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Abstract. We give a means of estimating the equivariant compression of a group G
in terms of properties of open subgroups Gi ⊂ G whose direct limit is G. Quantifying
a result by Gal, we also study the behaviour of the equivariant compression under
amalgamated free products G1 ∗H G2 where H is of finite index in both G1 and G2.
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1. Introduction. The Haagerup property, which is a strong converse of Kazhdan’s
property (T), has translations and applications in various fields of mathematics such
as representation theory, harmonic analysis, operator K-theory and so on. It implies
the Baum–Connes conjecture and related Novikov conjecture [7]. We use the following
definition of the Haagerup property.

DEFINITION 1.1. A locally compact second countable group G is said to satisfy the
Haagerup property if it admits a continuous proper affine isometric action α on some
Hilbert space H. Here, proper means that for every M > 0, there exists a compact
set K ⊂ G such that ‖α(g)(0)‖ ≥ M whenever g ∈ G \ K . We say that the action is
continuous if the associated map G × H → H, (g, v) 	→ α(g)(v) is jointly continuous.

CONVENTION 1.2. Throughout this paper, all actions are assumed continuous and all
groups will be second countable and locally compact.

Recall that any affine isometric action α can be written as π + b where π is a
unitary representation of G and where b : G → H, g 	→ α(g)(0) satisfies

∀g, h ∈ G : b(gh) = π (g)b(h) + b(g). (1)

In other words, b is a 1-cocycle associated to π .
In [13], the authors define compression as a means to quantify how strongly a finitely

generated group satisfies the Haagerup property. More generally, assume that G is a
compactly generated group. Denote by S some compact generating subset and equip
G with the word length metric relative to S. Using the triangle inequality, one checks
easily that any 1-cocycle b associated to a unitary action of G on a Hilbert space is
Lipschitz. On the other hand, one can look for the supremum of r ∈ [0, 1] such that
there exists C, D > 0 with

∀g ∈ G :
1
C

|g|r − D ≤ ‖b(g)‖ ≤ C|g| + D.
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DEFINITION 1.3. The above supremum, denoted R(b), is called the compression of
b and taking the supremum over all proper affine isometric actions of G on all Hilbert
spaces leads to the equivariant Hilbert space compression of G, denoted α#

2 (G). Suppose
now that G is no longer compactly generated but still has a proper length function.
Then, define α#

2 (G) to be the supremum of R(b) but over all large-scale Lipschitz
1-cocycles.

The equivariant Hilbert space compression contains information on the group.
First of all, if α#

2 (G) > 0, then G is Haagerup. The converse was disproved by T. Austin
in [4], where the author proves the existence of finitely generated amenable groups with
equivariant compression 0. Further, it was shown in [13] that if for a finitely generated
group α#

2 (G) > 1/2, then G is amenable. This result was generalized to compactly
generated groups in [9] and it provides some sort of converse for the well-known fact
that amenability implies the Haagerup property. Much effort has been done to calculate
the explicit equivariant compression value of several groups and classes of groups, see
e.g. [2, 5, 12, 19, 20].

Given two finitely generated group G and H the group
⊕

H G is no longer
finitely generated. However, we can view

⊕
H G as a subspace of G � H and so equip⊕

H G with a natural proper metric. In this article, we are motivated by comparing
the compression of

⊕
H G with G � H. We assume that a given group G, equipped

with a proper length function l, can be viewed as a direct limit of open (hence
closed) subgroups G1 ⊂ G2 ⊂ G3 ⊂ . . . ⊂ G. We equip each Gi with the subspace
metric from G. Our main objective will be to find bounds on α#

2 (G) in terms of
properties of the Gi. Note that, as each Gi is a metric subspace of G, we have
α#

2 (G) ≤ inf i∈� α#
2 (Gi). The main challenge is to find a sensible lower bound on α#

2 (G).
The key property that we introduce is the (α, l, q) polynomial property, which we
shorten to (α, l, q)-PP (see Definition 2.5 below). Precisely, we obtain the following
result.

THEOREM 1.4. Let G be a locally compact, second countable group equipped with a
proper length function l. Suppose there exists a sequence of open subgroups (Gi)i∈�, each
equipped with the restriction of l to Gi, such that lim−→ Gi = G and α = inf{α#

2 (Gi)} > 0.
If (Gi)i∈� has (α, l, q)-PP, then there are the following two cases:

l ≥ q ⇒ α#
2 (G) ≥ α

2l + 1
,

or,

l ≤ q ⇒ α#
2 (G) ≥ α

l + q + 1
.

We use this result to obtain a lower bound of the compression of the following
examples. Let F : [0, 1] × �≥0 → � be the function

F(α, d) =
{

d(2α − 1) if 2α ≥ 1

0 otherwise.
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THEOREM 1.5. Let G and H be finitely generated groups where H has polynomial
growth of degree d ≥ 1. Then,

α#
2

(⊕
H

G

)
≥ α#

2 (G)

1 + F(α#
2 (G), d) + 2α#

2 (G)(1 + d)
,

where
⊕

H G is equipped with the subspace metric from G � H.

Our result also allows to consider spaces
⊕

H Gh where Gh actually depends on the
parameter h ∈ H. For example, we take a collection of finite groups Fi with F0 = {0}
and look at G = ⊕

i∈� Fi. This is the first available lower bound for the equivariant
compression of groups of this type.

THEOREM 1.6. Let {Fi}i∈� be a collection of finite groups. Equip G = ⊕
i∈� Fi with

the length function l(g) = min
{
n ∈ � : g ∈ ⊕n

i=0Fi
}
. Then, α#

2 (G, l) > 1/3.

We give a proof of Theorem 1.4 in Section 2.2 and apply to these concrete
examples in Section 2.3. Note that our result can also be viewed as a study of
the behaviour of equivariant compression under direct limits. The behaviour of the
Haagerup property and the equivariant compression under group constructions has
been studied extensively (see e.g. [11, 18], Chapter 6 of [1, 7, 8]).

In Section 3, we quantify part of [12] to study the behaviour of the equivariant
compression under certain amalgamated free products G1 ∗H G2 where H is of finite
index in both G1 and G2. Suppose H is a closed finite index subgroup inside groups
compactly generated groups G1 and G2 and there exists proper affine isometric actions
βi : Gi → Aff(Vi) on Hilbert spaces Vi. In [12], the author shows that if there exists
a non-trivial closed subspace W ⊂ V1 ∩ V2 that is fixed by the restricted actions βi|H
then the product G1 ∗H G2 also admits a proper affine isometric action on a Hilbert
space. We quantify this result.

THEOREM 1.7. With the above assumptions α#
2 (G1 ∗H G2) ≥ α#

2 (H)
2

2. The equivariant compression of direct limits of groups

2.1. Preliminaries and formulation of the main result. Suppose G is a locally
compact second countable group equipped with a proper length function l, i.e. closed
l-balls are compact. Assume that there exists a sequence of open subgroups Gi ⊂ G
such that lim−→ Gi = G, i.e. G is the direct limit of the Gi. We equip each Gi with the
restriction of l to Gi. It will be our goal to find bounds on α#

2 (G) in terms of the α#
2 (Gi).

Clearly, as the Gi are subgroups then an upper bound of the equivariant compression
is the infimum of the equivariant compressions of the Gi. The challenge is to find a
sensible lower bound. The next example will show that it is not enough to only consider
the α#

2 (Gi).

EXAMPLE 2.1. Consider the wreath product � � � equipped with the standard
word metric relative to {(δ1, 0), (0, 1)}, where δ1 is the characteristic function of {0}.
Let �(�) = {f : � → � : f is has finite support} be equipped with the subspace metric
from � � �. Consider the direct limit of groups

� ↪→ �3 ↪→ �5 · · · ↪→ �(�)
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where �2n+1 has the subspace metric from �(�). This metric is quasi-isometric to the
standard word metric on �2n+1 and so each term has equivariant compression 1. So
�(�) is a direct limit of groups with equivariant compression 1 but by [2] has equivariant
compression less than 3/4. On the other hand the sequence

� → � → · · · → �,

is a sequence of groups with equivariant compression 1 and the equivariant
compression of the direct limit is 1. �

Given a sequence of 1-cocycles bi of Gi, then in order to predict the equivariant
compression of the direct limit, it will be necessary to incorporate more information
on the growth behaviour of the bi than merely the compression exponent R(bi). The
growth behaviour of 1-cocycles can be completely caught by so called conditionally
negative definite functions on the group (See Proposition 2.3 and Theorem 2.4 below).

DEFINITION 2.2. A continuous map ψ : G → �+ is called conditionally negative
definite if ψ(g) = ψ(g−1) for every g ∈ G and if for all n ∈ �, ∀g1, g2, . . . , gn ∈ G and
all a1, a2, . . . , an ∈ � with

∑n
i=1 ai = 0, we have∑

i,j

aiajψ(g−1
i gj) ≤ 0.

PROPOSITION 2.3 (Example 13, page 62 of [10]). Let H be a Hilbert space and
b : G → H a 1-cocycle associated to a unitary representation. Then, the map ψ : G → �,
g 	→ ‖b(g)‖2 is a conditionally negative definite function on G.

THEOREM 2.4 (Proposition 14, page 63 of [10]). Let ψ : G → � be a conditionally
negative definite function on a group G. Then, there exists an affine isometric action α on
a Hilbert space H such that the associated 1-cocycle satisfies ψ(g) = ‖b(g)‖2.

These two results imply that we can pass between conditionally negative definite
functions and 1-cocycles associated to unitary actions.

DEFINITION 2.5. Let G be a group equipped with a proper length function l and
suppose that (Gi)i∈� is a normalized nested sequence of open subgroups such that
lim−→ Gi = G. Assume that α := inf i∈� α#

2 (Gi) ∈ (0, 1] and l, q ≥ 0. The sequence (Gi)i

has the (α, l, q)-polynomial property ((α, l, q)-PP) if there exists:

(1) a sequence (ηi)i ⊂ �+ converging to 0 such that ηi < α for each i ∈ �,
(2) (Ai, Bi)i∈� ⊂ �>0 × �≥0,
(3) a sequence of 1-cocycles (bi : Gi → Hi)i∈�, where each bi is associated to a unitary

action πi of Gi on a Hilbert space Hi

such that

1
Ai

|g|2α−ηi − Bi ≤ ‖bi(g)‖2 ≤ Ai|g|2 + Bi ∀g ∈ Gi,∀i ∈ �

and there is C, D > 0 such that Ai ≤ Cil, Bi ≤ Diq for all i ∈ �.

Note that the only real restrictions are the inequalities Ai ≤ Cil, Bi ≤ Diq: we
exclude sequences Ai, Bi that grow faster than any polynomial. The intuition is that
equivariant compression is a polynomial property (this follows immediately from its
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definition), so that sequences Ai, Bi growing faster than any polynomial would be too
dominant and one would lose all hope of obtaining a lower bound on α#

2 (G). On the
other hand, if the Ai and Bi grow polynomially, then one can use compression to
somehow compensate for this growth. One then obtains a strictly positive lower bound
on α#

2 (G) which may decrease depending on how big l and q are. We have the following
useful characterisation of (α, l, q)-polynomial property.

LEMMA 2.6. Let G be a locally compact second countable group and l is a proper
length metric. Suppose there exists a sequence of open subgroups (Gi)i∈� such that
lim−→ Gi = G. If each Gi are equipped with the restricted length metric from G then (Gi)i∈�

has the (α, l, q)-polynomical property if and only if there exists C, D > 0 such that for all
ε > 0 there exists

(1) a sequence (Ai, Bi)i∈� ⊂ �>0 × �≥0 such that Ai ≤ Cil and Bi ≤ Diq;
(2) a sequence of 1-cocycles (bi : Gi → Hi)i∈�

such that

1
Ai

|g|2α−ε − Bi ≤ ‖bi(g)‖2 ≤ Ai|g|2 + Bi ∀g ∈ Gi,∀i ∈ �.

Proof. The “if” direction is obvious. For the “only if” direction fix ε > 0 and
suppose (Gi)i∈� has the (α, l, q)-polynomial property with respect to sequences (ηi)i∈�

and (bi : Gi → Hi)i∈�. Choose N ∈ � large enough so that ηk < ε for all k ≥ N. Thus,
bk : Gk → Hk satisfies the above conditions for all k ≥ N. For k ≤ N we take the
restriction of bN to Gk to obtain the sequence satisfying the above conditions for all
k ∈ �. �

PROPOSITION 2.7. Let G be a locally compact second countable group and suppose
there exists a sequence of open subgroups (Gi)i∈� such that lim−→ Gi = G. If α := α#

2 (G) > 0
then (Gi)i∈� has (α, 0, 0)-polynomical property.

Proof. For all 0 < ε < α there exists a 1-cocycle b such that

1
A

|g|α−ε − B ≤ ‖b(g)‖ ∀g ∈ G.

The restriction of b to each Gi is a 1-cocycle and gives (Gi)i∈� the (α, 0, 0)-polynomial
property. �

Combining this with Theorem 1.4 we have the following consequence which
confirms our intuition.

COROLLARY 2.8. Let G be a locally compact second countable group with a proper
length function l. If there exists a sequence of open subgroups (Gi)i∈� such that lim−→ Gi = G
then (Gi)i∈� has the (α, l, q)-polynomial property for some α ∈ (0, 1] and l, q ≥ 0 if and
only if α#

2 (G) > 0.

2.2. The proof of Theorem 1.4

Proof of Theorem 1.4. First, we can assume that l is uniformly discrete. That
is there exists a c > 0 such that l(x) > c for all x ∈ G \ {e}. This is because given a
length function l one can define a new length function l′ such that l′(x) = 1 whenever
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0 < l(x) ≤ 1 and l′(x) = l(x) when l(x) ≥ 1. Hence l′ will be quasi-isometric to l and
so will not change the compression of G or Gi.

Take sequences (ψi : Gi → �)i∈�, (ηi)i and (A, B) = (Ai, Bi)i∈� ⊂ �>0 × �≥0

satisfying the conditions of (α, l, q)-PP (see Definition 2.5). We assume here, without
loss of generality, that the sequences (Ai)i, (Bi)i are non-decreasing.

For each Gi, define a sequence of maps (ϕi
k : Gi → �)k∈� by

ϕi
k(g) =

{
exp

(
−ψi(g)

k

)
if g ∈ Gi

0 otherwise.

Note that each ϕi
k is continuous as Gi is open and also closed, being the complement

of ∪g/∈Gi gGi. By (α, l, q)-PP, for all i, k ∈ �, we have

exp
(−Ai|g|2 − Bi

k

)
≤ ϕi

k(g) ∀g ∈ Gi, and

ϕi
k(g) ≤ exp

(−|g|2α−ηi + AiBi

Aik

)
∀g ∈ G.

Fix some p > 0, set J(i) = (Ai + Bi)i1+p and define ψ : G → � by

ψ(g) =
∑
i∈�

1 − �i(g),

where �i(g) := ϕi
J(i)(g). To check that ψ is well defined, choose any g ∈ G and note that

for i > |g|, we have g ∈ Gi and so ϕi
k(g) ≥ exp(−Ai|g|2−Bi

k ). Hence

∑
i>|g|

1 − �i(g) ≤
∑
i>|g|

1 − exp
(−Ai|g|2 − Bi

(Ai + Bi)i1+p

)

≤
∑
i>|g|

1 − exp
(−|g|2

i1+p

)

≤
∑
i>|g|

|g|2
i1+p

= |g|2
∑
i>|g|

1
i1+p

As

ψ(g) =
|g|∑
i=1

1 − �i(g) +
∑
i>|g|

1 − �i(g),

we see that ψ is well defined and that it can be written as a limit of continuous
functions converging uniformly over compact sets. Consequently, it is itself continuous.
By Schoenberg’s theorem (see [10, Theorem 5.16]), all of the maps ϕi

k are positive
definite on Gi and hence on G (see [15, Section 32.43(a)]). In other words,

∀n ∈ �, ∀a1, a2, . . . , an ∈ �,∀g1, g2, . . . , gn ∈ G :
n∑

i,j=1

aiajϕ
i
k(g−1

i gj) ≥ 0.
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Hence, ψ is a conditionally negative definite map. Moreover, using that l is uniformly
discrete, we can find a constant E > 0 such that

ψ(g) ≤ |g| + |g|2
∑
i>|g|

1
i1+p

≤ E|g|2, (2)

so the 1-cocycle associated to ψ via Theorem 2.4 is large-scale Lipschitz.
Let us now try to find the compression of this 1-cocycle. Set VI : � → � to be the

function

VI(i) = (AiJ(i) ln(2) + AiBi)
1

2α−ηi .

One checks easily that

|g| ≥ VI(i) ⇒ �i(g) = ϕi
J(i)(g) ≤ 1

2
. (3)

To make the function VI more concrete, let us look at the values of Ai, Bi and
J(i). Recall that by assumption, we have Ai ≤ Cil, Bi ≤ Diq. Hence for i sufficiently
large, we have J(i) ≤ (Cil + Diq)i1+p ≤ FiX where F is some constant and X =
1 + p + max(l, q). We thus obtain that there is a constant K > 0 such that for every i
sufficiently large (say i > I for some I ∈ �0),

VI(i) ≤ KiY/(2α−ηi),

where

Y = max(X + l, l + q),

= max(1 + p + 2l, 1 + p + l + q).

As the sequence ηi converges to 0, we can choose any δ > 0 and take I > 0 such that
in addition ηi < δ for i > I . We then have for all i > I that

VI(i) ≤ KiY/(2α−δ).

Together with equation (3), this implies that for i > I ,

|g| ≥ KiY/(2α−δ) ⇒ �i(g) = ϕi
J(i)(g) ≤ 1

2
. (4)

For every g ∈ G, set

c(g)p,δ = sup
{

i ∈ � | KiY/(2α−δ) ≤ |g|
}

.

We then have for every g ∈ G with |g| large enough, that

ψ(g) ≥
c(g)p,δ∑

i=1

1 − ϕi
J(i)(g),

≥
c(g)p,δ∑
i=I+1

1/2 = c(g)p,δ − I
2

.
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As c(g)p,δ ≥ ( |g|
K )(2α−δ)/Y − 1, we conclude that R(b) ≥ 2α−δ

2 max(1+p+2l,1+p+l+q) . As this is

true for any small p, δ > 0, we can take the limit for p, δ → 0 to obtain α#
2 (G) ≥

α
max(1+2l,1+l+q) . Hence, we have the following two cases:

l ≥ q ⇒ α#
2 (G) ≥ α

1 + 2l
,

or,

l ≤ q ⇒ α#
2 (G) ≥ α

l + q + 1
.

�

2.3. Examples

Let F : [0, 1] × �≥0 → � be the function

F(α, d) =
{

d(2α − 1) if 2α ≥ 1

0 otherwise.

THEOREM 2.9. Let G and H be finitely generated groups where H has polynomial
growth of degree d ≥ 1. Then,

α#
2

(⊕
H

G

)
≥ α#

2 (G)

1 + F(α#
2 (G), d) + 2α#

2 (G)(1 + d)
,

where
⊕

H G is equipped with the subspace metric from G � H.

REMARK 2.10. Theorem 1.3. from [17] provides a lower bound to the compression
of G � H. Under the assumptions in Theorem 2.9, Theorem 1.3. in [17] gives a lower
bound α#

2 (G � H) ≥ α#
1 (G)/2. As this bound is in terms of L1-compression, this makes

comparison between the bound in Theorem 2.9 and [17, Theorem 1.3.] difficult.
However, it is known that α#

2 (G) ≤ α#
1 (G) ≤ 2α#

2 (G) for all finitely generated groups G,
see the proof of Theorem 1.1. and Theorem 1.3. in [17] and [18, Lemma 2.3.].

We use this to show that under some circumstances the above lower bound is
larger than the bound provided in [17, Theorem 1.3.]. Suppose that α#

1 (G)/2 < α#
2 (G).

Then, there exists a c > 0 such that 2α#
2 (G)

α#
1 (G)

> 1 + c. If α#
2 (G) ≤ min

{
c

2(1+d) , 1/2
}

then

by Theorem 2.9

α#
2 (⊕HG) ≥ α#

2 (G)
1 + c

>
α#

1 (G)
2

.

Unfortunately, the values of α#
2 are not so well understood and at the time of writing

the only know values for α#
2 are 1, 1/2, 0 and 1

2−21−k for k ∈ � [2, 4, 18]. In the non-
equivariant case any value for compression can be achieved [3]. It is likely that there
exists groups such that α#

2 takes values strictly between 0 and 1/2 in which case our
theorem can be applied to provide larger lower bounds than α#

1 (G)/2.

Proof. We consider
⊕

H G to be the group of functions f : H → G that have finite
support. Let f ∈ ⊕

H G and let Supp(f) = {h1, . . . , hn} ⊂ H. Set the length of f as
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follows

|f|G�H = inf
σ∈Sn

(
dH(1, hσ (1)) +

n∑
i=1

dH(hσ (i), hσ (i+1)) + dH(hσ (n), 1)

)

+
∑
h∈H

|f(h)|G.

This is the induced length metric from G � H and so this is a proper length function on⊕
H G. Consider the following group

Gi = {f : H → G : Supp(f) ⊂ B(1, i)} ,

and set ni = |B(1, i)|. Each Gi is finitely generated and the restricted wreath metric to
Gi is proper and left invariant so the wreath metric and the word metric are quasi-
isometric. In particular

|f|G�H − 2i|B(1, i)| ≤
∑

h∈B(1,i)

|f(h)|G ≤ |f|G�H,

for all f ∈ Gi. By [14, Proposition 4.1. and Corollary 2.13.] it follows that α#
2 (Gi) =

α#
2 (G) for all i ∈ �. Set 0 < α < α#

2 (G) and consider a 1-cocyle b : G → H such that

1
C

|g|2α
G ≤ ‖b(g)‖2 ≤ C|g|2G.

Enumerate B(1, i) so that
{
h1, . . . , hni

} = B(1, i) and define a 1-cocycle bi : Gi → Hni ,
where bi(f) = (b(f(h1)), . . . , b(f(hni ))). If |f|G�H > 4i|B(1, i)|, then

‖bi(f)‖1/α =
⎛
⎝ i∑

j=1

∥∥b(f(hnj ))
∥∥1/α

⎞
⎠α

≥ 1
C1/α

⎛
⎝ i∑

j=1

|f(hnj )|G
⎞
⎠α

≥ 1
C1/α

(|f|G�H − 2i|B(1, i)|)α ≥ 1
2C1/α

|f|αG�H .

If 2α < 1 then ‖bi(f)‖2 ≥ ‖bi(f)‖1/α for all f ∈ Gi and so it follows that

1
4C2/α

|f|2α
G�H − i2α

C
|B(1, i)|2α ≤ ‖bi(f)‖2

2 ,

for all f ∈ Gi. Hence (Gi)i∈� has the (α, 0, 2α(1 + d)) polynomial property.
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If 2α ≥ 1 then by Hölder’s inequality ‖bi(f)‖2 ≥ n
1−2α

2
i ‖bi(f)‖1/α for all f ∈ Gi and

so it follows that

1
4C2/α|B(1, i)|2α−1

|f|2α
G�H − i2α

C
|B(1, i)|2α ≤ ‖bi(f)‖2

2 .

for all f ∈ Gi. Hence (Gi)i∈� has the (α, d(2α − 1), 2α(1 + d)) polynomial property.
Thus by Theorem 1.4 and that α, d ≥ 0 it follows that

α#
2 (

⊕
H

G) ≥ α

1 + F(α, d) + 2α(1 + d)
,

for all α < α#
2 (G) and so the statement of the theorem holds. �

THEOREM 2.11. Let {Fi}i∈� be a collection of finite groups such that F0 = {1}. Let
G = ⊕

i∈� Fi be equip with the proper length function l(g) = min
{
n ∈ � : g ∈ ⊕n

i=0Fi
}
.

Then α#
2 (G) ≥ 1/3.

Proof. Set Gi = ⊕i
j=0 Fj and observe that α#

2 (Gi) = 1 as Gi is finite for all i ∈ �.
Define fi : Gi → � to be the 0-map. This is clearly a 1-cocycle and satisfies

∀g ∈ Gi : l(g)2 − i2 ≤ |fi(g)|2 ≤ l(g)2 + i2.

Hence (Gi)i∈� has the (1,0,2)-polynomial property. Thus α#
2 (G) ≥ 1/3. �

EXAMPLE 2.12. We will use [3] to provide an example of a sequence that does not
have (α, l, q)-polynomial property for any α ∈ (0, 1] and l, q > 0. Let 
k, k ≥ 1 be a
sequence of Lafforgue expanders that do not embed into any uniformly convex Banach
space [16]. These are finite factor groups Mk of a lattice � of SL3(F) for a local field F .

For every α ∈ [0, 1] there exists a finitely generated group G and a sequence of
scaling constants λk such that λk
k has compression α and G is quasi-isometric to
λk
k. Furthermore, G contains the free product ∗kMk as a subgroup. Let α = 0 and
let G and the scaling constants λk be such that G has compression 0. We can equip
∗kMk with a proper left invariant metric coming from G. Hence we have a sequence

M1 ↪→ M1 ∗ M2 ↪→ · · · ↪→ ∗n
k=1Mk ↪→ · · · ↪→ ∗kMk.

For each n > 0, ∗n
k=1Mk has equivariant compression 1/2 [11, Theorem 1.4.] however

the limit group ∗kMk contains a quasi-isometric copy of λk
k and so has compression
0. Thus, this sequence cannot have the (α, l, q)-polynomial property for any α ∈ (0, 1]
and l, q > 0.

3. The behaviour of compression under free products amalgamated over finite
index subgroups. It is known that the Haagerup property is not preserved under
amalgamated free products. Indeed, (SL2(�) � �2, �2) has the relative property (T). So
SL2(�) � �2 = (�6 � �2) ∗(�2��2) (�4 � �2) is not Haagerup. In [12], S.R. Gal proves
the following result.

THEOREM 3.1. Let G1 and G2 be finitely generated groups with the Haagerup property
that have a common finite index subgroup H. For each i = 1, 2, let βi be a proper affine
isometric action of Gi on a Hilbert space Vi(= l2(�)). Assume that W < V1 ∩ V2 is

https://doi.org/10.1017/S0017089516000082 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000082


EQUIVARIANT COMPRESSION 749

invariant under the actions (βi)|H and moreover that both these (restricted) actions
coincide on W. Then, G1 ∗H G2 is Haagerup.

Under the same conditions as above, we want to give estimates on α#
2 (G1 ∗H G2)

in terms of the equivariant Hilbert space compressions of G1, G2 (see Theorem 3.3
below). Note that the following lemma shows that α#

2 (G1) = α#
2 (H) = α#

2 (G2) when H
is of finite index in both G1 and G2. We are indebted to Alain Valette for this lemma
and its proof. The notation α#

p refers to the equivariant Lp-compression for some p ≥ 1.
It is defined in exactly the same way as α#

2 except that one considers affine isometric
actions on Lp-spaces instead of L2-spaces.

LEMMA 3.2. Let G be a compactly generated, locally compact group, and let H be
an open, finite-index subgroup of G. Then, α#

p (H) = α#
p (G).

Proof. As H is embedded H-equivariantly, quasi-isometrically in G, we have
α#

p (H) ≥ α#
p (G). To prove the converse inequality, we may assume that α#

p (H) > 0.
Let S be a compact generating subset of H. Let A(h)v = π (h)v + b(h) be an affine
isometric action of H on Lp, such that for some α < α#

p (H) we have ‖b(h)‖p ≥ C|h|αS,
for every h ∈ H. Now, we induce up the action A from H to G, as on p. 91 of [6]1. The
affine space of the induced action is

E := {f : G → Lp : f (gh) = A(h)−1f (g), ∀h ∈ H and almost every g ∈ G},

with distance given by ‖f1 − f2‖p
p = ∑

x∈G/H ‖f1(x) − f2(x)‖p
p. The induced affine

isometric action Ã of G on E is then given by (Ã(g))f (g′) = f (g−1g′), for f ∈ E,

g, g′ ∈ G.
A function ξ0 ∈ E is then defined as follows. Let s1 = e, s2, , ..., sn be a set of

representatives for the left cosets of H in G. Set ξ0(sih) = b(h−1), for h ∈ H, i = 1, . . . , n.
Define the 1-cocycle b̃ on G by b̃(g) = Ã(g)ξ0 − ξ0, for g ∈ G. For an h ∈ H, we then
have:

‖b̃(h)‖p
p =

n∑
i=1

‖ξ0(h−1si) − ξ0(si)‖p
p =

n∑
i=1

‖ξ0(h−1si)‖p
p ≥ ‖ξ0(h−1)‖p

p = ‖b(h)‖p
p.

Set K = max1≤i≤n ‖b̃(si)‖p. Take T = S ∪ {s1, . . . , sn} as a compact generating set of G.
For g ∈ G, write g = sih for 1 ≤ i ≤ n, h ∈ H. Then,

‖b̃(g)‖p ≥ ‖b̃(h)‖p − K ≥ ‖b(h)‖p − K ≥ C|h|αS − K ≥ C|h|αT − K

≥ C(|g|T − 1)α − K ≥ C′|g|αT − K ′.

So the compression of the 1-cocycle b̃ is at least α, hence α#
p (G) ≥ α#

p (H). �
The following proof uses a construction by S.R. Gal, see page 4 of [12].

THEOREM 3.3. Let V1 and V2 be closed subspaces of a Hilbert space. Suppose H is a
finite index subgroup of G1 and G2 and suppose there are proper affine isometric actions
βi (with compression αi) of each Gi on Vi. Assume that W < V1 ∩ V2 is invariant under

1We seize this opportunity to correct a misprint in the definition of the vector ξ0 in that construction in p. 91
of [6].
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the actions (βi|H) and moreover that both these (restricted) actions coincide on W. Then,
α#

2 (G1 ∗H G2) ≥ min(α1,α2)
2 . In particular, α#

2 (G1 ∗H G2) ≥ α#
2 (H)

2 .

Proof. Following [12], let us build a Hilbert space W� on which � = G1 ∗H G2

acts affinely and isometrically. Let ω be a finite alternating sequence of 1’s and 2’s and
suppose π is a linear action of H on some Hilbert space denoted Hω. One can induce
up the linear action from H to Gi, obtaining a Hilbert space

V := {
f : Gi → Hω | ∀h ∈ H, f (gh) = π (h−1)f (g)

}
and an orthogonal action πi : Gi → O(V ) defined by πi(g)f (g′) = f (g−1g′). The
subspace {

f : Gi → Hω | ∀h ∈ H, f (h) = π (h−1)f (1), f|Gi\H = 0
}
,

can be identified with Hω by letting an element f correspond to f (1). It is clear
that the action πi restricted to H coincides with the original linear action π via this
identification.

So, starting from any linear H-action on a Hilbert space Hω, we can obtain a
linear action of say G1 on a Hilbert space that can be written as Hω ⊕ H1ω for some
H1ω. We can restrict this action to a linear H-action on H1ω and we can lift this to an
action of G2 on a space H1ω ⊕ H21ω and so on, repeating the process indefinitely. Here,
we will execute this infinite process twice.

The first linear H-action on which we apply the process is obtained as follows. As
βi(H)(W ) = W for each i = 1, 2, the restriction to H of β1, gives naturally a linear
H-action on H1 := V1/W . The second linear H-action is obtained by similarly noting
that the restriction to H of β2 gives a linear H-action on H2 := V2/W . We then apply
the above process indefinitely.

H•
1 :=

G2�︷ ︸︸ ︷
H1 ⊕ ︸ ︷︷ ︸

G1�

H21 ⊕
G2�︷ ︸︸ ︷

H121 ⊕ H2121 ⊕ · · ·︸ ︷︷ ︸, H•
2 :=

G1�︷ ︸︸ ︷
H2 ⊕ ︸ ︷︷ ︸

G2�

H12 ⊕
G1�︷ ︸︸ ︷

H212 ⊕ H1212 ⊕ · · ·︸ ︷︷ ︸,
where for ω a sequence of alternating 1’s and 2’s, Gi acts on Hω ⊕ Hiω. Note that there
are two H-actions on H•

1 as H acts on the first term H1. One can verify that both
H-actions coincide (this fact is also mentioned in [12],page 4). The same is true for H•

2.
Denote H◦

1 = H•
1 � H1 and similarly, set H◦

2 = H•
2 � H2. We denote

W� = W ⊕ H•
1 ⊕ H•

2 = V1 ⊕ H◦
1 ⊕ H•

2 = V2 ⊕ H◦
2 ⊕ H•

1.

The above formula, which writes W as a direct sum in three distinct ways, shows that
both G1 and G2 act on W�. As mentioned before, the actions coincide on H and so we
obtain an affine isometric action of � on W�. Note that the corresponding 1-cocycle,
when restricted to G1 (or G2), coincides with the 1-cocycle of β1(or β2).

We inductively define a length function ψT : � → � by ψT (h) = 0 for all h ∈ H and
ψT (γ ) = min {ψT (η) + 1 | γ = ηg, where g ∈ G1 ∪ G2}. By applying Proposition 2 in
[10] to the Bass–Serre tree of G1 ∗H G2, we see that this map is conditionally negative
definite and thus the normed square of a 1-cocycle associated to an affine isometric
action of � on a Hilbert space.

Let ψ� be the conditionally negative definite function associated to the action of
� on W�. We now find the compression of the conditionally negative definite map
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ψ = ψ� + ψT . First set

M = max
{
|ti

j|Gi : i = 1, 2 and 1 ≤ j ≤ [Gi : H]
}

,

where ti
j are right coset representatives of H in Gi such that ti

1 = 1Gi for i = 1, 2.
Denote α = min(α1, α2) and fix some ε > 0 arbitrarily small. Let γ ∈ � and

suppose in normal form γ = gti1
j1 · · · tik

jk , where g ∈ Gi for some i = 1, 2. Assume first

that ψT (γ ) ≥ |γ |α−ε

M . In that case, ψ(γ ) ≥ |γ |α−ε

M . Else, we have that ψT (γ ) <
|γ |α−ε

M and
so for all γ ∈ � such that |γ | is sufficiently large, we have

ψ(γ ) ≥ ψ�(γ ) = ‖γ · 0‖2

≥ (‖g · 0‖ − ψT (γ )M)2

� ((|γ | − ψT (γ )M)α−ε/2 − ψT (γ )M)2

≥ ((|γ | − |γ |α−ε)α−ε/2 − |γ |α−ε)2

� |γ |2α−ε,

where � represents inequality up to a multiplicative constant; we use here that one can
always assume, without loss of generality, that the 1-cocycles associated to β1 and β2

satisfy ‖bi(gi)‖ � |gi|α−ε (see Lemma 3.4 in [1]).
So now, by the first case, ψ(γ ) ≥ |γ |α−ε for all γ ∈ � that are sufficiently large.

Hence, we obtain the lower bound α#
2 (�) ≥ α#

2 (H)/2. �

ACKNOWLEDGEMENTS. The authors would like to thank Jacek Brodzki for
interesting discussions and the referee for their helpful recommendations and for
suggesting a simplier example in Example 2.12. The first author thanks Martin Finn-
Sell for interesting conversations on affine subspaces. The second author thanks Michał
Marcinkowski for interesting discussions related to Gal’s paper [12]. The first author
is sponsored by the EPSRC, grant number EP/I016945/1. The second author is a
Marie Curie Intra-European Fellow within the 7th European Community Framework
Programme.

REFERENCES

1. Y. Antolin and D. Dreesen, The Haagerup property is stable under graph products,
preprint, 2013.

2. G. N. Arzhantseva, V. S. Guba and M. V. Sapir, Metrics on diagram groups and uniform
embeddings in a Hilbert space, Comment. Math. Helv. 81(4) (2006), 911–929.
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