-simple Lie algebra g, where the sum runs over all
finite-dimensional irreducible representations ϕ of g. The notion of zeta-functions of
root systems was introduced as a multi-variable generalisation of the Witten zeta-
functions. We will give the rigorous definition of the zeta-function of the root system �

in the next section, which we will denote by ζr(s, y; �), where r is the rank of �. By Weyl’s
dimension formula, it is possible to obtain the explicit form of ζr(s, y; �). For example,
when the root system is of type G2 and y = 0, then r = 2, s = (s1, s2, s3, s4, s5, s6) ∈ �6
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and

ζ2(s; G2) = ζ2(s, 0; G2)

=
∑

m,n≥1

1
ms1 ns2 (m + n)s3 (m + 2n)s4 (m + 3n)s5 (2m + 3n)s6

. (1.1)

In our former papers, besides the general theory, we studied some individual
cases of low rank. Zeta-functions of root systems of type Ar (r = 2, 3) were studied
in [5, 10, 15], and those of type Br, Cr (r = 2, 3) were studied in [7, 9, 10]. Then in [11],
the zeta-function of the root system of type G2, the simplest exceptional algebra, was
discussed.

The main topic in [11] is the situation when s1, . . . , s6 are positive even integers.
From our general result given in [10, Theorem 8], it is possible to show that

ζ2(2a, 2b, 2b, 2b, 2a, 2a; G2) ∈ � · π6(a+b) (a, b ∈ �). (1.2)

Moreover, the rational coefficients can be determined explicitly. In [11], using the idea
developed in [9], we proved certain functional relations [11, Theorem 5.1] which include
(1.2) as special cases.

However, it is possible to treat the case when some of s1, . . . , s6 are odd integers.
Zhao [26] expressed the values ζ2(k; G2) for k ∈ �6

0 (under certain conditions) in terms
of double polylogarithms. Using his formula, Zhao calculated numerically some of
those special values, for example

ζ2(2, 1, 1, 1, 1, 1; G2) = 0.0099527234 · · · . (1.3)

The parity result for ζ2(k; G2) in some extended sense has been shown by Okamoto [19].
We will discuss his result more closely in the last section of the present paper.

In the present paper, we also study the situation when some of s1, . . . , s6 are odd
integers. In Section 2, after preparing the basic notations and definitions, we will prove
a general theorem (Theorem 2.1), which gives the underlying reason why sometimes it
is possible to evaluate the values of multiple zeta-functions at odd integer points. In
Section 3, we will apply Theorem 2.1 to ζ2(s; G2). Sections 4 to 6 are devoted to the proof
of functional relations among ζ2(s; G2), the Riemann zeta-function ζ (s) and a certain
Dirichlet L-function. Those functional relations especially imply explicit evaluations
of special values of ζ2(s; G2), such as

ζ2(2, 1, 1, 1, 1, 1; G2) = 1
18

ζ (2)ζ (5) − 109
1296

ζ (7) (1.4)

(see Example 6.4), which we announced in [11]. Our result (1.4) agrees with Zhao’s [26]
numerical value (1.3).

2. A general formula. We use the same notation as in [5, 7, 10, 11]. We first recall
several basic definitions and facts about root systems and Weyl groups (for details,
see [2–4]).

Let V be an r-dimensional real vector space equipped with an inner product 〈·, ·〉.
The norm ‖·‖ is defined by ‖v‖ = 〈v, v〉1/2. The dual space V∗ is identified with V via
the inner product of V . Let � be a finite reduced root system in V , which may not be
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irreducible, and � = {α1, . . . , αr} its fundamental system. We fix �+ and �− as the set
of all positive roots and negative roots respectively. Then we have a decomposition of
the root system � = �+

∐
�− . Let Q = Q(�) be the root lattice, Q∨ the coroot lattice,

P = P(�) the weight lattice, P∨ the coweight lattice, P+ the set of integral dominant
weights and P++ be the set of integral strongly dominant weights respectively defined
by

Q =
r⊕

i=1

� αi, Q∨ =
r⊕

i=1

� α∨
i , (2.1)

P =
r⊕

i=1

� λi, P∨ =
r⊕

i=1

� λ∨
i , (2.2)

P+ =
r⊕

i=1

�0 λi, P++ =
r⊕

i=1

� λi, (2.3)

where the fundamental weights {λj}r
j=1 and the fundamental coweights {λ∨

j }r
j=1 are the

dual bases of �∨ and � satisfying 〈α∨
i , λj〉 = δij and 〈λ∨

i , αj〉 = δij respectively. Let

ρ = 1
2

∑
α∈�+

α =
r∑

j=1

λj (2.4)

be the lowest strongly dominant weight. Then P++ = P+ + ρ.
Let σα be the reflection with respect to a root α ∈ � defined as

σα : V → V, σα : v �→ v − 〈α∨, v〉α. (2.5)

For a subset A ⊂ �, let W (A) be the group generated by reflections σα for all α ∈ A.
In particular, W = W (�) is the Weyl group, and {σj(= σαj ) | 1 ≤ j ≤ r} generates W .
For w ∈ W , denote �w = �+ ∩ w−1�−.

Let Aut(�) be the subgroup of all the automorphisms GL(V ) which stabilises �.
Then the Weyl group W is a normal subgroup of Aut(�) and there exists a subgroup
� ⊂ Aut(�) such that Aut(�) = � � W . The subgroup � is isomorphic to the group
Aut(
) of automorphisms of the Dynkin diagram 
 (see [3, Section 12.2]).

Now we can define the zeta-function of the root system �. For s = (sα)α∈�+ ∈ �|�+|

and y ∈ V , it is defined by

ζr(s, y; �) =
∑

λ∈P++

e2π
√−1〈y,λ〉 ∏

α∈�+

1
〈α∨, λ〉sα

. (2.6)

Let

S = {s = (sα) ∈ �|�+| | �sα > 1 for α ∈ �+}.

Then ζr(s, y; �) is absolutely convergent in the region S and is holomorphic there
[10, Lemma 9].

Next, let I ⊂ {1, . . . , r} with I �= ∅, and define a certain linear combination
S(s, y; I ; �) of the zeta-function associated with I . Let �I = {αi | i ∈ I} ⊂ �, and let VI

be the linear subspace of V spanned by �I . Then �I = � ∩ VI is a root system in VI
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whose fundamental system is �I . For the root system �I , we denote the corresponding
coroot lattice by Q∨

I = ⊕
i∈I � α∨

i . Let

PI =
⊕
i∈I

� λi, (2.7)

PI+ =
⊕
i∈I

�0 λi. (2.8)

The natural embedding ι : Q∨
I → Q∨ induces the projection ι∗ : P → PI . Namely

for λ ∈ P, ι∗(λ) is defined as a unique element of PI satisfying 〈ι(q), λ〉 = 〈q, ι∗(λ)〉 for
all q ∈ Q∨

I . Let WI be the subgroup of W generated by all the reflections associated
with the elements in �I , and

W I = {w ∈ W | �∨
I+ ⊂ w�∨

+}. (2.9)

For s = (sα)α∈�+ ∈ �|�+|, we define an action of Aut(�) by

(ws)α = sw−1α, (2.10)

where we have set s−α = sα. Now define

S(s, y; I ; �) =
∑

λ∈ι∗−1(PI+)\H�∨

e2π
√−1〈y,λ〉 ∏

α∈�+

1
〈α∨, λ〉sα

, (2.11)

where H�∨ = {v ∈ V | 〈α∨, v〉 = 0 for some α ∈ �} is the set of all walls of the Weyl
chambers. By [10, Theorem 5], for s ∈ S and y ∈ V , we have

S(s, y; I ; �) =
∑
v∈W I

( ∏
α∈�

v−1

(−1)−sα

)
ζr(v−1s, v−1y; �). (2.12)

The following theorem implies that under certain conditions, the number of terms
on the right-hand side of (2.12) can be reduced.

THEOREM 2.1. Assume that there exist w1 ∈ Aut(�), s ∈ S and y ∈ V which satisfy
the conditions that sα ∈ � for α ∈ �w−1

1
,

( ∏
α∈�

w
−1
1

(−1)sα

)
= −1 (2.13)

and

w−1
1 s = s, w−1

1 y = y. (2.14)

Then we have

S(s, y; I ; �) = 1
2

( ∑
v∈W I \w1W I

( ∏
α∈�

v−1

(−1)−sα

)
ζr(v−1s, v−1y; �)

+
∑

v∈W I \w−1
1 W I

( ∏
α∈�

v−1

(−1)−sα

)
ζr(v−1s, v−1y; �)

)
. (2.15)
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Furthermore, if w−1
1 W I = w1W I , then

S(s, y; I ; �) =
∑

v∈W I \w1W I

( ∏
α∈�

v−1

(−1)−sα

)
ζr(v−1s, v−1y; �). (2.16)

Proof. We first prove that

( ∏
α∈�

w−1

(−1)sα

)
S(w−1s, w−1y; I ; �)

=
∑

v∈wW I ∩W I

( ∏
α∈�

v−1

(−1)−sα

)
ζr(v−1s, v−1y; �)

+
( ∏

α∈�
w−1

(−1)sα

) ∑
v∈wW I \W I

( ∏
α∈�

v−1w

(−1)−swα

)
ζr(v−1s, v−1y; �)

(2.17)

for any w ∈ Aut(�). Since ι∗−1(PI+) = ⋃
v∈W I vP+ by [10, Lemma 2], we can write the

left-hand side of (2.17) as

( ∏
α∈�

w−1

(−1)sα

) ∑
u∈W I

∑
λ∈uP++

e2π
√−1〈w−1y,λ〉 ∏

α∈�+

1
〈α∨, λ〉swα

. (2.18)

The inner sum of (2.18) is equal to

∑
λ∈uP++

e2π
√−1〈y,wλ〉 ∏

α∈�+

1
〈(wα)∨, wλ〉swα

=
∑

λ∈wuP++

e2π
√−1〈y,λ〉 ∏

α∈w�+

1
〈α∨, λ〉sα

,

and concerning the last product, since w�+ ∩ �− = w�w = −�w−1 , we have

∏
α∈w�+

1
〈α∨, λ〉sα

=
( ∏

α∈�
w−1

(−1)−sα

) ∏
α∈�+

1
〈α∨, λ〉sα

. (2.19)

Using this expression when wu ∈ W I , we see that (2.18) is equal to

∑
u∈W I

wu∈W I

∑
λ∈wuP++

e2π
√−1〈y,λ〉 ∏

α∈�+

1
〈α∨, λ〉sα

+
( ∏

α∈�
w−1

(−1)sα

) ∑
u∈W I

wu/∈W I

∑
λ∈uP++

e2π
√−1〈w−1y,λ〉 ∏

α∈�+

1
〈α∨, λ〉swα

= �1 +
( ∏

α∈�
w−1

(−1)sα

)
�2,

(2.20)
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say. Putting wu = v, we have

�1 =
∑

v∈wW I ∩W I

∑
λ∈vP++

e2π
√−1〈y,λ〉 ∏

α∈�+

1
〈α∨, λ〉sα

=
∑

v∈wW I ∩W I

∑
λ∈P++

e2π
√−1〈y,vλ〉 ∏

α∈�+

1
〈α∨, vλ〉sα

=
∑

v∈wW I ∩W I

∑
λ∈P++

e2π
√−1〈v−1y,λ〉 ∏

α∈v−1�+

1
〈α∨, λ〉svα

,

and, as in (2.19), the signature appears from the last product when α ∈ v−1�+ ∩ �− =
−�v, which is

∏
α∈�v

(−1)−svα =
∏

α∈�
v−1

(−1)−sα

because v�v = −�v−1 . Therefore, we obtain

�1 =
∑

v∈wW I ∩W I

( ∏
α∈�

v−1

(−1)−sα

) ∑
λ∈P++

e2π
√−1〈v−1y,λ〉 ∏

α∈�+

1
〈α∨, λ〉svα

=
∑

v∈wW I ∩W I

( ∏
α∈�

v−1

(−1)−sα

)
ζr(v−1s, v−1y; �).

(2.21)

Similarly, we can show

�2 =
∑

v∈wW I \W I

( ∏
α∈�

v−1w

(−1)−swα

)
ζr(v−1s, v−1y; �). (2.22)

Substituting (2.21) and (2.22) into (2.20), we obtain (2.17).
Now consider the equation

2S(s, y; I ; �) = S(s, y; I ; �) −
( ∏

α∈�
w

−1
1

(−1)sα

)
S(w−1

1 s, w−1
1 y; I ; �), (2.23)

which trivially follows from the assumptions (2.13) and (2.14). Substitute the
expansions (2.12) and (2.17) (with w = w1) to the right-hand side of (2.23). The
first sum on the right-hand side of (2.17) is cancelled with the part v ∈ w1W I ∩ W I of
(2.12), and hence

2S(s, y; I ; �) =
∑

v∈W I \wW I

( ∏
α∈�

v−1

(−1)−sα

)
ζr(v−1s, v−1y; �)

−
( ∏

α∈�
w−1

(−1)sα

) ∑
v∈wW I \W I

( ∏
α∈�

v−1w

(−1)−swα

)
ζr(v−1s, v−1y; �).

(2.24)
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We see that the second term on the right-hand side of (2.24) is, after renaming w−1v

by v and using (2.13) and (2.14), equal to
( ∏

α∈�
w−1

(−1)sα

) ∑
v∈W I \w−1W I

( ∏
α∈�

v−1

(−1)−swα

)
ζr(v−1w−1s, v−1w−1y; �)

= −
∑

v∈W I \w−1W I

( ∏
α∈�

v−1

(−1)−sα

)
ζr(v−1s, v−1y; �).

(2.25)

The desired results follow from (2.24) and (2.25). �
REMARK 2.2. The above Theorem 2.1 is stated under the condition s ∈ S. Treating

more carefully, however, we can generalise this theorem to the case when sα = 1 for
some of the α’s (cf. [10, Remark 2]).

REMARK 2.3. Since the right-hand sides of (2.15) and (2.16) include signature
factors, sometimes the right-hand side might be zero. If so, then Theorem 2.1 gives no
useful information. In the next section we will give examples when the right-hand side
does not vanish. This is the key point why we can sometimes treat the situation when
some of the variables are odd integers.

3. Application of Theorem 2.1 to the case G2. Hereafter in the present paper we
concentrate on the study of the zeta-function of the root system G2. The fundamental
system of G2 is � = {α1, α2}, where |α2| = √

3|α1| and the angle between α1 and α2 is
5π/6. Denote the positive roots by α1, . . . , α6, where

α3 = 3α1 + α2, α∨
3 = α∨

1 + α∨
2 ,

α4 = 3α1 + 2α2, α∨
4 = α∨

1 + 2α∨
2 ,

α5 = α1 + α2, α∨
5 = α∨

1 + 3α∨
2 ,

α6 = 2α1 + α2, α∨
6 = 2α∨

1 + 3α∨
2 ,

(3.1)

and we abbreviate σj = σαj . Applying Weyl’s dimension formula with the above data
to (2.6), we find that the form of the zeta-function of G2 is given by (1.1), with sj = sαj

(1 ≤ j ≤ 6).
Now we show an application of Theorem 2.1 to the G2 case. Assume that si are all

positive integers (≥ 2). Let I = {2}, y = 0 and w1 = w0σ1 with the longest element

w0 = σ1σ2σ1σ2σ1σ2 = σ2σ1σ2σ1σ2σ1 = −1.

Then we have w1 = w−1
1 = σ2σ1σ2σ1σ2 = −σ1, so w1α1 = α1, w1α2 = −α3, w1α3 =

−α2, w1α4 = −α4, w1α5 = −α6, w1α6 = −α5, and hence w−1
1 s = (s1, s3, s2, s4, s6, s5).

Therefore, when s2 = s3 and s5 = s6, we have w−1
1 s = s. Since

�w−1
1

= �+ ∩ w1�− = �+ ∩ σ1�+ = �+ \ {α1},

we have ( ∏
α∈�

w
−1
1

(−1)sα

)
= (−1)s2+s3+s4+s5+s6 .
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Therefore, we can apply Theorem 2.1 when s2 = s3, s5 = s6, and s2 + s3 + s4 + s5 + s6

is odd. It is easy to see that

WI = {1, σ2},
W I = {1, σ1, σ1σ2, σ1σ2σ1, σ1σ2σ1σ2, σ1σ2σ1σ2σ1},

w1W I = {σ2σ1σ2σ1σ2, σ1σ2σ1σ2σ1σ2, σ1σ2σ1σ2σ1, σ1σ2σ1σ2, σ1σ2σ1, σ1σ2},
and hence W I \ w1W I = {1, σ1}. Thus, by (2.16) we have

S(s, 0; {2}; G2) = ζ2(s, 0; G2) + (−1)s1ζ2(σ−1
1 s, 0; G2).

Since s2 = s3 and s5 = s6, we have σ−1
1 s = s. Therefore, if s1 is even, then the right-hand

side of the above is 2ζ2(s, 0; G2). The conclusion is as follows.

PROPOSITION 3.1. Let p, q, r, u ∈ �≥2 with even p and odd r. Then

S((p, q, q, r, u, u), 0; {2}; G2) = 2ζ2(p, q, q, r, u, u; G2). (3.2)

Similarly, we can treat the case I = {1}, y = 0. Then WI = {1, σ1} and

W I = {1, σ2, σ2σ1, σ2σ1σ2, σ2σ1σ2σ1, σ2σ1σ2σ1σ2}. (3.3)

In this case we choose w1 = w0σ2. Then W I \ w1W I = {1, σ2}. We can apply Theorem
2.1 when s1 = s5, s3 = s4, and s1 + s3 + s4 + s5 + s6 is odd. We obtain the following.

PROPOSITION 3.2. Let p, q, r, u ∈ �≥2 with even q and odd u. Then

S((p, q, r, r, p, u), 0; {1}; G2) = 2ζ2(p, q, r, r, p, u; G2). (3.4)

4. A functional relation corresponding to I = {1}. The results in the previous
sections are valid only in the case s ∈ S. Hereafter we study the situation which includes
the case when some of the variables take the value 1.

In this section we will show a functional relation which corresponds, in some sense,
to the case I = {1} in the preceding section. The discussion on the general situation
would require more pages, so here we restrict ourselves to the following one special
example.

EXAMPLE 4.1. The functional relation

ζ2(s, 2, 1, 1, 1, 1; G2) + ζ2(s, 1, 2, 1, 1, 1; G2) + ζ2(1, 2, 1, 1, s, 1; G2)

− ζ2(1, 1, 2, 1, 1, s; G2) + ζ2(1, 1, 1, 2, 1, s; G2) − ζ2(1, 1, 1, 2, s, 1; G2)

= ζ (2)ζ (s + 4) −
(

651
8

− 2−s−1 − 5 · 3−s−2

2

)
ζ (s + 6)

+ 9π

2

∑
m≥1

sin(2πm/3)
ms+5

− 135
∑
m≥1

cos(2πm/3)
ms+6

= ζ (2)ζ (s + 4) −
(

111
8

− 2−s−1
)

ζ (s + 6) + 81
4

L(1, χ3)L(s + 5, χ3) (4.1)
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holds for s ∈ � except for singularities on both sides, where L(·, χ3) denotes the
Dirichlet L-function attached to the primitive Dirichlet character χ3 of conductor
3.

Proof. We calculate

S((s, 2, 1, 1, 1, 1), 0, {1}; G2) (4.2)

in two ways. Using (2.12) and (3.3), we find that (4.2) is equal to the left-hand side of
(4.1). On the other hand, since P{1}+ = �0λ1, from (2.11) it follows that (4.2) is equal
to

∑
m≥1

∑
n �=0

m+n �=0
m+2n �=0
m+3n �=0

2m+3n �=0

1
msn2(m + n)(m + 2n)(m + 3n)(2m + 3n)

. (4.3)

Therefore, the remaining task is to show that (4.3) is equal to the right-hand side of
(4.1). A direct way of the proof is to rewrite (4.3) as

∑
m≥1

∑
n �=0
l1 �=0
l2 �=0
l3 �=0
l4 �=0

1
msn2l1l2l3l4

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
e2π ix1(m+n−l1)e2π ix2(m+2n−l2)

× e2π ix3(m+3n−l3)e2π ix4(2m+3n−l4)dx1dx2dx3dx4 (4.4)

and compute this by using

lim
M→∞

M∑
m=−M

e2π imθ

mk
= − (2π i)k

k!
Bk(θ − [θ ]) (k ∈ �; θ ∈ �) (4.5)

[1, Theorem 12.19], where [θ ] is the integer part of θ , and {Bn(x)} are the Bernoulli
polynomials defined by

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (4.6)

This method is based on an idea initiated by Zagier [25] and systematically used by
Nakamura [16–18] (and also in [13, 14]). However, if we follow this way, the necessary
computations are really enormous. Therefore, in order to reduce the total amount
of computations, we first modify (4.3) using partial fraction decompositions, before
applying the idea of Zagier–Nakamura.

First, using the partial fraction decomposition

1
(m + 3n)(2m + 3n)

= 1
m(m + 3n)

− 1
m(2m + 3n)

,

we divide (4.3) into two sums

∑ ∑∗ 1
ms+1n2(m + n)(m + 2n)(m + 3n)

−
∑ ∑∗ 1

ms+1n2(m + n)(m + 2n)(2m + 3n)
,
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where
∑∑∗ denotes the same double sum as in (4.3). We then apply the same type of

partial fraction decompositions some more times to find that (4.3) is equal to

2
∑ ∑∗ 1

ms+1n3(m + n)(m + 2n)
− 5

2

∑ ∑∗ 1
ms+1n4(m + n)

+ 1
2

∑ ∑∗ 1
ms+1n4(m + 3n)

+ 4
∑ ∑∗ 1

ms+1n4(2m + 3n)

= 2�1 − 5
2
�2 + 1

2
�3 + 4�4, (4.7)

say. We divide �1 as

�1 =
∑ ∑∗∗ −

∑ ∑
m+3n=0

∗∗ −
∑ ∑
2m+3n=0

∗∗
,

where
∑∑∗∗ denotes the sum over m ≥ 1, n �= 0, m + n �= 0 and m + 2n �= 0. Denote

the first term by �11. Putting m = 3l and n = −l in the second sum, we see that the
second term is

−
∞∑

l=1

1
(3l)s+1(−l)3(3l − l)(3l − 2l)

= 1
2 · 3s+1

ζ (s + 6).

Similarly, the third term is −3−s−12−3ζ (s + 6). Therefore, we have

�1 = �11 +
(

1
2 · 3s+1

− 1
233s+1

)
ζ (s + 6) = �11 + 1

233s
ζ (s + 6). (4.8)

As for �2, we divide it as

�2 =
∑ ∑∗∗∗ −

∑ ∑
m+2n=0

∗∗∗ −
∑ ∑
m+3n=0

∗∗∗ −
∑ ∑
2m+3n=0

∗∗∗
, (4.9)

where
∑∑∗∗∗ denotes the sum over m ≥ 1, n �= 0, m + n �= 0. Denote the first term

by �21 and evaluate the remaining three sums as above to obtain

�2 = �21 −
(

1
2s+1

− 1
243s−1

)
ζ (s + 6). (4.10)

Similarly,

�3 = �31 +
(

1
2

+ 1
2s+1

+ 1
243s+2

)
ζ (s + 6) (4.11)

and

�4 = �41 +
(

1 − 1
2s+1

− 1
3s+2

)
ζ (s + 6), (4.12)

where

�31 =
∑
m≥1

∑
n �=0

m+3n �=0

1
ms+1n4(m + 3n)

, �41 =
∑
m≥1

∑
n �=0

2m+3n �=0

1
ms+1n4(2m + 3n)

.
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Applying a partial fraction decomposition once more, we obtain

�11 =
∑ ∑∗∗ 1

ms+1n4(m + n)
−

∑ ∑∗∗ 1
ms+1n4(m + 2n)

.

On the right-hand side, we separate the part m + 2n = 0 from the first double sum and
separate the part m + n = 0 from the second double sum. We obtain

�11 = �21 − �� −
(

1 + 1
2s+1

)
ζ (s + 6), (4.13)

where

�� =
∑
m≥1

∑
n �=0

m+2n �=0

1
ms+1n4(m + 2n)

.

We evaluate �21. Recall the definition of the zeta-function of the root system A2

(or the Mordell–Tornheim double sum)

ζ2(s1, s2, s3; A2) =
∑

m,n≥1

1
ms1 ns2 (m + n)s3

.

The part corresponding to positive n of the sum �21 is exactly ζ2(s + 1, 4, 1; A2). The
part corresponding to negative n is, putting m − n = l when m > n and n − m = k
when m < n, equal to

∑
n,l≥1

1
(n + l)s+1n4l

−
∑

m,k≥1

1
ms+1(m + k)4k

= ζ2(4, s + 1, 1; A2) − ζ2(1, s + 1, 4; A2).

Therefore,

�21 = ζ2(s + 1, 4, 1; A2) + ζ2(4, s + 1, 1; A2) − ζ2(1, s + 1, 4; A2)

= −5ζ (s + 6) + 2ζ (2)ζ (s + 4) + 2ζ (4)ζ (s + 2), (4.14)

where the second equality can be seen by [9, Theorem 3.1].
As for ��, we apply the method of Zagier–Nakamura. Write �� as

�� =
∑
m≥1
n �=0
l �=0

1
ms+1n4l

∫ 1

0
e2π i(m+2n−l)θ dθ

=
∑
m≥1

1
ms+1

∫ 1

0
e2π imθ

∑
n�=0

e2π in·2θ

n4

∑
l �=0

e2π il(−θ)

l
dθ, (4.15)

and apply (4.5). We obtain

�� = (2π i)5

24

∑
m≥1

1
ms+1

(J1 + J2), (4.16)
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where

J1 =
∫ 1/2

0
e2π imθ B4(2θ )B1(1 − θ )dθ, J2 =

∫ 1

1/2
e2π imθ B4(2θ − 1)B1(1 − θ )dθ.

Since B1(x) = x − 1/2 and B4(x) = x4 − 2x3 + x2 − 1/30, the factors B4(2θ )B1(1 − θ )
and B4(2θ − 1)B1(1 − θ ) are polynomials in θ of degree 5. It is easy to see recursively
that

∫ 1/2

0
e2π imθ θkdθ =

k+1∑
j=1

(−1)j−1+mk!
(2π im)j2k+1−j(k + 1 − j)!

− (−1)kk!
(2π im)k+1

(4.17)

and

∫ 1

1/2
e2π imθ θkdθ =

k+1∑
j=1

(−1)j−1k!
(2π im)j(k + 1 − j)!

(
1 − (−1)m

2k+1−j

)
. (4.18)

Using these formulas, we can evaluate J1 and J2. Substituting the results into (4.16),
we find that �� can be written in terms of ζ (s) and φ(s) = ∑∞

m=1(−1)mm−s = (21−s −
1)ζ (s), more explicitly,

�� = π4

45
ζ (s + 2) + 4π2

3
ζ (s + 4) −

(
16 + 1

2s

)
ζ (s + 6). (4.19)

Substituting (4.14) and (4.19) into (4.13) we obtain

�11 = −π2ζ (s + 4) +
(

10 + 1
2s+1

)
ζ (s + 6), (4.20)

and so

2�11 − 5
2
�21 = −π4

18
ζ (s + 2) − 17π2

6
ζ (s + 4) +

(
65
2

+ 1
2s

)
ζ (s + 6). (4.21)

The evaluation of �31 and �41 is similar to that of ��. In these cases, instead of
(4.17) and (4.18), the integrals over the intervals [0, 1/3], [1/3, 2/3] and [2/3, 1] appear,
and hence the 3rd root of unity appears. We obtain

1
2
�31 + 4�41 = π4

18
ζ (s + 2) + 3π2ζ (s + 4) +

(
−911

8
− 1

2s+1
+ 5

2 · 3s+2

)
ζ (s + 6)

+ 9π

2

∑
m≥1

sin(2πm/3)
ms+5

− 135
∑
m≥1

cos(2πm/3)
ms+6

. (4.22)

Moreover, it is easy to see that

∑
m≥1

cos(2πm/3)
ms+6

= 3−s−5 − 1
2

ζ (s + 6), (4.23)
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∑
m≥1

sin(2πm/3)
ms+5

=
√

3
2

∑
m≥1

χ3(m)
ms+5

=
√

3
2

L(s + 5, χ3). (4.24)

Consequently, we can conclude that (4.3) coincides with the right-hand side of
(4.1). �

In particular, setting s = 1 in (4.1), we obtain that the left-hand side is equal to
2ζ2(1, 2, 1, 1, 1, 1; G2) (see (3.2)). Hence, we have

ζ2(1, 2, 1, 1, 1, 1; G2) = 1
2
ζ (2)ζ (5) − 109

16
ζ (7) + 81

8
L(1, χ3)L(6, χ3). (4.25)

REMARK 4.2. A little digression. Recall that the zeta-function of the root system
C2 is defined by

ζ2(s1, s2, s3, s4; C2) =
∑

m,n≥1

1
ms1 ns2 (m + n)s3 (m + 2n)s4

.

Divide �11 into two subsums accordingly as n ≥ 1 and n ≤ −1. Then the former part
is exactly ζ2(s + 1, 3, 1, 1; C2). The latter is further divided accordingly as m − n > 0
and m − n < 0. The part corresponding to m − n < 0 is −ζ2(s + 1, 1, 3, 1; C2), while
the remaining part is again divided into two subsums. The conclusion is that

�11 =ζ2(s + 1, 3, 1, 1; C2) − ζ2(s + 1, 1, 3, 1; C2)

+ ζ2(1, 1, 3, s + 1; C2) − ζ2(1, 3, 1, s + 1; C2). (4.26)

On the other hand, we have shown that �11 can be written in terms of ζ (s) (see
(4.20)). Combining these two formulas (4.26) and (4.20), we obtain a functional relation
between the zeta-function of C2 and the Riemann zeta-function, which is different from
the previously known relations ( [9, Section 8], [18, Section 5]).

5. Some lemmas. In the next section, we will deduce a functional relation
corresponding to the case I = {2} by a method different from that described in the
preceding section. In this section, we prepare several lemmas which are necessary in
the next section. First, the following lemma is a slight modification of [11, Lemma 4.2],
which can be proved similarly.

LEMMA 5.1. Let {Pm}, {Qm}, {Rm} be sequences such that

Pm =
[m/2]∑
j=0

Rm−2j
(iπ )2j

(2j)!
, Qm =

[m/2]∑
j=0

Rm−2j
(iπ )2j

(2j + 1)!
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for any m ∈ �0. Then

Pm = −2
[m/2]∑
τ=0

ζ (2τ )Qm−2τ , (5.1)

Q2h = 2
π2

h∑
τ=0

(
22h−2τ+2 − 1

)
ζ (2h − 2τ + 2)P2τ (5.2)

for any h ∈ �0.

Following is an important key to the argument in the next section.

LEMMA 5.2 [9, Lemma 6.3]. Let h ∈ �, λj = (1 + (−1)j)/2 for j ∈ � and

C := {
C(l) ∈ � | l ∈ �, l �= 0

}
,

D := {D(N; m; η) ∈ � | N, m, η ∈ �, N �= 0, m ≥ 0, 1 ≤ η ≤ h} ,

A := {aη ∈ � | 1 ≤ η ≤ h}

be sets of numbers indexed by integers. Assume that the infinite series appearing in

∑
N∈�
N �=0

(−1)NC(N)eiNθ − 2
h∑

η=1

aη∑
k=0

φ(aη − k)λaη−k (5.3)

×
k∑

ξ=0

⎧⎪⎨
⎪⎩

∑
N∈�
N �=0

(−1)ND(N; k − ξ ; η)eiNθ

⎫⎪⎬
⎪⎭

(iθ )ξ

ξ !

are absolutely convergent for θ ∈ [−π, π ], and that (5.3) is a constant function for
θ ∈ [−π, π ]. Then, for d ∈ �0,

∑
N∈�
N �=0

(−1)NC(N)eiNθ

Nd
− 2

h∑
η=1

aη∑
k=0

φ(aη − k)λaη−k

×
k∑

ξ=0

{ k−ξ∑
ω=0

(
ω + d − 1

ω

)
(−1)ω

∑
m∈�
m �=0

(−1)mD(m; k − ξ − ω; η)eimθ

md+ω

}
(iθ )ξ

ξ !

+ 2
d∑

k=0

φ(d − k)λd−k

k∑
ξ=0

{ h∑
η=1

aη−1∑
ω=0

(
ω + k − ξ

ω

)
(−1)ω

×
∑
m∈�
m �=0

D(m; aη − 1 − ω; η)
mk−ξ+ω+1

}
(iθ )ξ

ξ !
= 0 (5.4)

holds for θ ∈ [−π, π ], where the infinite series appearing on the left-hand side of (5.4)
are absolutely convergent for θ ∈ [−π, π ].

We prepare another lemma with the same feature, which is a slight generalisation
of [11, Lemma 4.4].
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LEMMA 5.3. Let h ∈ �,

A := {
α(l) ∈ � | l ∈ �, l �= 0

}
,

B := {β(N; m; η) ∈ � | N, m, η ∈ �, N �= 0, m ≥ 0, 1 ≤ η ≤ h} ,

C := {cη ∈ � | 1 ≤ η ≤ h}

be sets of numbers indexed by integers, and

R±(θ ) =
∑
m∈�
m �=0

(±i)mα(m)eimθ/2 − 2
h∑

η=1

cη∑
k=0

φ(cη − k)λcη−k

×
k∑

ξ=0

⎧⎪⎨
⎪⎩

∑
m∈�
m �=0

(±i)mβ(m; k − ξ ; η)eimθ/2

⎫⎪⎬
⎪⎭

(iθ )ξ

ξ !
. (5.5)

Assume that both of the right-hand sides of R±(θ ) in (5.5) are absolutely convergent for
θ ∈ [−π, π ], and that both R+(θ ) and R−(θ ) are constant functions on [−π, π ]. Then, for
d ∈ �,

∑
m∈�
m �=0

α(m)
md

− 2
h∑

η=1

[cη/2]∑
k=0

ζ (2k)
cη−2k∑
ω=0

(
ω + d − 1

ω

)
(−2)ω

∑
m∈�
m �=0

β(m; cη − 2k − ω; η)
md+ω

+ 2
h∑

η=1

[d/2]∑
k=0

ζ (2k)2−2k
cη−1∑
ω=0

(
ω + d − 2k

ω

)
(−2)ω

×
∑
m∈�
m �=0

((−1)m + 1)β(m; cη − 1 − ω; η)
md−2k+ω+1

− 2
h∑

η=1

[(d+1)/2]∑
k=0

ζ (2k)
(
1 − 2−2k) cη−1∑

ω=0

(
ω + d − 2k

ω

)
(−2)ω

×
∑
m∈�
m �=0

((−1)m − 1)β(m; cη − 1 − ω; η)
md−2k+ω+1

= 0 (5.6)

for θ ∈ [−π, π ], where the infinite series appearing on the left-hand side of (5.6) are
absolutely convergent for θ ∈ [−π, π ].

Proof. We just indicate how to modify the proof of [11, Lemma 4.4] to obtain
the above lemma. Let G±

N (θ ) and C±
n be as in the proof of [11, Lemma 4.4]. Putting

N = d + 1 for d ∈ � and θ = π in [11, (4.11)], we obtain

id

2π

{
G+

d+1(π ) − G+
d+1(−π )

} =
[d/2]∑
ν=0

C
+
d−2ν2d−2ν (iπ )2ν

(2ν + 1)!
. (5.7)
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Similarly, we have

id+1

2

{
G+

d+1(π ) + G+
d+1(−π )

} =
[(d+1)/2]∑

ν=0

C
+
d+1−2ν2d+1−2ν (iπ )2ν

(2ν)!
. (5.8)

These are analogues of [11, (4.12)] and [11, (4.13)], with 2d replaced by d and d + 1
respectively. By Lemma 5.1, we have

id

2

{
G+

d (π ) + G+
d (−π )

}

= − id

π

[d/2]∑
τ=0

ζ (2τ )(−1)τ
{
G+

d+1−2τ (π ) − G+
d+1−2τ (−π )

}
,

(5.9)

and similarly,

1
2

{
G−

d (π ) − G−
d (−π )

}

= 1
π

[(d−1)/2]∑
ρ=0

(
22ρ+2 − 1

)
ζ (2ρ + 2)(−1)ρ

{
G−

d−1−2ρ(π ) + G−
d−1−2ρ(−π )

}

= − 1
π

[(d+1)/2]∑
τ=1

(
22τ − 1

)
ζ (2τ )(−1)τ

{
G−

d+1−2τ (π ) + G−
d+1−2τ (−π )

}
. (5.10)

We evaluate each side of (5.9) in the same way as in the proof of [11, Lemma 4.4] with
obvious modifications. The result is almost the same as [11, (4.17)], just replacing 2d
by d, and the summation

∑d
ξ=0 by

∑[d/2]
ξ=0 . Similarly, from (5.10) we obtain a formula

which is almost the same as [11, (4.19)], just replacing 2d by d, and the summation∑d
ξ=0 by

∑[(d+1)/2]
ξ=0 . Combining those two formulas we obtain (5.6). �

6. A functional relation corresponding to I = {2}. Using the lemmas in the
previous section, we now construct a functional relation among ζ2(s; G2), ζ (s) and
φ(s) = (21−s − 1)ζ (s), which corresponds to the case I = {2} in Section 2.

THEOREM 6.1. For p, q, r, u, v ∈ �,

ζ2(p, s, q, r, u, v; G2) + (−1)pζ2(p, q, s, r, v, u; G2) + (−1)p+qζ2(v, q, r, s, p, u; G2)

+ (−1)p+q+vζ2(v, r, q, s, u, p; G2) + (−1)p+q+r+vζ2(u, r, s, q, v, p; G2)

+ (−1)p+q+r+u+vζ2(u, s, r, q, p, v; G2)

+ I1 + I2 + · · · + I8 = 0

(6.1)

holds for all s ∈ � except for singularities of functions on the left-hand side, where Ij

(1 ≤ j ≤ 8), defined below, are linear combinations of ζ (s) and φ(s).

The definition of Ij is given by

Ij = Aj + B1j + B2j (1 ≤ j ≤ 8),
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where Aj, B1j, B2j (1 ≤ j ≤ 8) are defined as follows:

Aj = 2(−1)p+a1

[a2/2]∑
k=0

ζ (2k)
a2−2k∑
σ=0

(
σ + v − 1

σ

) a3−a4∑
ρ=0

(
ρ + u − a5

ρ

)

×
a6−a7∑
ω=0

(
ω + r − a8

ω

)(
p + q − 1 − ω − a7

a9 − 1

)

× (−1)a10 2a11 3a12ζ (s + p + q + r + u + v − 2k),

B1j = 2(−1)p+b1

[v/2]∑
k=0

2−2kζ (2k)
a2−1∑
σ=0

(
σ + v − 2k

σ

) a3−b4∑
ρ=0

(
ρ + u − b5

ρ

)

×
a6−b7∑
ω=0

(
ω + r − b8

ω

)(
p + q − 1 − ω − b7

a9 − 1

)
(−1)a10 2b11 3b12

× {ζ (s + p + q + r + u + v − 2k) + φ(s + p + q + r + u + v − 2k)}

and

B2j = 2(−1)p+b1

[(v+1)/2]∑
k=0

(1 − 2−2k)ζ (2k)
a2−1∑
σ=0

(
σ + v − 2k

σ

) a3−b4∑
ρ=0

(
ρ + u − b5

ρ

)

×
a6−b7∑
ω=0

(
ω + r − b8

ω

)(
p + q − 1 − ω − b7

a9 − 1

)
(−1)a10 2b11 3b12

× {ζ (s + p + q + r + u + v − 2k) − φ(s + p + q + r + u + v − 2k)},

where al = al(j), bl = bl(j) are as follows: According to j = 1, . . . , 8, al (1 ≤ l ≤ 12)
take the values

a1 = 1, v + 1, 1, v, v + 1, v, v, v + 1,

a2 = p, u, q, u, r, u, r, u,

a3 = p, p, q, q, r, r, r, r,

a4 = 2k + σ, 1, 2k + σ, 1, 2k + σ, 1, 2k + σ, 1,

a5 = 1, 2k + σ, 1, 2k + σ, 1, 2k + σ, 1, 2k + σ,

a6 = p, p, q, q, p, p, q, q,

a7 = 2k + σ + ρ, 1 + ρ, 2k + σ + ρ, 1 + ρ, 1, 1, 1, 1,

a8 = 1, 1, 1, 1, 2k + σ + ρ, 1 + ρ, 2k + σ + ρ, 1 + ρ,

a9 = q, q, p, p, q, q, p, p,

a10 = 0, 0, σ + ρ + ω, ρ + ω, ρ, ρ, ρ + ω, ρ + ω,

a11 = σ − r − ω, σ − r − ω, σ − u − ρ,−u + 2k + 2σ − ρ − 1,

− r + 2k + 2σ + ρ − ω − 1,−r + σ + ρ − ω, σ, σ
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and

a12 = −u − v − σ − ρ,−u − v + 2k − ρ − 1, 0,−v − σ, 0,−v − σ, 0,−v − σ.

Next, define bl (l = 1, 4, 5, 7, 8, 11, 12). First,

b1 = 1, v + 1, 0, v, v + 1, v, v, v + 1.

The definitions of b4, b5, b7, b8 are similar to a4, a5, a7, a8, but all 2k + σ are
replaced by 1 + σ . Finally,

b11 = σ − r − ω, σ − r − ω, σ − u − ρ,−u + 2σ − ρ,

− r + 2σ + ρ − ω,−r + σ + ρ − ω, σ, σ,

and

b12 = −u − v + 2k − σ − ρ − 1,−u − v + 2k − ρ − 1, 0,−v + 2k − σ − 1,

0,−v + 2k − σ − 1, 0,−v + 2k − σ − 1.

REMARK 6.2. When p, q, r, u, v are even, Formula (6.1) coincides with our previous
result given in [11, Theorem 5.1]. On this occasion we correct some misprints in the
statement of [11, Theorem 5.1]. On [11, line 8, p. 202], we should replace

(2p+2q−2−ρ−ω

2q−1

)
by

(2p+2q−2−ρ−ω

2p−1

)
. On [11, lines 12 and 16, p. 203], we should replace 3−2v−σ by

3−2v−σ−1+2k.

Proof of Theorem 6.1. The technique to prove this theorem is essentially the same
as in our previous papers (see [11, Section 5]; also [9, Section 7], [12, Section 5]). Hence,
it is enough to give a sketch of the proof here.

From [12, Lemma 5.3], we have

∑
l �=0, m≥1
l+m �=0
l+2m �=0

(−1)l+mxmei(l+m)θ

lpms(l + m)q

− 2
p∑

j=0

φ(p − j)εp−j

j∑
ξ=0

(
q − 1 + j − ξ

q − 1

)
(−1)j−ξ

∞∑
m=1

(−1)mxmeimθ

ms+q+j−ξ

(iθ )ξ

ξ !

+ 2
q∑

j=0

φ(q − j)εq−j

j∑
ξ=0

(
p − 1 + j − ξ

p − 1

)
(−1)p−1

∞∑
m=1

xm

ms+p+j−ξ

(iθ )ξ

ξ !

= − (−1)p+q

2p

∞∑
m=1

xm

ms+p+q
(6.2)
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for p, q ∈ �, θ ∈ [−π, π ], s ∈ � with s > 1 and x ∈ � with |x| = 1. By Lemma 5.2 with
d = r ∈ �, we have

∑
l∈�, l �=0

m≥1
l+m �=0
l+2m �=0

(−1)lxmei(l+2m)θ

lpms(l + m)q(l + 2m)r

− 2
p∑

j=0

φ(p − j) λp−j

j∑
ξ=0

j−ξ∑
ω=0

(
ω + r − 1

ω

)
(−1)ω

×
(

q − 1 + j − ξ − ω

b − 1

)
(−1)j−ξ−ω 1

2r+ω

∞∑
m=1

xme2imθ

ms+q+j−ξ+r

(iθ )ξ

ξ !

+ 2
q∑

j=0

φ(q − j) λq−j

j∑
ξ=0

j−ξ∑
ω=0

(
ω + r − 1

ω

)
(−1)ω

×
(

p − 1 + j − ξ − ω

p − 1

)
(−1)p−1

∞∑
m=1

(−1)mxmeimθ

ms+p+r+j−ξ

(iθ )ξ

ξ !

+ 2
r∑

j=0

φ(r − j) λr−j

j∑
ξ=0

p−1∑
ω=0

(
ω + j − ξ

ω

)
(−1)ω

×
(

p + q − 2 − ω

q − 1

)
(−1)p−1−ω 1

2j−ξ+ω+1

∞∑
m=1

xm

ms+p+q+j−ξ

(iθ )ξ

ξ !

− 2
r∑

j=0

φ(r − j) λr−j

j∑
ξ=0

q−1∑
ω=0

(
ω + j − ξ

ω

)
(−1)ω

×
(

p + q − 2 − ω

p − 1

)
(−1)p−1

∞∑
m=1

xm

ms+p+q+j−ξ

(iθ )ξ

ξ !
= 0

for θ ∈ [−π, π ], p, q, r ∈ �, s ∈ � with s > 1 and x ∈ � with |x| ≤ 1. Here we replace
x by −xeiθ and move the terms corresponding to l + 3m = 0 of the first member on
the left-hand side of the above equation to the right-hand side. Then we have

∑
l∈�, l �=0

m≥1
l+m �=0

l+2m �=0
l+3m �=0

(−1)l+mxmei(l+3m)θ

lpms(l + m)q(l + 2m)r

− 2
p∑

j=0

φ(p − j) λp−j

j∑
ξ=0

j−ξ∑
ω=0

(
ω + r − 1

ω

)
(−1)ω

×
(

q − 1 + j − ξ − ω

q − 1

)
(−1)j−ξ−ω 1

2r+ω

∞∑
m=1

(−1)mxme3imθ

ms+q+r+j−ξ

(iθ )ξ

ξ !

+ 2
q∑

j=0

φ(q − j) λq−j

j∑
ξ=0

j−ξ∑
ω=0

(
ω + r − 1

ω

)
(−1)ω
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×
(

p − 1 + j − ξ − ω

p − 1

)
(−1)p−1

∞∑
m=1

xme2imθ

ms+p+r+j−ξ

(iθ )ξ

ξ !

+ 2
r∑

j=0

φ(r − j) λr−j

j∑
ξ=0

p−1∑
ω=0

(
ω + j − ξ

ω

)
(−1)ω

×
(

p + q − 2 − ω

q − 1

)
(−1)p−1−ω 1

2j−ξ+ω+1

∞∑
m=1

(−1)mxmeimθ

ms+p+q+j−ξ

(iθ )ξ

ξ !

+ 2
r∑

j=0

φ(r − j) λr−j

j∑
ξ=0

q−1∑
ω=0

(
ω + j − ξ

ω

)
(−1)ω

×
(

p + q − 2 − ω

p − 1

)
(−1)p−1

∞∑
m=1

(−1)mxmeimθ

ms+p+q+j−ξ

(iθ )ξ

ξ !

= − (−1)p+q+r

32p22q

∞∑
m=1

xm

ms+p+q+r
.

We again apply Lemma 5.2 with d = u ∈ � to the above equation. Then we have

∑
l∈�, l �=0

m≥1
l+m �=0
l+2m �=0
l+3m �=0

(−1)l+mxmei(l+3m)θ

lpms(l + m)q(l + 2m)r(l + 3m)u

+ J1(θ ; x) + J2(θ ; x) + J3(θ ; x) + J4(θ ; x) = 0,

(6.3)

where

J1(θ ; x)

= −2
p∑

j=0

φ(p − j) λp−j

j∑
ξ=0

j−ξ∑
ρ=0

(
ρ + u − 1

ρ

)
(−1)ρ

j−ξ−ρ∑
ω=0

(
ω + r − 1

ω

)
(−1)ω

× 3−u−ρ

(
q − 1 + j − ξ − ρ − ω

q − 1

)
(−1)j−ξ−ρ−ω

2r+ω

∞∑
m=1

(−1)mxme3imθ

ms+q+r+u+j−ξ

(iθ )ξ

ξ !

+ 2
u∑

j=0

φ(u − j) λu−j

j∑
ξ=0

p−1∑
ρ=0

(
ρ + j − ξ

ρ

)
(−1)ρ

p−1−ρ∑
ω=0

(
ω + r − 1

ω

)
(−1)ω

× 3−j+ξ−ρ−1
(

p + q − 2 − ρ − ω

q − 1

)
(−1)p−1−ρ−ω

2r+ω

∞∑
m=1

xm

ms+p+q+r+2j−ξ

(iθ )ξ

ξ !
.

We can similarly write J2(θ ; x), J3(θ ; x) and J4(θ ; x), but these are omitted for the
purpose of saving space.
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Next, setting x = ±ie−3iθ/2 in (6.3) and moving the terms corresponding to 2l +
3m = 0 of the first member on the left-hand side to the right-hand side, we have

∑
l∈�, l �=0

m≥1
l+m �=0

l+2m �=0
l+3m �=0
2l+3m �=0

(−1)l+m(±i)mei(2l+3m)θ/2

lpms(l + m)q(l + 2m)r(l + 3m)u

+ J1(θ ; ±ie−3iθ/2) + J2(θ ; ±ie−3iθ/2) + J3(θ ; ±ie−3iθ/2) + J4(θ ; ±ie−3iθ/2)

= −
∞∑

l,m=1
2l=3m

1
(−l)pms(−l + m)q(−l + 2m)r(−l + 3m)u

.

(6.4)

Note that (−1)l+m(±i)m = (±i)2l+3m. Hence, we can apply Lemma 5.3 with d = v ∈ �

to (6.4) because we can see that the left-hand side of (6.4) is of the same form as the
right-hand side of (5.5). Consequently, we obtain the equation given from (5.6). The
first term on the left-hand side of the obtained equation is

∑
l∈�, l �=0

m≥1
l+m �=0
l+2m �=0
l+3m �=0

2l+3m �=0

1
lpms(l + m)q(l + 2m)r(l + 3m)u(2l + 3m)v

, (6.5)

while the remaining terms on the left-hand side of the obtained equation can be
expressed explicitly in terms of the Riemann zeta-function, which are I1 + · · · + I8 in
the statement of the theorem. On the other hand, we see that (6.5) is equal to

ζ2(p, s, q, r, u, v; G2) + (−1)pζ2(p, q, s, c, v, u; G2) + (−1)p+qζ2(v, q, r, s, p, u; G2)

+ (−1)p+q+vζ2(v, r, q, s, u, p; G2) + (−1)p+q+r+vζ2(u, r, s, q, v, a; G2)

+ (−1)p+q+r+u+vζ2(u, s, r, q, p, v; G2). (6.6)

This can be shown by decomposing (6.5) by the same argument as in [9, Section 7]; or,
since (6.5) coincides with S(p, s, q, r, u, v), 0; {2}; G2) (see (2.11)), (6.6) simply follows
from (2.12). Thus we obtain the assertion of the theorem. �

Setting (p, q, r, u, v) = (2a, b, 2c − 1, d, d) for a, b, c, d ∈ � in (6.1), we see that

ζ2(2a, s, b, 2c − 1, d, d; G2) + ζ2(2a, b, s, 2c − 1, d, d; G2)

+ (−1)bζ2(d, b, 2c − 1, s, 2a, d; G2) + (−1)b+dζ2(d, 2c − 1, b, s, d, 2a; G2)

− (−1)b+dζ2(d, 2c − 1, s, b, d, 2a; G2) − (−1)bζ2(d, s, 2c − 1, b, 2a, d; G2) (6.7)

is expressed in terms of ζ (s) and φ(s). As we noted above (see (6.6)), (6.7) coincides
with

S((2a, s, b, 2c − 1, d, d), 0; {2}; G2).

In particular when s = b, it is equal to 2ζ2(2a, b, b, 2c − 1, d, d); G2) (see (3.2)).
Therefore, we have the following.
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COROLLARY 6.3. For a, b, c, d ∈ �,

ζ2(2a, b, b, 2c − 1, d, d; G2) ∈ �[{ζ (j) | j ∈ �≥2}]. (6.8)

EXAMPLE 6.4. Putting (p, q, r, u, v) = (2, 1, 1, 1, 1) in (6.1), we have

ζ2(2, s, 1, 1, 1, 1; G2) + ζ2(2, 1, s, 1, 1, 1; G2) − ζ2(1, 1, 1, s, 2, 1; G2)

+ ζ2(1, 1, 1, s, 1, 2; G2) − ζ2(1, 1, s, 1, 1, 2; G2) + ζ2(1, s, 1, 1, 2, 1; G2)

− 1
9
ζ (2)ζ (s + 4) + 109

648
ζ (s + 6) = 0.

Setting s = 1, we obtain a special case of (6.8), that is,

ζ2(2, 1, 1, 1, 1, 1; G2) = 1
18

ζ (2)ζ (5) − 109
1296

ζ (7), (6.9)

which is (1.4) noted in Section 1. Similarly, we can compute

ζ2(4, 1, 1, 1, 1, 1; G2) = 1
18

ζ (4)ζ (5) + 145
648

ζ (2)ζ (7) − 19753
46656

ζ (9), (6.10)

ζ2(2, 1, 1, 1, 2, 2; G2) = −187
324

ζ (2)ζ (7) + 11149
11664

ζ (9), (6.11)

ζ2(4, 2, 2, 1, 1, 1; G2) = 1
18

ζ (4)ζ (7) + 595
648

ζ (2)ζ (9) − 73201
46656

ζ (11), (6.12)

ζ2(2, 1, 1, 5, 3, 3; G2) = 5
4
ζ (4)ζ (11) + 1043857

23328
ζ (2)ζ (13) − 41971423

559872
ζ (15), (6.13)

ζ2(4, 2, 2, 1, 4, 4; G2) = 61441
209952

ζ (4)ζ (13) + 600677
944784

ζ (2)ζ (15) − 23172773
17006112

ζ (17),

(6.14)

ζ2(2, 4, 4, 3, 3, 3; G2) = 1
8
ζ (4)ζ (15) + 281221

23328
ζ (2)ζ (17) − 11177971

559872
ζ (19). (6.15)

7. The parity result for the zeta-function of the root system G2. We conclude this
paper with a discussion on the parity result for the zeta-function of G2.

It is well known that the double zeta values satisfy that

∞∑
m,n=1

1
mp(m + n)q

∈ �[{ζ (j + 1) | j ∈ �}]

for p, q ∈ � with q ≥ 2 and 2 � (p + q), which was proved by Euler. The same situation
holds for the zeta values of type A2 (see [21]) and of type B2 (see [22]):

ζ2(p, q, r; A2), ζ2(t, u, v, w; B2) ∈ �[{ζ (j + 1) | j ∈ �}]

for p, q, r, t, u, v, w ∈ � with 2 � (p + q + r) and 2 � (t + u + v + w). These may be
regarded as examples of ‘parity results’. (In general, a ‘parity result’ means a property
that some multiple zeta value whose weight and depth are of different parity can be
written in terms of multiple zeta values of lower depth.) Does the same type of assertion
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hold for ζ2(p, q, r, u, v, w; G2)? It seems that the answer is negative; in view of Example
4.1 (especially (4.25)), we find that the following modified statement is more plausible:

ζ2(p, q, r, u, v, w; G2)
?∈ �[{ζ (j + 1), L(j, χ3) | j ∈ �}] (7.1)

for p, q, r, u, v, w ∈ � with 2 � (p + q + r + u + v + w).
In this direction, an interesting result was given in Okamoto’s paper [19]. Inspired

by the work of Nakamura [18] and Onodera [20], Okamoto proved (his Theorems 2.3
and 4.5) that the values of certain generalised double zeta-functions, including the case
ζ2(p, q, r, u, v, w; G2) with 2 � (p + q + r + u + v + w), can be expressed in terms of the
Riemann zeta values and the values of Clausen-type functions, that is,

Sr(x) =
∑
m≥1

sin(2πmx)
mr

or Cr(x) =
∑
m≥1

cos(2πmx)
mr

(r ∈ �)

with x = j/ l ∈ � (l ∈ �, 0 ≤ j < l). Moreover in his formula, in the case of G2, only
the cases l = 1, 2, 3, 4, 6 and 12 of Clausen-type functions appear. For l = 1, 2, 3 and
6, the values Sr(j/ l) and Cr(j/ l) can be written in terms of the values of ζ (s) and
L(s, χ3), similar to (4.23) and (4.24). Therefore, Okamoto’s result implies that if 2 �
(p + q + r + u + v + w), then the value ζ2(p, q, r, u, v, w; G2) can be written in terms of
ζ (s), L(s, χ3), Sr(j/ l) and Cr(j/ l) for l = 4, 12 and 0 < j < l with (j, l) = 1. This may
be regarded as a kind of ‘generalised parity result’.

If we apply Okamoto’s theorem [19] directly, we obtain a rather long expression
of special values in terms of Clausen-type functions. But we have checked, using
PARI/GP, that his expression actually agrees with our expression for (4.25), (6.9),
(6.10), (6.11) and (6.12). To check other examples ((6.13), (6.14), (6.15)) we would
require much more running time, so we did not check them.

Although only the values of ζ (s), L(s, χ3) appear in all of our examples, we are
not sure whether Sr(j/ l) or Cr(j/ l) (l = 4, 12; 0 < j < l, (j, l) = 1) will appear or not
(in other words, (7.1) would hold or not) in some other examples.

It seems that for the zeta-function of the root system G2, the parity result is valid
only in this generalised form. On the other hand, our Example 6.4 shows that sometimes
the value ζ2(p, q, r, u, v, w; G2), with 2 � (p + q + r + u + v + w), can be expressed only
by the values of ζ (s). It is an interesting problem to determine when such a restricted
form of the parity result holds.
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