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Abstract. In this paper, we show that the known models for (∞, 1)-categories can
all be extended to equivariant versions for any discrete group G. We show that in two
of the models we can also consider actions of any simplicial group G.
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1. Introduction. Two areas of much recent research in homotopy theory have
been the development and application of homotopical categories, or (∞, 1)-categories,
and equivariant homotopy theory. In this paper, we seek to bring the two ideas together
and investigate equivariant (∞, 1)-categories.

There are many different models for (∞, 1)-categories. Simplicial or topological
categories are categories with a simplicial set or space of morphisms between any
two objects. Segal categories and complete Segal spaces are bisimplicial sets having
properties resembling the simplicial nerve of a simplicial category, but with a weaker
form of composition. Quasi-categories encode the same information in a simplicial
set. Each model for (∞, 1)-categories can be thought of as living in its respective
model category, in which a weak equivalence is defined by a homotopical version of
equivalence of categories; these model categories are all Quillen equivalent.

Given a group G, a G-equivariant (∞, 1)-category should be one of the above
structures equipped with an action of G. The morphisms in the category of such
should respect the G-action, and a weak equivalence should be a map which induces
weak equivalences on H-fixed point objects for all (closed) subgroups H of G.

To prove that each model for (∞, 1)-categories has a good equivariant analogue,
and that these models are in turn all equivalent to one another, we apply general
tools of Stephan [26] and of Bohmann, Mazur, Osorno, Ozornova, Ponto, and Yarnall
[5]. Their results give conditions under which the category of G-objects in a model
category itself has a model structure, and under which this process preserves Quillen
equivalences. A related approach for categories of diagrams has also been described
by Dotto and Moi [10].

For complete Segal spaces and quasi-categories, the existence of a G-equivariant
version for a discrete group G is immediate from Stephan’s results. For simplicial
categories and Segal categories, we give proofs here, but need to restrict to the case
where G is finite. By a comment in the final version of [10], it seems that this finiteness
assumption can be removed. These conditions also guarantee that we can carry over
all the Quillen equivalences that we have non-equivariantly.
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When G is a simplicial group, then we need the original model category to have
the structure of a simplicial model category. This additional assumption holds for the
complete Segal space and Segal category models, so we establish equivariant versions
in these contexts.

It is perhaps more interesting to consider the case where G is a topological group,
and in particular a compact Lie group. In this case, we need to begin with a topological
(rather than simplicial) model category, so it is expected that the right models are
complete Segal spaces and Segal categories taken in topological spaces rather than in
simplicial sets. We pursue this perspective, as well as a more hands-on approach to the
equivariant structures, in forthcoming work with Chadwick [4].

We expect that many examples of (∞, 1)-categories have natural group actions that
can be investigated from this perspective. For example, any monoidal (∞, 1)-category
has an action of the automorphism group of a unit object. Further examples include
cobordism categories equipped with group actions, from which one could consider
equivariant topological field theories; generalizing the results of this paper to higher
(∞, n)-categories would give a framework in which one could understand equivariant
extended topological filed theories. The most common models for such examples are
the �n-spaces of Rezk [24] and the n-fold complete Segal spaces of Barwick and Lurie
[20], both of which have model structures which admit equivariant versions using
Stephan’s results. Other generalizations for which we obtain equivariant analogues
include dendroidal models for (∞, 1)-operads as developed by Cisinski and Moerdijk
[6, 7, 8] and the 2-Segal spaces of Dyckerhoff and Kapranov [12]. As the latter structures
often arise from S•-constructions there are a number of examples to be investigated in
an equivariant setting. We plan to look at such examples in future work.

We begin in Section 2 with a statement of the general theorems that we wish to use,
in the case where G is a discrete group. In Section 3, we show that they can be applied
immediately to the complete Segal space and quasi-category models. In Sections 4 and
5, we prove that they can be applied to the simplicial category and Segal category
models. Lastly, in Section 6 we consider simplicial groups G and show that we get
equivariant versions of the complete Segal space and Segal category models in this
case.

2. Equivariant versions of model categories. In this section, we summarize results
of Stephan, namely, sufficient conditions under which a G-equivariant version of a
cofibrantly generated model category C exists [26]. To begin, we assume that G is
finite, and consider it as a category with a single object and morphisms given by
the elements of G. (Stephan actually works more generally, only assuming that G is
discrete. However, since the new examples we give in this paper require that G be finite,
we restrict to this case.)

DEFINITION 2.1. The category of G-objects in C, denoted by CG, is the category of
functors G → C.

The key feature of a G-equivariant model structure, rather than just a model
structure of objects equipped with a G-action, is that weak equivalences are defined
using fixed point objects.

DEFINITION 2.2. Given any subgroup H of G, define the H-fixed points functor,
denoted by (−)H , as the composite CG → CH → C where the first map is the restriction
defined by the inclusion of H into G, and the second map is the limit functor.
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DEFINITION 2.3. Let G be a finite group. The G-model structure on CG (if it exists)
has weak equivalences the maps X → Y such that, for every subgroup H of G, the
map XH → Y H is a weak equivalence in C, and likewise for the fibrations.

REMARK 2.4. Stephan works in the following more general setting. Let F be a set
of subgroups of G. The F-model structure on C is defined similarly to the G-model
structure, but where H is taken to be an element of F . We are most interested in the
G-model structure, but our results can be applied to the F-model structure as well.

Since C is a model category, and in particular is complete and cocomplete, we can
think of it as being tensored and cotensored over the category of sets, as follows. Let
A and B be objects of C and X a set. Then, there is a tensor

X ⊗ A =
∐
X

A,

and a cotensor

[X, B] =
∏
X

B,

such that there are isomorphisms.

HomC(X ⊗ A, B) ∼= HomSets(X, HomC(A, B)) ∼= HomC(A, [X, B]).

Let A be an object of C and H a subgroup of G. Then, we denote by G/H ⊗ A the
object of CG given composing the map G → Sets given by sending the single object of
G to G/H with the tensor map − ⊗ A : Sets → C.

LEMMA 2.5 ([26]). The functor G/H ⊗ − : C → CG is left adjoint to the fixed point
functor (−)H.

We use the following criteria for determining the existence of the G-model structure
on CG.

THEOREM 2.6 ([5, 26]). Let G be a finite group, and let C be a cofibrantly generated
model category. Suppose that, for each subgroup H of G, the fixed point functor (−)H

satisfies the following cellularity conditions:

(1) the functor (−)H preserves filtered colimits of diagrams in CG,
(2) the functor (−)H preserves pushouts of diagrams where one arrow is of the form

G/K ⊗ f : G/K ⊗ A → G/K ⊗ B,

for some subgroup K of G and f a generating cofibration of C, and
(3) for any subgroup K of G and object A of C, the induced map

(G/H)K ⊗ A → (G/H ⊗ A)K ,

is an isomorphism in C.
Then, the category CG admits the G-model structure.

Observe that a fibrant object in CG is a fibrant object X of C equipped with an
action of G such that, for each subgroup H of G, the fixed point object XH is fibrant
in C.
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This result was further strengthened via the following result.

THEOREM 2.7 ([5]). Suppose that F : M � N : R be a Quillen equivalence between
model categories satisfying the cellularity conditions of Theorem 2.6. Then there is an
induced Quillen equivalence FG : MG � NG : RG.

In fact, these model categories are actually Quillen equivalent to those described
via orbit diagrams, generalizing a result of Elmendorf and Piacenza for topological
spaces [13, 22].

DEFINITION 2.8. The orbit category of G is the full subcategory OG of the category
of G-sets with objects the orbits G/H where H is a subgroup of G.

Consider the category of functors Oop
G → C, equipped with the projective model

structure, where weak equivalences and fibrations are defined levelwise. There is a
functor i : G → Oop

G sending the single object of G to G/{e} and a morphism g of G to
the G-map G/{e} → G/{e} defined by h �→ hg. The induced map i∗ : GOop

G → CG has a
left adjoint i∗ given by left Kan extension.

THEOREM 2.9 ([26]). Let G be a finite group, and let C be a cofibrantly generated
model category. Suppose that, for each subgroup H of G, the fixed point functor (−)H

satisfies the cellularity conditions of Theorem 2.6. Then there is a Quillen equivalence

i∗ : COop
G � CG : i∗.

REMARK 2.10. If one instead uses the F-model structure, for a set F of subgroups
of G, then it is necessary to assume that the trivial subgroup of G is included in F , so
that the functor i is defined.

Combining this result with that of Theorem 2.7, we get a commutative square of
Quillen equivalent model categories associated to a Quillen equivalence C � D and a
group G:

CG ��

��

DG��

��
COop

G

��

�� DOop
G .

��

��

We conclude this section with two important families of examples.

THEOREM 2.11 ([26]). Any category of functors D → Sets, equipped with a
cofibrantly generated model structure in which the cofibrations are monomorphisms,
admits the G-model structure.

Observe that we can apply the above theorem to any category of functors D →
SSets simply by viewing the objects instead as functors D × �op → Sets.

THEOREM 2.12 ([26]). Let C be a model category which satisfies the cellularity
conditions of Theorem 2.6. Then, any left Bousfield localization of C also satisfies the
cellularity conditions, and hence admits the G-model structure.
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3. Equivariant complete Segal spaces and quasi-categories. In this section, we
consider the two models for (∞, 1)-categories for which we get equivariant versions
immediately from Stephan’s results. Using Theorem 2.7, we can lift the Quillen
equivalences between them to these equivariant versions.

We begin with the model of quasi-categories. Recall that, given any n ≥ 1 and
0 ≤ k ≤ n, the kth horn of the n-simplex �[n], denoted by V [n, k], is the boundary of
�[n] with the kth face removed.

DEFINITION 3.1. A quasi-category is a simplicial set X satisfying the inner horn
filling conditions, i.e., that for any n ≥ 2 and 0 < k < n, in any diagram

V [n, k] ��

��

X

�[n]

���
�

�
�

�

the dotted arrow lift exists.

THEOREM 3.2 ([16, 19, 11]). There is a model structure QCat on the category of
simplicial sets in which the cofibrations are the monomorphisms and the fibrant objects
are the quasi-categories.

We can apply Theorems 2.11 and 2.9 to obtain the following result.

THEOREM 3.3. The G-model structure for QCat exists, and there is a Quillen
equivalence of model categories

i∗ : QCatO
op
G � QCatG : i∗.

Now we turn to the complete Segal space model. The objects here are simplicial
spaces, or functors �op → SSets. Recall that the category of simplicial spaces can be
equipped with the Reedy model structure, in which the weak equivalences are given
levelwise [23]. In this case, it coincides with the injective model structure, in which
the cofibrations are also defined levelwise. Recall that the Reedy model structure is
equipped with a compatible simplicial structure, so there is a mapping simplicial set
Map(X, Y ) between any simplicial spaces X and Y .

DEFINITION 3.4. A simplicial space W is a Segal space if it is Reedy fibrant and the
Segal maps

Wk → W1 ×W0 · · · ×W0 W1︸ ︷︷ ︸
k

are weak equivalences.

Let E denote the nerve of the groupoid with two objects and a single
isomorphism between them. Denote by Et its corresponding discrete simplicial space
(the “transpose” of the constant simplicial space at E).

DEFINITION 3.5. A Segal space W is complete if the map W0 → Map(Et, W ) is a
weak equivalence of simplicial sets.
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THEOREM 3.6 ([25, 7.2]). There is a model structure CSS on the category of
simplicial spaces, obtained as a left Bousfield localization of the Reedy model structure,
which satisfies the following properties:

(1) the cofibrations are the monomorphisms, and
(2) the fibrant objects are the complete Segal spaces.

We obtain the following result by applying Theorems 2.11, 2.12, and 2.9.

COROLLARY 3.7. The model category CSS admits the G-model structure CSSG.
There is a Quillen equivalences of model categories

i∗ : CSSOop
G � CSSG : i∗

We now turn to the comparison between the model structures QCat and
CSS. There are two different Quillen equivalences, both due to Joyal and
Tierney.

THEOREM 3.8 ([17, 4.11]). The functor p∗ : CSS → QCat, which associates to a
complete Segal space W the simplicial set W∗,0, has a left adjoint p!. This adjoint pair
defines a Quillen equivalence

p∗ : CSS � QCat : p!.

The second Quillen equivalence between these two model categories is given by a
total simplicial set functor t! : CSS → QCat and its right adjoint t!.

THEOREM 3.9 ([17, 4.12]). The adjoint pair

t! : CSS � QCat : t!,

is a Quillen equivalence.

COROLLARY 3.10. There are two commuting squares of Quillen equivalences:

QCatG ��

��

CSSG��

��

QCatG ��

��

CSSG��

��
QCatO

op
G

��

�� CSSOop
G��

��

QCatO
op
G

��

�� CSSOop
G .

��

��

4. Equivariant simplicial categories. In this section, we consider simplicial
categories. Recall that a simplicial category is a category enriched in simplicial sets,
so that between any two objects x and y, there is a simplicial set Map(x, y), together
with compatible composition. In this case, the G-equivariant model structure does not
follow immediately from previous results.

We start by recalling some notation. Given any simplicial category C, there is an
associated category of components π0C whose objects are the same as those of C and
whose morphisms are the sets of components of the mapping spaces of C.

https://doi.org/10.1017/S0017089516000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000136


EQUIVALENCE OF MODELS FOR EQUIVARIANT (∞, 1)-CATEGORIES 243

Define the functor U : SSets → SC such that for any simplicial set K , the
simplicial category UK has two objects, x and y, and only nonidentity morphisms
the simplicial set K = Hom(x, y).

THEOREM 4.1 ([2, 1.1]). There is a cofibrantly generated model structure SC on the
category of small simplicial categories with the following properties.

(1) The weak equivalences are the simplicial functors f : C → D satisfying the following
two conditions:
• for any objects x and y in C, the map

MapC(x, y) → MapD(f x, fy)

is a weak equivalence of simplicial sets, and
• the induced functor π0f : π0C → π0D on the categories of components is an

equivalence of categories.
(2) A set of generating cofibrations for SC contains the functors

• U∂�[n] → U�[n] for n ≥ 0, and
• ∅ → {x}, where ∅ is the simplicial category with no objects and {x} denotes the

simplicial category with one object x and no nonidentity morphisms.

We now consider the existence of a model structure on SCG, and it is here that we
need the restriction that G be finite.

THEOREM 4.2. The model category SC satisfies the cellularity conditions of
Theorem 2.6.

Proof. To establish condition (1), we modify the argument used for categories in
[5]. Let I be a filtered category and F : I → SCG a functor. Consider the simplicial
nerve functor N : SC → SSets�op

. Thinking of a simplicial category as a special
case of a simplicial object in Cat, the simplicial nerve is given by levelwise nerve
of categories. Therefore, the functor N commutes with filtered colimits [18]. Thus, we
get an isomorphism

NcolimI (F(i)H) ∼= colimI (N(F(i)H)).

Since the fixed point functor (−)H is defined as a limit and the simplicial nerve is a
right adjoint functor, we get an isomorphism

N(F(i)H) ∼= (NF(i))H .

Since finite limits and filtered colimits commute in Sets and are computed levelwise in
SSets�op

, we obtain isomorphisms

colimI ((NF(i))H) ∼= (colimI NF(I))H ∼= (NcolimI F(i))H,

where the second isomorphism is a second application of commuting the filtered colimit
with the nerve. We again use that N is a right adjoint, so that

(NcolimI F(i))H ∼= N(colimI F(i))H .

Since the nerve functor is fully faithful, this isomorphism holds even before applying
the nerve functor, which completes the proof of condition (1).
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Next, we consider condition (3). The tensor product is given by the disjoint union
of categories, and we want to show that the map

∐
(G/K)H

A →
⎛
⎝∐

G/K

A

⎞
⎠

H

,

is an isomorphism. The action of H on
∐

G/K A is given by permuting the copies of A,
since each A itself has trivial G-action. Therefore, this action is determined precisely
by the action of H on G/K . The desired isomorphism follows.

Finally, we establish condition (2). Given any pushout diagram of the form

∐
G/K A ��

��

C

��∐
G/K B �� D

with A → B a generating cofibration in SC, we want to show, making use of condition
(3), that the diagram

∐
(G/K)H A ��

��

CH

��∐
(G/K)H B �� DH

is again a pushout square.
We first consider the case where A is the initial simplicial category ∅ and B is a

terminal simplicial category {x}. Then, in the original pushout square, the simplicial
category D is obtained from the simplicial category C simply by adjoining disjoint
objects indexed by the cosets G/K . When we apply the fixed point functor (−)H , we
only adjoin those objects indexed by (G/K)H , which establishes the desired pushout.

It remains to consider the case where A → B is of the form U∂�[n] → U�[n] for
any n ≥ 0. In this case, D is obtained from C by attaching, for each coset G/K , an
n-simplex of morphisms to the appropriate mapping space of C, then freely adjoining
all necessary composites with other mapping spaces. Since this gluing is done in an
equivariant manner, the adjoined simplices have H-action as specified by the H-action
on G/K . Since the composites are also included in a manner compatible with the G-
action, again the only fixed points of D by the action of H can be those of C or those
given by simplices indexed by (G/K)H , as desired. �

COROLLARY 4.3. The model structure SCG exists and there is a Quillen equivalence

p∗ : SCOop
G � SCG : i∗.

We can now relate these model structures to the models from the previous
section. We use a direct Quillen equivalence between SC and QCat, defined using
the coherent nerve functor Ñ : SC → QCat, originally due to Cordier and Porter [9].
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Given a simplicial category X and the simplicial resolution C∗[n] of the category
[n] = (0 → · · · → n), the coherent nerve Ñ(X) is defined by

Ñ(X)n = HomSC(C∗[n], X).

This functor has a left adjoint J : QCat → SC.

THEOREM 4.4 ([11, 15, 19]). The adjoint pair

J : QCat ��SC : Ñ,��

is a Quillen equivalence.

COROLLARY 4.5. There is a commuting square of Quillen equivalences

QCatG ��

��

SCG��

��
QCatO

op
G

��

��

SCOop
G .��

��

5. Equivariant Segal categories. Lastly, we turn to the model of Segal categories.
In this case, we consider two different model structures with the same weak
equivalences.

DEFINITION 5.1. A simplicial space X is a Segal precategory if X0 is a discrete
simplicial set. It is a Segal category if additionally the Segal maps

Xk → X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
k

,

are weak equivalences for all k ≥ 2.

For any Segal category X , we can take its objects to be the set X0. Its mapping
spaces mapX (x, y) are given by the fibers of the map (d1, d0) : X1 → X0 × X0 over a
given pair of objects (x, y). With notions of weak composition, one can define homotopy
equivalences as in [25] and hence a homotopy category Ho(X) associated to X .

Given a Segal precategory X , there is a functorial construction of a Segal category
LX which is weakly equivalent to X in the Segal space model structure [3, Section 5].

The inclusion functor from the category of Segal precategories into the category
of simplicial spaces has a left adjoint which we denote by (−)r. Recall that, for a
simplicial set K we denote again by K the constant simplicial space, and by Kt the
discrete simplicial space defined by the set of n-simplices of K in degree n.

THEOREM 5.2 ([1, 3.2], [3, 21, 5.1, 5.13]). There exists a cofibrantly generated
model structure SeCatc on the category of Segal precategories satisfying the following
conditions.
� The weak equivalences are the Dwyer–Kan equivalences, or maps X → Y such that

– for any objects x, y ∈ X0, mapLX (x, y) → mapLY (f x, fy) is a weak equivalence of
simplicial sets, and

– the induced functor Ho(LX) → Ho(LY ) is an equivalence of categories.
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� The fibrant objects are the Reedy fibrant Segal categories.
� Cofibrations are the monomorphisms.
� A set of generating cofibrations for SeCatc is given by

Ic = {(∂�[m] × �[n]t ∪ �[m] × ∂�[n]t)r → (�[m] × �[n]t)r}

for all m ≥ 0 when n ≥ 1 and for n = m = 0.

Observe that this model structure actually satisfies the conditions of Theorem 2.11,
since its objects are presheaves and the cofibrations are monomorphisms. However,
since we have a restriction on those presheaves, namely that the degree zero space be
discrete, some features of the model structure are less intuitive. Therefore, we include
a complete proof.

THEOREM 5.3. The model category SeCatc satisfies the cellularity conditions of
Theorem 2.6.

Proof. To show that condition (1) is satisfied, we need only observe that finite
limits and filtered colimits commute in the category of sets. Since limits are computed
levelwise in the category of Segal precategories, and the fixed point functor (−)H is
defined as a finite limit, the desired condition holds.

Establishing condition (3) is similar to the case of simplicial categories.
It remains to show that condition (2) holds. Let A → B be a generating cofibration

for the Reedy model structure on simplicial spaces, of the form

∂�[m] × �[n]t ∪ �[m] × ∂�[n]t → �[m] × �[n]t,

for some m, n ≥ 0. We know that the Reedy model structure satisfies the desired
condition for these generating cofibrations, using Theorem 2.11.

Any generating cofibration of SeCatc is of the form Ar → Br, where A → B is as
above and (−)r denotes the reduction functor. Suppose that we have a pushout diagram

∐
G/K Ar ��

��

X

��∐
G/K Br �� Y

in the category of Segal precategories. Consider also the pushout

∐
G/K A ��

��

X

��∐
G/K B �� Y ′

taken in the category of simplicial spaces. If we assume that X is a Segal precategory,
so that X = Xr, then the fact that the reduction functor is a left adjoint implies that
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(Y ′)r � Y . Therefore, in the diagram

∐
(G/K)H A ��

��

∐
(G/K)H Ar ��

��

XH

��∐
(G/K)H B �� ∐

(G/K)H Br �� Y H

the left square and the large rectangle are both pushouts; therefore, the right square is
also a pushout. �

COROLLARY 5.4. The model structureSeCatG
c exists and there is a Quillen equivalence

i∗ : SeCatO
op
G

c � SeCatG
c : i∗.

For the purposes of comparison with other models, we need another
model structure with the same weak equivalences but different fibrations and
cofibrations. To define a generating set of cofibrations, we require the following
construction.

For m ≥ 1 and n ≥ 0, define Pm,n to be the pushout of the diagram

∂�[m] × �[n]t0 ��

��

∂�[m] × �[n]t

��
�[n]t0 �� Pm,n.

If m = 0, then we define Pm,0 to be the empty simplicial space. For all m ≥ 0 and n ≥ 1,
define Qm,n to be the pushout of the diagram

�[m] × �[n]t0 ��

��

�[m] × �[n]t

��
�[n]t0 �� Qm,n.

For each m and n, the map ∂�[m] × �[n]t → �[m] × �[n]t induces a map im,n : Pm,n →
Qm,n. Note that when m ≥ 2 this construction gives exactly the same objects as those
given by reduction, namely that Pm,n is precisely (∂�[m] × �[n]t)r and likewise Qm,n is
precisely (�[m] × �[n]t)r.

THEOREM 5.5 ([1, 4.2], [3, 7.1]). There is a model structure SeCatf on the category
of Segal precategories with the following properties.
� The weak equivalences are the Dwyer–Kan equivalences.
� The cofibrations are the maps which can be formed by taking iterated pushouts along

the maps of the set

If = {im,n : Pm,n → Qm,n | m, n ≥ 0}.
� The fibrant objects are the Segal categories which are fibrant in the projective model

structure on simplicial spaces.
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THEOREM 5.6. The model category SeCatf satisfies the cellularity conditions of
Theorem 2.6.

Proof. Since the objects and weak equivalences in SeCatc and SeCatf are the same,
the cellularity conditions (1) and (3) continue to hold for SeCatf .

We need only prove that condition (2) holds. Consider a generating cofibration
A → B for the projective model structure on simplicial spaces, which has the
form

∂�[m] × �[n]t → �[m] × �[n]t,

for some m, n ≥ 0. This model structure satisfies the cellularity conditions by Theorem
2.11.

For any m ≥ 2, the map Pm,n → Qm,n coincides with Ar → Br, so the argument
given for SeCatc applies. When m = 0, the map is an isomorphism. Therefore, we need
only consider the case when m = 1.

The pushout diagram defining P1,n can be rewritten as

�[n]t0 � �[n]t0 ��

��

�[n]t � �[n]t

��
�[n]t0 �� P1,n.

The top horizontal map is the inclusion, and the left horizontal map is the fold map,
so it follows that P1,m = �[n]t, which coincides with (�[n]t)r since �[n]t0 is already
discrete. Since Q1,n = (�[1] × �[n]t)r, we simply need to consider the map (�[n]t)r →
(�[1] × �[n]t)r. But this map is the reduction of a cofibration in the projective model
structure, so we can apply the same argument as the one used for SeCatc to the
diagram

∐
(G/K)H �[n]t ��

��

∐
(G/K)H (�[n]t)r ��

��

XH

��∐
(G/K)H �[1] × �[n]t �� ∐

(G/K)H (�[1] × �[n]t)r �� Y H .

It follows that the right-hand square is a pushout, which is what we needed to prove. �
COROLLARY 5.7. The model structureSeCatG

f exists and there is a Quillen equivalence

i∗ : SeCatO
op
G

f � SeCatG
f : i∗.

We now have a number of comparisons with other models, beginning with the one
connecting SeCatc and SeCatf .

PROPOSITION 5.8 ([3, 7.5]). The identity functor induces a Quillen equivalence

I : SeCatf � SeCatc : J.
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COROLLARY 5.9. The identity functor induces a commutative square of Quillen
equivalences

SeCatG
f

��

��

SeCatG
c��

��

SeCatO
op
G

f
��

��

SeCatO
op
G

c .��

��

Next, we consider the comparison between simplicial categories and Segal
categories. The functor N taking a simplicial category to its simplicial nerve, a Segal
category has a left adjoint which we denote by F .

THEOREM 5.10 ([3, 8.6]). The Quillen pair

F : SeCatf � SC : N,

is a Quillen equivalence.

COROLLARY 5.11. There is a commutative square of Quillen equivalences

SeCatG
f

��

��

SCG��

��
SeCatO

op
G

f
��

��

SCOop
G .��

��

Next, we consider the inclusion functor I from the category of Segal precategories
to the category of simplicial spaces, which has a right adjoint R.

THEOREM 5.12 ([3, 6.3]). The adjoint pair

I : SeCatc � CSS : R,

is a Quillen equivalence.

COROLLARY 5.13. There is a commutative square of Quillen equivalences

SeCatG
c

��

��

CSSG��

��
SeCatO

op
G

c
��

��

CSSOop
G .��

��

Similarly to the comparison between complete Segal spaces and quasi-categories,
Joyal and Tierney prove that there are also two different Quillen equivalences directly
between QCat and SeCatc. The first of these functors is analogous to the pair given
in Theorem 3.8; the functor j∗ : SeCatc → QCat assigns to a Segal precategory X the
simplicial set X∗0. Its left adjoint is denoted j!.
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THEOREM 5.14 ([17, 5.6]). The adjoint pair

j! : QCat � SeCatc : j∗,

is a Quillen equivalence.

The second Quillen equivalence between these two model categories is given by
the map d∗ : SeCatc → QCat, which assigns to a Segal precategory its diagonal, and
its right adjoint d∗.

THEOREM 5.15 ([17, 5.7]). The adjoint pair

d∗ : SeCatc � QCat : d∗,

is a Quillen equivalence.

COROLLARY 5.16. There are two commutative squares of Quillen equivalences

QCatG ��

��

SeCatG
c��

��

QCatG ��

��

SeCatG
c

��

��

QCatO
op
G

��

�� SeCatO
op
G

c��

��

QCatO
op
G

��

�� SeCatO
op
G

c .
��

��

6. Actions of simplicial groups. In this section, we consider the case of actions
by any simplicial group G. Given a model category C, to make sense of the category
CG, we need to require that C have the structure of a simplicial model category and
consider simplicial functors G → C where G is regarded as a simplicial category with
one object.

Stephan proves the following result for the topological case, but his proof holds
in the simplicial case as well. He restricts to the case of compact Lie groups, partially
because they are the case of most interest in equivariant homotopy theory, but also
because they satisfy important cofibrancy conditions. In particular, if G is a compact
Lie group, then the spaces G/H and (G/H)K are CW complexes for any closed
subgroups H and K of G. In our case, the analogous statement is that the simplicial
sets G/H and (G/H)K are cofibrant, which holds automatically since all simplicial
sets are cofibrant. In order to transfer our arguments from the discrete setting,
however, we assume that G is finite, in the sense of having finitely many nondegenerate
simplices.

PROPOSITION 6.1. Suppose that G is a simplicial group and C is a cofibrantly generated
simplicial model category. Then, we have the following.

(1) The category of G-objects in C admits the G-model structure if the conditions of
Theorem 2.6 hold. In this case, CG is a simplicial model category.

(2) The orbit category model category COop
G exists and is a simplicial model category.

(3) There is a Quillen equivalence COop
G � CG.

Since CSS is known to be a simplicial model category [25, 7.2], we have the
following.
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COROLLARY 6.2. The simplicial model categories CSSG and CSSOop
G exist and there

is a Quillen equivalence

i∗ : CSSOop
G � CSSG : i∗.

Proof. We already know that CSS satisfies the cellularity conditions. Therefore,
the result follows immediately from Proposition 6.1. �

However, we can also consider SeCatc; we include here a proof that it is a simplicial
model category.

PROPOSITION 6.3. The model category SeCatc has the structure of a simplicial model
category.

Proof. We need to show that the axioms (SM6) and (SM7) for a simplicial model
category hold [14, 9.1.6]. We begin with (SM6). Suppose that X and Y are Segal
precategories and K is a simplicial set. Recall that the left adjoint to the inclusion
functor from Segal precategories to simplicial spaces is the reduction functor (−)r.
Define X ⊗ K = (X × K)r, where the product is taken in simplicial spaces. Then define
Map(X, Y ) and Y K just as for simplicial spaces; for the latter, observe that if Y0 is
discrete, then so is (Y K )0 = (Y0)K . Then, one can verify the necessary isomorphisms
to verify (SM6).

To check axiom (SM7), we need to show that if i : A → B is a cofibration and
p : X → Y is a fibration in SeCatc, then the pullback-corner map

Map(B, X) → Map(A, X) ×Map(A,Y ) Map(B, Y ),

is a fibration of simplicial sets which is a weak equivalence if either i or p is. Since we have
defined mapping spaces to be the same as in the category of simplicial spaces, we need
only verify that a cofibration or fibration in SeCatc is still a cofibration or fibration,
respectively, in the Reedy model structure on simplicial spaces. Since cofibrations
are exactly the monomorphisms in both categories, the case of cofibrations is
immediate.

Suppose, then, that p is a fibration in SeCatc, so that is has the right lifting
property with respect to monomorphisms between Segal precategories which are also
Dwyer–Kan equivalences. In particular, it has the right lifting property with respect to
monomorphisms which are levelwise weak equivalences of simplicial sets. Suppose that
A → B is an acyclic cofibration in the Reedy model structure. Then π0(A0) ∼= π0(B0),
so (Ar)0

∼= (Br)0. Therefore the map Ar → Br is still a levelwise weak equivalence and
monomorphism, and in particular a weak equivalence in SeCatc. Therefore, we obtain
a lifting

A ��

�
��

Ar ��

��

X

p

��
B �� Br

���
�

�
�

�� Y.

Therefore, p is also a fibration in the Reedy model structure on simplicial spaces. It
follows that SeCatc satisfies axiom (SM7) and is a simplicial model category. �
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Since we have already verified that SeCatc satisfies the cellularity conditions, we
have the following result.

COROLLARY 6.4. Let G be a simplicial group. The simplicial model categories SeCatG
c

and SeCatO
op
G

c exist and there is a Quillen equivalence

i∗ : SeCatO
op
G

c � SeCatG
c : i∗.

Using another application of Theorem 2.7, or rather, an analogue for simplicial
model categories, we obtain the following.

COROLLARY 6.5. Let G be a simplicial group. Then, there are Quillen equivalences
of simplicial model categories

SeCatG
c

��

��

CSSG��

��
SeCatO

op
G

c
��

��

CSSOop
G .��

��
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