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Abstract

In an optimal variance stopping problem the goal is to determine the stopping time at
which the variance of a sequentially observed stochastic process is maximized. A solution
method for such a problem has been recently provided by Pedersen (2011). Using the
methodology developed by Pedersen and Peskir (2012), our aim is to show that the
solution to the initial problem can be equivalently obtained by constraining the variance
stopping problem to the expected size of the stopped process and then by maximizing
the solution to the latter problem over all the admissible constraints. An application to a
diffusion process used for modeling the dynamics of interest rates illustrates the proposed
technique.
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1. Introduction

Let X = (Xt )t~O be a continuous-time real-valued Markov process and let lP'x be the
probability measure under which X starts at x. Let us define

Vex) := sup varj lXj ],
r

(1.1)

where the supremum is taken over all the stopping times r of X such that lEx [X;] < 00.

The optimal variance stopping problem for X aims at computing the value function V (x) and
determining the optimal stopping time r*(x) at which the supremum on the right-hand side of
(1.1) is attained. Recalling that varx[X r ] := lEx[(Xr -lEx[X r ])2] = lEx[X;] - (lEx[X r ])2,
we note that the expectation operator of the stopped process enters the value function (1.1) in a
nonlinear (quadratic) way, unlike what happens in a standard-linear optimal stopping problem.
This implies that the well established theory of optimal stopping (see, e.g. Peskir and Shiryaev
(2006) or Shiryaev (1978)) does not directly work for (1.1).

An effective method for solving an optimal variance stopping problem has been recently
proposed by Pedersen (2011). His idea relies on embedding (1.1) into the linear optimal
stopping problem

Wc(x) := sup lEx [(X r - c)2],
r

c E lR,

for which the standard optimal stopping theory can be applied. He proved that if there exists a
constant, say c(x), such that Wc(x) (x) is finite and the associated optimal stopping time rc(x)
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satisfies
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c(x) = lEx [Xrc(X)]'

then r*(x) = rc(x) and Vex) = Wc(x)(x).
In this paper we provide an alternative method for tackling an optimal variance stopping

problem; our approach is based on the technique originally introduced and developed by
Pedersen and Peskir (2012). In particular, in the next section we show that the solution to (1.1)
can be obtained by first solving a constrained optimal stopping problem, where the constraint is
given on the expectation of the stopped process, and then by maximizing the obtained solution
over the set of all the admissible constraints. By exploiting this result, in Section 3 we derive
the explicit solution to (1.1), under the assumption that X follows the diffusion process used
by Conley et ale (1997) and Ahn and Gao (1999) for modeling the dynamics of interest rates.
Section 4 concludes with a summary discussion. The proofs of the results contained in Sections 2
and 3 follow closely the proof of Theorem 3 in Pedersen and Peskir (2012).

2. Main result

In this section we state and prove the main result of this paper. In the what follows, we
denote by ex the range of the map r 1---+ lEx[Xr ] , where r is a stopping time of the Markov
process X = (X, )t2:0, starting at x under JIDx-

Theorem 2.1. For a given constant A, consider the optimal stopping problem

VA-(x) := sup lEx [X; - AXr ] ,
r

(2.1)

where the supremum is taken over all the stopping times of X such that lEx [X;] < 00. Let rf
be its optimal stopping time and m E ex. If there exists a constant A(m, x) such that

(2.2)

then r~ (x) := r~m,x) is an optimal stopping time for the constrained optimal stopping problem

Vm(x) := sup lEx [X;].
r : IEx[X r ]=m

The value function V (x) from (1.1) is given by

Vex) = sup (Vm(x) - m 2)
mEex

(2.3)

(2.4)

and the associated optimal stopping time t" (x) can be expressedas r~m* ,x) = r~* (x), where m"
is the value at which the supremum in (2.4) is attained.

Proof We can write (1.1) by conditioning on the magnitude m E ex of Ex [Xr ]:

Vex) = sup(lEx[X;] - (lEx[Xr ])2)
r

= sup sup (E, [X;] - (Ex [X, ])2)
mEex r : IEx[Xr]=m

= sup (Vm(x) - m 2) ,
mEex

(2.5)
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which establishes (2.4) and makes evident that (1.1) requires solving (2.3). To this aim let us
define the Lagrange function

Lx,m(T, 'A) := lEx [X;l - 'A (lEx [Xrl - m) (2.6)

for x and m E ex given and fixed. It is easy to observe that the stopping time T f!, optimal in
(2.1), realizes

Lx,m(Tf!, 'A) = sup Lx,m(T, 'A).
r

(2.7)

It follows that if there exists a constant 'A(m, x) so that T~m,x) satisfies (2.1) and (2.2), then
from (2.6) and (2.7), we have

for any stopping time T such that lEx [Xr] = m. This shows that the stopping time T~ (x),

optimal in (2.3), coincides with T~m,x) and, together with (2.5), also proves that T* (x) =
u _ v ( )

TA(m*,x) - Tm* X •

It is straightforward to note that the expression Vm (x) - m 2 appearing in (2.4) equals the
value function V (x) subject to lEx [Xr] = m, with m E ex. This means that V(x) can be
obtained by maximizing a constrained optimal variance stopping problem over the set of all
the admissible constraints. The idea of solving such a constrained optimal stopping problem is
already present in Pedersen (2011, Remark 3.3), but there is no connection with its unconstrained
version. Hence, Theorem 2.1 establishes a bridge between constrained and unconstrained
optimal variance stopping problems: the approach used therein relies on the very powerful
methodology developed by Pedersen and Peskir (2012) in order to solve mean-variance optimal
stopping problems.

3. Financial application

The variance is one of the main criteria adopted in finance for quantifying the risk of a
market variable. Usually, the higher its variance, the more risky it is perceived. Problem (1.1)
is therefore relevant when one is sequentially monitoring a market variable X = (Xt )t::::o and
aims at detecting the moment at which its variance attains the maximum value: at that time,
hedging or speculation strategies can be realized.

In this section we solve the optimal variance stopping problem (1.1) for the diffusion
process X, governed under IF'x by the following stochastic differential equation:

2 3/2dXt = -kXt dt + a X; dBt , Xo = x > o. (3.1)

In the above expression we denote by J.L(z) := -kz2 and a(z) := az3/ 2 the drift and diffusion
term of X, respectively, and we set k, a > O. This process is used for modeling the dynamics
of interest rates and was introduced by Conley et al. (1997) and Ahn and Gao (1999), in
order to capture the results of some empirical studies, which had showed that the evolution of
interest rates is characterized by a nonlinear drift and a diffusion term proportional to x 3/ 2 ; see,
e.g. Ait-Sahalia (1996). The state space of this process is (0, (0). Furthermore, we assume that
2k > a 2, so that

(3.2)
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holds for any x > 0 and a nonnegative constant C. Condition (3.2) ensures the existence of a
strong solution to (3.1); see, e.g. Kutoyants (2004) and Karatzas and Shreve (1988, Chapter 5)
for the concept of a strong solution.

Let us analyze some properties of X. Its scale function Sex) and speed measure m(dx) are
given by

f x (fY 2J-l(Z») x
1
+

y

Sex) := exp - -2- dz dy = --,
a (z) 1 + y

1 1
m(dx) := = ,

a 2(x)S'(x) a 2x3+y

where y := 2k/a 2 > 1; then, it is easy to verify that

(3.3)

S(O+) = 0,

t m(dx) = 00,
Jo+

S(oo-) = 00,

t S(x)m(dx) = 00,
Jo+

(3.4)

(3.5)

being e any arbitrary point greater than O. Denoted by Ty := inf{t ~ 0: X, = y} the first hitting
time to y and TO+ := limy-!-o Ty , from (3.4) we read that 0 is an attracting boundary, meaning
that JIDx (TO+ S Tb) > 0 for all x and b such that 0 < x < b, and X is transient, namely, X t ----+ 0
JIDx-almost surely (a.s.) as t ----+ 00. From (3.5) we read that 0 is a natural boundary for X, in
the sense that X can neither start from it nor attain it in finite mean time; see, e.g. Karlin and
Taylor (1981, Chapter 15). Moreover, from the general theory of diffusion processes and (3.3),
we have

Sex) - S(O+) (X)l+ y

1I\(rb < ro+) = S(b) _ S(O+) = b ' 0 < x < b. (3.6)

The conditional distribution of Xt, t ~ 0, is well known (seeAhn and Gao (1999»; in particular
its variance is given by

[X ]
_ a 2(t)e-u(t,x) (M(q - 1, 1 + q, u(t, x) _ e-u(t,x)(M(q, 1 + q, u(t, X»)2)

varx t - ,
q q-1 q

(3.7)
where aCt) := 2/(a2t ) , u(t, x) := a(t)/x, q := 2(k + a 2)/a2 - 1, and M(a, b, x) is the
Kummer confluent hypergeometric function defined by

a a(a + 1) x 2

M(a b x) := 1 + -x + - + ....
, , b b(b + 1) 2!

(3.8)

From (3.7) and (3.8) we observe that var, [X t ] ----+ 0 as t ----+ 00, which suggests that the value
function (1.1) could be finite.

Following the lines of Theorem 2.1, we begin by deriving the solution to the optimal stopping
problem (2.1). The result is shown in the next proposition.

Proposition 3.1. Let X be the diffusion process satisfying (3.1) and (3.2) and let y := 2k/a2 >
1. Then, for a given constant 'A > 0, the function UA(x) in (2.1) is given by

I[(b('A»l-y - 'A(b('A»-Y]x 1+y, 0 < x S b('A),
UA(x) =

x 2 - 'Ax, x ~ b('A),
(3.9)
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where b(A) := Ay I(y - 1). The stopping time

r~A) := inf{t ~ 0: x, ~ b(A)}
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(3.10)

is optimal in (2.1), that is, rf = r~Ar

Proof. Denote by GA(x) := x 2 - AX, X > 0, the gain function in (2.1). It is immediate to
note that X r-+ GA(x) is convex on (0,00), satisfies GA(O) = GA(A) = 0, GA(+oo) = +00,
and GA(A/2) = -A2/4, being A/2 its unique global minimum. We also know that X, --+ °
JIDx-a.s. as t --+ 00. Hence, we conjecture that there exists a threshold b ~ A, such that the
optimal stopping time rf in (2.1) equals rt, where rt is the first time that X is above b
and is defined through (3.10) above. We recall that the infinitesimal generator lL of X acts on
f E e2 ( (0 , 00)) as (lLf)(x) := (0'2 12)x3 f//(x) - kx 2 f'(x).

The strong Markov property of X and the theory of optimal stopping (see, e.g. Peskir and
Shiryaev (2006, Chapters 3 and 4) or Shiryaev (1978, Chapter 3)) lead us to formulate the
following free-boundary problem for the unknown function UA and the unknown boundary b:

(lLUA)(x) = 0, X E (0, b),

UA(x) > x 2 - AX, X E (0, b),

UA(x) = x 2
- AX, X E [b, 00),

UA(O+) = 0,

UA(b) = b2
- Ab (continuous fit),

U{(b) = 2b - A (smooth fit)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

The general solution of (3.11) is UA(x) = A + Bxl+y ; the constants A and B and the threshold
b are then uniquely determined by (3.14)-(3.16). It results in A = 0, B = b1- y - Ab-y and
b = b(A) = Ay I(y - 1) > A, since y > 1. It is easily seen that (3.12) holds.

Now, we prove that (3.9) and (3.10) solve the optimal stopping problem (2.1). To this aim
we keep using UA for the function expressed in (2.1) and we denote by Ur(x) the function
in (3.9). By construction Ur is e2 on (0, b) U (b, (0), but e1 at b. However, since the time
spent by X at b is of Lebesgue measure 0, Ito's formula can be applied to Ur in its standard
form:

U{(Xt)= U{(x) +it (LU{)(Xs ) ds +«: (3.17)

where Mt := a f~X;/2 ur' (Xs ) dB s , t ~ 0, is a continuous local martingale. Note that

(lLUr) (x) ::: 0, X E (0,00) \ {b}. (3.18)

This inequality holds by construction on (0, b); for X E (b, 00), Ur(x) = GA(x), so that we can
easily verify that (lLGA(x)) ::: °if and only if x ~ b12. Let (rn)nEN be a localizing sequence
of stopping times for (Mt)t:::o. Then, from (3.12), (3.13), (3.17), and (3.18), we have

(3.19)

for any stopping time r of X such that Ex[X;l < 00. Thus, letting n --+ 00 in (3.19), Fatou's
lemma and the optional sampling theorem (that is, Ex [MT/\Tnl = 0) imply that

(3.20)
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which proves that Ur ~ U)... Repeating the same reasoning with r~)..) in place of t , we observe
that the inequalities in (3.19) and (3.20) become equalities, so that

(3.21)

Equations (3.20) and (3.21) show that Ur(x) = U)..(x) for any x > 0, as well as that (3.10) is
optimal in (2.1). Observe that, because of the asymptotic behavior of X, the set in (3.10) might
be empty, so that r~)..) is not necessarily finite valued. However, this fact does not contradict
its optimality, since we can easily verify that the assumptions contained in Peskir and Shiryaev
(2006, Corollary 2.9 and Remark 2.10, pp. 4~8) are satisfied.

By virtue of Theorem 2.1 and Proposition 3.1, we can determine the solutions to (2.3)
and (1.1). The results are contained in the next theorem.

Theorem 3.1. Let X satisfy (3.1) and (3.2) and let y := 2k/a2 > 1. Then, for a fixed
o < m :s x, the stopping time r~ (x), optimal in (2.3), is expressed by

and the associated value function is given by

(3.22)

The optimal stopping time and the value function of the optimal variance stopping problem
(1.1) are respectively given by (see Figure 1)

{ (
2y ) l/(1+y) }

r*(x) = inf t > 0: X, = y _ 1 x ,

_ 2[( 2y ) <l-y)/(1+y) (2Y )<-2Y)/(1+Y)]
V(x) - x -- - -- .

y-1 y-1

b*(x) .

x

0+-+--------------
a r*(x)

(3.23)

(3.24)

FIGURE 1: A plot of two simulated paths of X from (3.1), where we set x = 0.5, k = 1.5 and a = 0.8.
According to (3.23), the optimal stopping time r*(x) for (1.1) is the first time that X, reaches b*(x) =

0.5891. As we can see, t:" (x) is not necessarily finite valued.
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Proof For a given b :::: x, we have
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(3.25)

being r: the first time that X is above the threshold b, defined through (3.10), and ry the first
hitting time of X to level y. The equalities in (3.25) hold because X, converges to 0 IP'x-a.s. as
t goes to 00. From (3.6) and (3.25) it is easily seen that, for x :s b,

lEx [Xr +] = bJP\(r: < (0) + OIP'x(r: = (0) = b-yx 1+y,
b

lEx[X 2+] = b2IP'x(r: < (0) + OIP'x(r: = (0) = b1
-

y
x

1+y•
rb

(3.26)

(3.27)

Observe from (3.1) that X is a supermartingale, since JL(x) = -kx2 < 0, implying that the
set ex of Theorem 2.1 equals {y > 0: y ::: x}. So, for a fixed 0 < m ::: x, in order to meet
(2.2) and using the optimality result established in Proposition 3.1 and (3.26), we set

m = [b(A(m, x))]-y x 1+y, (3.28)

where we recall that b(A) = Ay /(y - 1) and A(m, x) is the constant that, according to
Theorem 2.1, ensures the existence of an optimal stopping time for (2.3). Easy calculations
imply that A(m, x) = m- 1/ y x 1+1/ y (y - l)/y. Then, from Theorem 2.1, (3.10), and (3.28),

(3.29)

is optimal in (2.3). The equality sign in the set (3.29) follows from the fact that m ::: x if and
only if b ~ x, as we can observe from (3.28). Equation (3.22) follows from (3.27) and (3.28),
or, equivalently, from U)..(m,x) (x) + A(m, x)m, where U)..(m,x) (x) is given through (3.9).

The optimal variance stopping problem (2.1) can now be faced as a standard optimization
problem, as stated by Theorem 2.1. In particular, from ex = {y > 0: y :s x}, (2.5), (3.22),
and (3.28), it follows that

V(x) = sup (ml-l/Yxl+l/y _m2) = sup(b1-yx 1+y _b-2yx2(1+y)).

O<m::::x b?:x

Let f(b) := b1- yx 1+ y - b-2yx 2(1+Y), b ~ x, and consider its first derivative

f'(b) = (1 - y)b-yx 1+y + 2yb-2y-1x2(l+Y).

Recalling that y := 2k/a2 > 1, we note that the map b ~ f(b) starts at 0 (at b = x), has an
initial increase and then decreases towards 0 as b goes to 00. This shows that f has a unique
maximum point b* (x) E (x, (0); setting I' (b) = 0, we obtain

(
2y ) l/(l+y)

b*(x) = -- x > x.
y-1

According to Theorem 2.1, it thus follows that the stopping time given in (3.23) is optimal
in (1.1). The value function (3.24) is finally obtained by evaluating f(b*(x)).

Remark 3.1. In standard/linear optimal stopping problems the state space of the observed
process X can be partitioned into two sets, independently of the starting point x: they are the
continuation set, where the value function is strictly greater (less) than the gain (loss) function,
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and the stopping set, where the value function equals the gain or loss function, as shown for
example by Proposition 3.1. The results of Pedersen (2011) and Theorem 3.1 clearly show that
this situation does not hold for (1.1), whose optimal stopping boundary depends on the starting
point x of X. This is a remarkable fact that led Pedersen and Peskir (2012) to introduce the
concepts of static and dynamic optimality.

In our context, we say that a stopping time T* is statically optimal in (1.1) if there is no other
stopping time T such that

var, [Xr ] > var, [Xr*].

It is evident that the meaning of optimal variance stopping problem illustrated at beginning of
this paper is equivalent to finding a stopping time which is optimal in (1.1) in the static sense.
Hence, the stopping time in (3.23) is statically optimal.

A stopping time T* is instead dynamically optimal in (1.1) if there is no other stopping time r
such that

IfDx (varxT* [Xr ] > 0) > O.

This criterion basically states that the stopping time T* is optimal in the dynamic sense if once
the process X is stopped at T* and the optimal stopping problem (1.1) with the new starting
point Xr, is considered, there is no hope to improve the gain at a future stopping time. It is
very intuitive to see that in (1.1) it is dynamically optimal not to stop at all and this is formally
justified by the fact that the stopping boundary appearing in (3.23) is always greater than the
initial point.

4. Conclusions

In this paper we analyzed a method for handling an optimal variance stopping problem and
we illustrated it through a financial application. We observe that the solution method presented
in Theorem 2.1 does not seem to be restricted to quadratic optimal stopping problems, like
problem (1.1) or the one faced by Pedersen and Peskir (2012). Indeed, we think that the
examined approach could find a more general application also in other highly nonlinear optimal
stopping problems, which are certainly worthy of further investigation in future studies.
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