
J. Appl. Prob. 50, 127–150 (2013)
Printed in England

© Applied Probability Trust 2013

HEAVY TAILS IN QUEUEING SYSTEMS:
IMPACT OF PARALLELISM ON
TAIL PERFORMANCE

BO JIANG,∗ ∗∗ University of Massachusetts

JIAN TAN,∗∗∗ The Ohio State University and IBM T. J. Watson Research

WEI WEI,∗ ∗∗∗∗ University of Massachusetts

NESS SHROFF,∗∗∗∗∗ The Ohio State University

DON TOWSLEY,∗ ∗∗∗∗∗∗ University of Massachusetts

Abstract

In this paper we quantify the efficiency of parallelism in systems that are prone to
failures and exhibit power law processing delays. We characterize the performance of
two prototype schemes of parallelism, redundant and split, in terms of both the power
law exponent and exact asymptotics of the delay distribution tail. We also develop the
optimal splitting scheme which ensures that split always outperforms redundant.

Keywords: Multipath; power law; parallelism

2010 Mathematics Subject Classification: Primary 68M20
Secondary 60G99

1. Introduction and model description

Parallelism is a common approach to improve reliability and efficiency in practice. Of all
the diverse forms of parallelism, two prototype schemes stand out: redundant and split. In
the redundant scheme a task is processed in its entirety by each agent, and is considered as
completed when any one of the agents finishes. In the split scheme a task is split into multiple
subtasks, each processed independently by a different agent, and the original task is completed
when all subtasks are. In both cases, we expect better efficiency from using parallelism either
because the processing time is the minimum of all the agents or because a smaller task needs
to be completed by each agent.

In this paper we quantify the efficiency of parallelism in mitigating power law tails, which
have been shown to be present when a job needs to be restarted after a failure occurs [3], [9],
[10], [11], [14]. For the sake of definiteness, let us consider the notion of parallelism in the
context of communication networks, where a data unit can be transmitted using multiple paths.
A data unit can be a file or a packet (which are henceforth used interchangeably), and the
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Figure 1: Multipath transmission over K channels with failures.

transmission needs to restart after a failure (i.e. there is no check point in the transmission).
In Figure 1 we show a sketch of the multipath model considered in this paper, which is a
generalization of the single-path model introduced in [10]. There are K independent paths
between the source and the destination. The channel dynamics of path j, 1 ≤ j ≤ K , are
modeled as an on–off process {(Aji , Uji )}i≥1 that alternates between available periods Aji and
unavailable periods Uji . We assume that {Aji }i≥1 are independent and identically distributed

(i.i.d.) with common distribution Aj , and {Uji }i≥1 are i.i.d. with common distribution Uj .
Moreover, the sequences {Uji }i≥1 and {Aji }i≥1, 1 ≤ j ≤ K , are mutually independent.

Let L be the random variable denoting the length of a packet, which is assumed to be
independent of the channel dynamics, i.e. {(Aji , Uji )}i≥1. A fragment of length Lj = γjL,

0 ≤ γj ≤ 1, of the packet is sent over path j . Packet transmissions can start only at the
beginnings of available periods. A transmission over path j that starts at the beginning of
A
j
i is considered successful if Aji ≥ Lj ; otherwise, the transmission aborts and waits for the

beginning of the next available period Aji+1 to restart.
We study two multipath transmission schemes, namely, redundant transmission and split

transmission, corresponding to the two aforementioned prototypes of parallelism. Under
redundant transmission, the same packet is transmitted in its entirety over all K paths, so
γj = 1 for all j , and the transmission is successful as soon as one of the K replicas arrives at
the destination. Under split transmission, the packet is split into K nonoverlapping fragments,
each sent over a different path, so

∑
1≤j≤K γj = 1, and the transmission is complete only when

the last fragment arrives at the destination. The quantity of interest is the overall transmission
delay, of which the precise definition is given below.

Definition 1.1. The number of (re)transmissions of a packet of length Lj over path j,

1 ≤ j ≤ K , is defined as
Nj := min{i : Aji ≥ Lj },

and the corresponding transmission delay over this path is defined as

Tj :=
Nj−1∑
i=1

(A
j
i + Uji )+ Lj .

• Redundant transmission (Lj = L): the transmission is complete when the packet is
successfully transmitted over any one of theK paths. Therefore, the overall transmission
delay T R is

T R := min
1≤j≤K Tj .
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• Split transmission (
∑K
j=1 Lj = L): the transmission is complete when all K fragments

of the packet are successfully transmitted. Therefore, the overall transmission delay T S

is
T S := max

1≤j≤K Tj ,

and the total number of retransmissions over the K paths is

NS :=
K∑
j=1

Nj .

Our main contributions in this paper can be summarized as follows.

• We characterize the asymptotic behaviors of P[T R > x] and P[T S > x], in terms of both
the power law exponent (Theorems 3.2 and 4.2) and exact asymptotics (Theorems 3.3
and 4.3). Compared to the single-path transmission on the best path, redundant transmis-
sion does not change the power law tail exponent of the delay distribution (Theorem 3.2),
but only decreases the distribution tail by a constant factor (Theorem 3.3). On the
other hand, depending on the packet size distribution and the manner of splitting, split
transmission could either increase or decrease the power law tail exponent (Theorem 4.2).

• We develop the optimal split transmission scheme that minimizes the power law tail
exponent of the transmission delay, which is guaranteed to be no larger than that of
redundant transmission and the best single-path transmission (Theorem 4.4). The optimal
split transmission scheme is effective in mitigating power law delays if the absolute value
of the logarithm of the packet size probability tail is regularly varying with positive index,
and becomes ineffective if the above quantity is slowly varying.

Multipath transmissions have also been studied in [1] using extreme value theory, with the
number of paths going to infinity. In the present work we focus on the context of multipath
transmissions in communication networks with a fixed (typically small) number of paths, where
the multipath transmission has long been used to improve reliability and efficiency (see, e.g. [5],
[6], and [12]). Here we want to emphasize that the packet size distribution has been assumed to
have an infinite support in this study, which contradicts the reality that all packet networks (from
the Internet to wireless LANs) impose maximum packet sizes at different layers of the protocol
stack. It can be proved that eventually the transmission delay distribution will be light tailed
under this condition. However, as has been shown in [15], this light-tailed behavior occurs
with a power law main body of the delay distribution, and this power law behavior may have
dominating effects on the system performance since it spans over a time interval that increases
very fast with respect to the length of the longest packet. Thus, our assumption on the infinite
support of the packet size distribution allows us to study the main body of the transmission
delay distribution. While, similar to [15], we can extend our results to the case with packets
having finite support, we feel that this would distract from the main insights gained from the
paper.

Note also that while we have chosen to cast the mathematical model in the context of data
transmission for wireless networks, especially for low-power sensor networks where simple
operations are preferred to recover failed data (for the performance with complicated coding
schemes, see [16]), the model is applicable to many other scenarios that involve parallelism
and job failures, such as computing jobs in grid computing, file downloading in peer-to-peer
networks, parallel experiment planning, and parallel scheduling.
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The rest of the paper is organized as follows. In Section 2 we summarize the known results
on single-path transmission. Redundant transmission is investigated in Section 3, and split
transmission in Section 4.

2. Summary of known results on single-path transmission

In this section we establish some notation that will be used throughout the paper, and also
summarize the results on single-path transmission that will be used later.

Throughout the paper, we will use the following notation to denote the complementary
cumulative distribution functions of Aj , 1 ≤ j ≤ K , and L:

Ḡj (x) := P[Aj > x]
and

F̄ (x) := P[L > x]
with F̄ (x) being continuous eventually. The K paths are said to be homogeneous if
{Aj ,Uj }1≤j≤K are identically distributed as {A,U}, in which case we use Ḡ(x) := P[A > x].
In general, {Aj ,Uj }1≤j≤K are not identically distributed, and the K paths are said to be
heterogeneous.

We will use the limit

αj := lim
x→∞

log F̄ (x)

log Ḡj (x)
,

when it exists, as a coarse quality measure of channel j relative to the packet size distribution,
with a larger value corresponding to a better channel.

We will also assume some moment conditions on {Uj }Kj=1, {Aj }Kj=1, and L. Specifically,
we will say that the moment conditions hold with parameter α if there exists some θ > 0 such
that

(C1) max1≤j≤K E[(Uj )(α∨1)+θ ] <∞;

(C2) max1≤j≤K E[(Aj )1+θ ] <∞;

(C3) E[Lα+θ ] <∞.

Before we proceed, recall the following definition of the regularly varying function [4].

Definition 2.1. A positive measurable function f is called regularly varying (at infinity) with
index ρ if

lim
x→∞

f (λx)

f (x)
= λρ (2.1)

for all λ > 0. It is called slowly varying if ρ = 0.

Also, recall the standard definition of an inverse function f←(x) := inf{y : f (y) > x} for
a nondecreasing function f (x); note that the notation f (x)−1 represents 1/f (x). We will use
‘∨’ to denote max, i.e. x ∨ y := max{x, y}. For any two real functions f (x) and g(x), the
following standard notation will also be used:

• f (x) ∼ g(x) if and only if limx→∞ f (x)/g(x) = 1;

• f (x) = o(g(x)) if and only if limx→∞ f (x)/g(x) = 0;

• f (x) = O(g(x)) if and only if limx→∞ f (x)/g(x) <∞.
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2.1. Single-path transmission

For the case K = 1, i.e. there is only a single path in the system, the total number of
transmissions N = N1 and transmission delay T = T R = T S have been studied in [3], [10],
and [11]. Below we quote Propositions 2.1 and 2.2 from [10] and [11], which show that both
N and T can follow power law distributions regardless of how heavy or light the tails of A and
L might be.

Proposition 2.1. Suppose that

lim
x→∞

log F̄ (x)

log Ḡ(x)
= α > 0.

Then

lim
n→∞

log P[N > n]
log n

= −α.
If, in addition, the moment conditions hold with parameter α then

lim
t→∞

log P[T > t]
log t

= −α.

Proposition 2.2. Suppose that

F̄ (x)−1
∼ �(Ḡ(x)−1),

where �(·) is regularly varying with index α > 0. Then, as n→∞,

P[N > n] ∼ �(α + 1)

�(n)
.

If, in addition, the moment conditions hold with parameter α then, as t →∞,

P[T > t] ∼ �(α + 1)(E[U + A])α
�(t)

.

Note that F̄ (x)−1
∼ �(Ḡ(x)−1) implies that limx→∞ log F̄ (x)/ log Ḡ(x) = α by

Theorem 1.4.1 and Proposition 1.3.6 of [4]. Thus, Proposition 2.2 provides more refined results
than Proposition 2.1 under more restrictive conditions. As mentioned in the introduction, the
results in the preceding two propositions as well as those in the rest of the paper can be readily
extended to the case where packet sizes are bounded, using similar techniques as in [15].

3. Redundant transmission

In this section we study the redundant transmission scheme. We investigate whether
redundant transmission overK paths can mitigate the power-law-distributed transmission delay
suffered by single-path transmissions. We begin with the special case of homogeneous paths,
followed by the general case of heterogeneous paths.

3.1. Homogeneous paths

In this section we present the results for homogeneous paths. We first consider the case
where all packets are of the same size, and then the more realistic case where packet sizes are
variable.
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Proposition 3.1. Suppose that all packets are of the same size l, and that U = 0. Then

lim
t→∞

log P[T R > t]
t

= −Kγ,

where γ > 0 is the solution to the equation
∫ l

0 eγ x dP[A ≤ x] = 1.

This result can be derived using Corollary 3.2 of [3]. It shows that redundant transmission
greatly improves the performance when all packets are equally sized. AsK increases, we obtain
order gains in the decay rate of the delay distribution tail.

In reality, however, packets are not equally sized due to many other considerations,
e.g. reducing communication costs and extra overhead induced from encapsulation. We now
present a theorem for the case where the packet size is a random variable.

Theorem 3.1. Suppose that

lim
x→∞

log F̄ (x)

log Ḡ(x)
= α > 0,

and that the moment conditions hold with parameter α. Then

lim
t→∞

log P[T R > t]
log t

= −α.

Comparing the above theorem with Proposition 2.1, we observe that the power law tail
exponent of the delay distribution under redundant transmission is the same as that under
single-path transmission. This is because the packets sent over these paths are replicas of each
other and, hence, T1, . . . , TK are not independent. This theorem is a direct consequence of
Theorem 3.2 below, which investigates a more general scenario.

3.2. Heterogeneous paths

For heterogeneous paths, we have the following result for redundant transmission.

Theorem 3.2. Suppose that

lim
x→∞

log F̄ (x)

log Ḡj (x)
= αj > 0, j = 1, 2, . . . , K.

Let α∗ := max1≤j≤K αj > 0 and �∗K = {j ∈ {1, 2, . . . , K} : αj = α∗}. If the moment
conditions hold with parameter α∗ and with (C1) replaced by

(C1′) minj∈�∗K E[(Uj )(α∗∨1)+θ ] <∞,

then

lim
t→∞

log P[T R > t]
log t

= −α∗. (3.1)

Theorem 3.2 shows that the tail behavior of the delay distribution under redundant
transmission is determined by the best paths (i.e. the paths with the largest αj ).

Proof of Theorem 3.2. We first establish an upper bound. Suppose that path k achieves the
minimum in (C1′). Note that Tk ≥ T R = min1≤j≤K Tj . By Proposition 2.1,

lim
t→∞

log P[T R > t]
log t

≤ lim
t→∞

log P[Tk > t]
log t

= −αk = −α∗. (3.2)
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Next, we establish a lower bound by constructing a new system with longer available periods
than all of the K paths. The new system has an on–off channel characterized by alternating
i.i.d. sequences {Āi} and {Ūi}, where

Āi = max
1≤j≤K A

j
i and Ūi = 0.

Denote by N the number of transmissions for a packet of length L over this newly constructed
channel. Note that N ≤ min1≤j≤K Nj .

Note that

{Aji > x} ⊂ {Āi > x} =
K⋃
j=1

{Aji > x}.

The monotonicity of the probability measure and the union bound yield

max
1≤j≤K Ḡj (x) = max

1≤j≤K P[Aji > x] ≤ P[Āi > x] ≤
K∑
j=1

P[Aji > x] ≤ K max
1≤j≤K Ḡj (x).

Thus, for x large enough so that K max1≤j≤K Ḡj (x) < 1, we have

max
1≤j≤K

log F̄ (x)

logK + log Ḡj (x)
≤ log F̄ (x)

log P[Āi > x] ≤ max
1≤j≤K

log F̄ (x)

log Ḡj (x)
.

Letting x →∞, we obtain

lim
x→∞

log F̄ (x)

log P[Āi > x] = α
∗.

Since E[(Āi)1+θ ] ≤∑K
j=1 E[(Aji )1+θ ] <∞, Proposition 2.1 yields

lim
n→∞

log P[N > n]
log n

= −α∗. (3.3)

Now define Ai = min1≤j≤K Aji . Note that T R ≥∑N−1
i=1 Ai , so

P[T R > t] ≥ P

[N−1∑
i=1

Ai > t

]

≥ P

[�t log t�∑
i=1

Ai > t, N > t log t

]

≥ P[N > t log t] − P

[�t log t�∑
i=1

Ai ≤ t
]
, (3.4)

where the first two inequalities follow from the monotonicity of the probability measure and
the fact thatN − 1 ≥ �t log t� forN > t log t , and the last inequality follows from P[A∩B] ≥
P[A] − P[Bc].
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Using the Markov inequality and the fact that the Ais are i.i.d.,

P

[�t log t�∑
i=1

Ai ≤ t
]
= P

[
exp

(
−
�t log t�∑
i=1

Ai

)
≥ e−t

]

≤ E exp(−∑�t log t�
i=1 Ai)

e−t
= et (Ee−A1)�t log t�.

Since A1 ≥ 0 and P[A1 > 0] > 0, we have 0 < Ee−A1 < 1, so P[∑�t log t�
i=1 Ai ≤ t] drops

off exponentially in t log t . On the other hand, (3.3) shows that P[N > t log t] drops off
algebraically in t log t , so (3.4) yields

P[T R > t] ≥ (1+ o(1))P[N > t log t].
Noting that log(t log t) ∼ log t and invoking (3.3) again, we obtain

lim
t→∞

log P[T R > t]
log t

≥ lim
t→∞

log P[N > t log t]
log(t log t)

= −α∗,

which, together with (3.2), establishes (3.1). This completes the proof of Theorem 3.2.

Theorem 3.2 characterizes the performance in terms of the logarithmic asymptotics.
Basically, it only contains information about the power law tail exponent, but yields no
information beyond. As a consequence, this result cannot distinguish between redundant
transmission and single-path transmission over the best path(s). In order to investigate the
performance gain for redundant transmission, we need a more refined asymptotic result. For
a set of regularly varying functions �j(·), 1 ≤ j ≤ K , we can compute the exact asymptotic
tail of the distribution of T R.

Theorem 3.3. Suppose that F̄ (x)−1
∼ ζj�j (Ḡj (x)

−1), where ζj > 0, and�j(·) is regularly
varying with index αj > 0 such that �i(x) ∼ �j(x) if αi = αj . Let α∗ = max1≤j≤K αj and
�∗K = {j ∈ {1, 2, . . . , K} : αj = α∗}. If the moment conditions hold with parameter α∗ and
with (C1) replaced by

(C1′′) maxj∈�∗K E[(Uj )(α∗∨1)+θ ] <∞,

then, as t →∞,

P[T R > t] ∼ �(α∗ + 1)

(
∑
j∈�∗K (E[Aj + Uj ])−1ζ

1/α∗
j )α

∗
1

�∗(t)
,

where �∗(t) ∼ �j(t) for j ∈ �∗K .

This result shows that, when there are multiple channels with the best quality measure α∗,
redundant transmission improves the system performance by reducing the delay distribution
tail by a constant factor, relative to the single-path transmission over any such path. Moreover,
this constant factor does not depend on the nonbest paths. When the K channels are i.i.d., it is
equal to Kα .

In order to prove the theorem, we need the following lemmas, which are stated for the general
case where Lj = γjL for some γj > 0, so that the results will be applicable later to the split
transmission scheme. Recall that γj = 1 for redundant transmission and

∑K
j=1 γj = 1 for split

transmission.
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Lemma 3.1. Suppose that F̄ (x)−1
∼ ζj�j (Ḡj (γj x)

−1), where ζj > 0, and �j(·) is a
regularly varying function with index αj > 0 such that �i(x) ∼ �j(x) if αi = αj . Then,
for ψj > 0, j = 1, 2, . . . , K , and a nonempty subset J ⊂ {1, 2, . . . , K},

P

[⋂
j∈J
{Nj > ψj t}

]
∼ �(α∗J + 1)

(
∑
j∈J ∗ ψjζ

1/α∗J
j )α

∗
J

1

�∗J (t)
, (3.5)

where α∗J = maxj∈J αj , J ∗ = {j ∈ J : αj = α∗J }, and �∗J (t) ∼ �j(t) for j ∈ J ∗.
Proof. See Appendix A.

Lemma 3.2. Suppose that E[(Aj )1+θ ] < ∞. Then, for ψj > 1/E[Aj ], there exists some
η > 0 and C > 0 such that

P[Tj ≤ t, Nj > ψj t] ≤ Ce−ηt .

If, in addition, E[(Uj )1+θ ] <∞ for some θ > 0 then the claim is true forψj > 1/E[Aj+Uj ].
Proof. Note that Nj > ψj t implies that Nj − 1 ≥ �ψj t�. Thus, for Nj > ψj t ,

Tj =
Nj−1∑
i=1

(A
j
i + Uji )+ Lj ≥

�ψj t�∑
i=1

(A
j
i + Uji ) ≥

�ψj t�∑
i=1

A
j
i ,

from which it follows that

P[Tj ≤ t, Nj > ψj t] ≤ P

[�ψj t�∑
i=1

(A
j
i + Uji ) ≤ t

]
≤ P

[�ψj t�∑
i=1

A
j
i ≤ t

]
.

By letting X = Aj +Uj , Xi = Aji +Uji , or X = Aj , Xi = Aji , we prove both cases at once.
Given y > 0, the Markov inequality implies that

P

[�ψj t�∑
i=1

Xi ≤ t
]
= P

[
exp

(
−y
�ψj t�∑
i=1

Xi

)
≥ e−yt

]
≤ eyt (E[e−yX])�ψj t�.

Choose δ > 0 small enough so that (1 − 2δ)ψjEX > 1. Since e−x = 1 − x + o(x), there
exists x0 > 0 such that e−x ≤ 1− (1− δ)x for 0 ≤ x ≤ x0. Let D = (1− δ)x−θ0 > 0. Then,
for x ≥ x0,

1− (1− δ)x +Dx1+θ = 1+ (1− δ)x
[(

x

x0

)θ
− 1

]
≥ 1 > e−x.

Thus, e−x ≤ 1− (1− δ)x +Dx1+θ for all x ≥ 0. Setting x = yX and taking the expectation
then yield, for small enough y > 0,

E[e−yX] ≤ 1− (1− δ)yEX +Dy1+θ
EX1+θ ≤ 1− (1− 2δ)yEX ≤ e−(1−2δ)yEX.

Therefore,

P[Tj ≤ t, Nj > ψj t] ≤ P

[�ψj t�∑
i=1

Xi ≤ t
]
≤ eyte−(1−2δ)yEX�ψj t� = Ce−ηt ,

where η = y[(1− 2δ)ψjEX − 1] > 0 and C = e(1−2δ)yEX.
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Lemma 3.3. If E[(Uj )(α∨1)+θ ] <∞, E[(Aj )1+θ ] <∞, E[Lα+θ ] <∞ for some α > 0 and
θ > 0, and ψj < 1/E[Aj + Uj ], then there exists ν > α such that

P[Tj > t, Nj ≤ ψj t] = O(t−ν).

Proof. See Appendix B.

Now we prove Theorem 3.3.

Proof of Theorem 3.3. Let ψj < 1/E[Aj + Uj ], j ∈ �∗K . Note that {T R > t} ⊂⋂
j∈�∗K {Tj > t}. Thus,

P[T R > t] ≤ P

[ ⋂
j∈�∗K
{Tj > t}

]
≤ P

[ ⋂
j∈�∗K
{Nj > ψj t}

]
+

∑
j∈�∗K

P[Tj > t, Nj ≤ ψj t].

The last term is o(1/�∗(t)) by Lemma 3.3 and Proposition 1.5.1 of [4]. Lemma 3.1 then yields

lim
t→∞�

∗(t)P[T R > t] ≤ �(α∗ + 1)

(
∑
j∈�∗K ψj ζ

1/α∗
j )α

∗ . (3.6)

Let ψ̃j > 1/E[Aj +Uj ] for j ∈ �∗K and ψ̃j > 1/E[Aj ] for j /∈ �∗K . Using union bounds,
we obtain

P[T R > t] ≥ P

[ K⋂
j=1

{Nj > ψ̃j t}
]
−

K∑
j=1

P[Tj ≤ t, Nj > ψ̃j t].

The last term is o(1/�∗(t)) by Lemma 3.2 and Proposition 1.5.1 of [4]. Lemma 3.1 then yields

lim
t→∞�

∗(t)P[T R > t] ≥ �(α∗ + 1)

(
∑
j∈�∗K ψ̃j ζ

1/α∗
j )α

∗ . (3.7)

We complete the proof by combining (3.6) and (3.7) and letting ψj , ψ̃j → 1/E[Aj + Uj ] for
j ∈ �∗K .

4. Split transmission

In this section we study the split transmission scheme, where a packet is split into
nonoverlapping fragments, each sent over a different path. Recall that a fraction γj of the
packet L is sent over path j , where

∑K
j=1 γj = 1 and 0 ≤ γj ≤ 1 for 1 ≤ j ≤ K . We

will assume that γj > 0 except in Theorem 4.4. We begin with the case of homogeneous
paths, followed by the heterogeneous case. We also investigate which of the two schemes,
split transmission or redundant transmission, results in a lighter tail for the transmission delay
distribution. We develop the optimal splitting scheme that minimizes the tail exponent of the
delay distribution, in which case split transmission outperforms redundant transmission.

4.1. Homogeneous paths

We have the following theorem for split transmission over homogeneous paths, where each
packet is evenly split into K fragments. It is a special case of Theorem 4.2, so the proof is
omitted.
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Theorem 4.1. Suppose that

lim
x→∞

log F̄ (x)

log Ḡ(x)
= α > 0

and

lim
x→∞

log F̄ (Kx)

log F̄ (x)
= β. (4.1)

If the moment conditions hold with parameter βα then

lim
t→∞

log P[T S > t]
log t

= −βα.

Note that β ≥ 1. By comparing Proposition 2.1 and Theorems 3.1 and 4.1, we observe
that split transmission is no worse than redundant transmission for homogeneous paths, when
packets are split evenly. Split transmission is not beneficial when β = 1, e.g. when log F̄ (x)−1

is a slowly varying function.
Theorem 4.1 shows that the effectiveness of split transmission is closely dependent on the

packet size distribution, as characterized by (4.1). We illustrate this point further using several
common distributions. For each distribution, we calculate α and β, and the power law tail
exponent is −βα.

Example 4.1. (Weibull distribution.) Suppose that both the packet size L and the available
period A follow Weibull distributions, i.e.

F̄ (x) = P[L > x] = e−(λx)b , Ḡ(x) = P[A > x] = e−(µx)b ,

where λ > 0, µ > 0, and b > 0. Then

α = lim
x→∞

log F̄ (x)

log Ḡ(x)
= lim
x→∞

log e−(λx)b

log e−(µx)b
=

(
λ

µ

)b
,

β = lim
x→∞

log F̄ (Kx)

log F̄ (x)
= lim
x→∞

log (e−(λKx)b )
log (e−(λx)b )

= Kb > 1.

Example 4.2. (Pareto distribution.) Suppose that both the packet size L and the available
period A follow Pareto distributions, i.e.

F̄ (x) = P[L > x] =

⎧⎪⎨
⎪⎩

(
b0

x

)λ
, x ≥ b0,

1, x < b0,

Ḡ(x) = P[A > x] =
⎧⎨
⎩

(
b1

x

)µ
, x ≥ b1,

1, x < b1,

where λ > 0, µ > 0, and b0, b1 > 0. Then

α = lim
x→∞

log F̄ (x)

log Ḡ(x)
= lim
x→∞

λ(log b0 − log x)

µ(log b1 − log x)
= λ

µ
,

β = lim
x→∞

log F̄ (Kx)

log F̄ (x)
= lim
x→∞

λ(log b0 − logK − log x)

λ(log b0 − log x)
= 1.
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Observe that β = 1 when L follows a Pareto distribution. In general, β = 1 if log F̄ (x)−1

is slowly varying. In that case, split transmission is not beneficial compared to single-path
transmission and redundant transmission in terms of tail performance.

4.2. Heterogeneous paths

For heterogeneous paths, we have the following result for the transmission time.

Theorem 4.2. Suppose that, for j = 1, 2, . . . , K ,

lim
x→∞

log F̄ (x)

log Ḡj (x)
= αj > 0, (4.2)

lim
x→∞

log F̄ (x)

log F̄ (γj x)
= βj . (4.3)

Then

lim
n→∞

log P[NS > n]
log n

= −τ ◦,
where τ ◦ = min1≤j≤K βjαj . If, in addition, the moment conditions hold with parameter τ ◦
then

lim
t→∞

log P[T S > t]
log t

= −τ ◦.
When paths are heterogeneous, the delay distribution tail is determined by the best path(s)

under redundant transmission and by the worst path(s) under split transmission. On the
other hand, split transmission only sends a fraction of the packet over each path. Comparing
Theorems 3.2 and 4.2, we observe that, if min1≤j≤K βjαj > max1≤j≤K αj , split transmission
is more effective than redundant transmission in minimizing the power law tail exponent;
otherwise, redundant transmission is more effective. We will show later that, by carefully
choosing the way to split packets, the tail performance of split transmission is never worse than
that of redundant transmission.

Proof of Theorem 4.2. We first prove the result forNS. Since log�n/K� ∼ log n as n→∞,
Proposition 2.1 then implies that

lim
n→∞

log P[Nj > n]
log n

= lim
n→∞

log P[Nj > n/K]
log n

= −βjαj . (4.4)

Since NS =∑K
j=1Nj , we have

max
1≤j≤K P[Nj > n] ≤ P[NS > n] ≤

K∑
j=1

P

[
Nj >

n

K

]
≤ K max

1≤j≤K P

[
Nj >

n

K

]
,

which yields

−τ ◦ = max
1≤j≤K lim

n→∞
log P[Nj > n]

log n

≤ lim
n→∞

log P[NS > n]
log n

≤ max
1≤j≤K lim

n→∞
log P[Nj > n/K]

log n

= −τ ◦, as required.
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Next we prove the result for T S. Let �◦K = {j ∈ {1, 2, . . . , K} : βjαj = τ ◦}. Combining
(4.2) and (4.3) we obtain

lim
x→∞

log P[γjL > x]
log P[Aj > x] = lim

x→∞
βj log F̄ (x)

log Ḡj (x)
= βjαj = τ ◦, j ∈ �◦K,

which, by Proposition 2.1, yields

lim
t→∞

log P[Tj > t]
log t

= −τ ◦, j ∈ �◦K.

Since T S = max1≤j≤K Tj , we have

P[T S > t] ≥ max
j∈�◦K

P[Tj > t],

and, hence,

lim
t→∞

log P[T S > t]
log t

≥ max
j∈�◦K

lim
t→∞

log P[T S > t]
log t

= −τ ◦. (4.5)

On the other hand, for 0 < ψj < 1/E[Aj + Uj ],

P[T S > t] ≤
K∑
j=1

P[Tj > t] ≤ K max
1≤j≤K P[Nj > ψj t] +

K∑
j=1

P[Tj > t, Nj ≤ ψj t].

Using (4.4),

lim
t→∞

log(K max1≤j≤K P[Nj > ψj t])
log t

= max
1≤j≤K lim

t→∞
log P[Nj > ψj t]

log t
= −τ ◦,

so max1≤j≤K P[Nj > ψj t] = t−τ ◦+o(1). By Lemma 3.3, for some ν > τ ◦, we have P[Tj > t,

Nj ≤ ψj t] = O(t−ν) = o(max1≤j≤K P[Nj > ψj t]). Therefore,

lim
t→∞

log P[T S > t]
log t

≤ lim
t→∞

log(K max1≤j≤K P[Nj > ψj t])
log t

= −τ ◦,

which, combined with (4.5), completes the proof.

Theorem 4.2 characterizes the tail performance of the split transmission scheme in terms of
the logarithmic asymptotics. Next, we present a theorem on the more refined asymptotic result.

Theorem 4.3. Suppose that
F̄ (x)−1

∼ ζj�j (Ḡj (x)
−1) (4.6)

and
F̄ (x)−1

∼ ξj�j (F̄ (γj x)
−1), (4.7)

where ζj , ξj > 0, and �j(·), �j(·) are regularly varying with indices αj > 0, βj > 0,
respectively, such that �i(�(x)) ∼ �j(�(x)) if βiαi = βjαj . Let τ ◦ = min1≤j≤K βjαj . If
the moment conditions hold with parameter τ ◦ then, as t →∞,

�◦(t)P[T S > t] →
∑

{J : ∅�=J⊂�◦K }

(−1)|J |+1�(τ ◦ + 1)

(
∑
j∈J (E[Aj + Uj ])−1ξ

1/τ ◦
j ζ

1/αj
j )τ

◦ , (4.8)

where �◦K = {j ∈ {1, . . . , K} : βjαj = τ ◦} and �◦(t) ∼ �j(�j (t)) for j ∈ �◦K .
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Note that (4.6) and (4.7) are strengthened versions of (4.2) and (4.3), respectively. If the
limit in (4.8) is not 0, e.g. when |�◦K | = 1, then we obtain an asymptotic representation of
P[T S > t].

Proof of Theorem 4.3. By (4.6) and (4.7),

F̄ (x)−1
∼ ξj�j (F̄ (γj x)

−1) ∼ ξj ζ
βj
j �j (Ḡj (γj x)

−1),

where �j := �j ◦�j is regularly varying with index τj := βjαj > 0. By Lemma 3.1,

P

[⋂
j∈J
{Nj > ψj t}

]
∼ �(τ ∗J + 1)

(
∑
j∈J ∗ ψjξ

1/τ∗J
j ζ

1/αj
j )τ

∗
J

1

�∗J (t)
, (4.9)

where τ ∗J = maxj∈J τj , J ∗ = {j ∈ J : τj = τ ∗J }, and �∗J (t) ∼ �j(t) for j ∈ J ∗. By the
inclusion–exclusion principle,

P

[ K⋃
j=1

{Nj > ψj t}
]
=

∑
∅�=J⊂{1,2,...,K}

(−1)|J |+1
P

[⋂
j∈J
{Nj > ψj t}

]
,

which, together with (4.9), yields, for any ψj > 0, as t →∞,

�◦(t)P
[ K⋃
j=1

{Nj > ψj t}
]
→

∑
{J : ∅�=J⊂�◦K }

(−1)|J |+1�(τ ◦ + 1)

(
∑
j∈J ψj ξ

1/τ ◦
j ζ

1/αj
j )τ

◦ . (4.10)

Now let ψ̂j < 1/E[Aj + Uj ] < ψ̃j . By union bounds,

P

[ K⋃
j=1

{Nj > ψ̃j t}
]
−

K∑
j=1

P[Tj ≤ t, Nj > ψ̃j t]

≤ P[T S > t]

= P

[ K⋃
j=1

{Tj > t}
]

≤ P

[ K⋃
j=1

{Nj > ψ̂j t}
]
+

K∑
j=1

P[Tj > t, Nj ≤ ψ̂j t].

By Lemma 3.2, Lemma 3.3, (4.10), and Proposition 1.5.1 of [4],

∑
{J : ∅�=J⊂�◦K }

(−1)|J |+1�(τ ◦ + 1)

(
∑
j∈J ψ̃j ξ

1/τ ◦
j ζ

1/αj
j )τ

◦ ≤ lim
t→∞�

◦(t)P[T S > t]

≤
∑

{J : ∅�=J⊂�◦K }

(−1)|J |+1�(τ ◦ + 1)

(
∑
j∈J ψ̂j ξ

1/τ ◦
j ζ

1/αj
j )τ

◦ .

Now letting ψ̂j , ψ̃j → 1/E[Aj + Uj ] completes the proof.
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4.3. Optimal split transmission

According to Theorem 4.2, in order to minimize the power law tail exponent of the delay
distribution, the γj s should be chosen in such a way that min1≤j≤K βjαj is maximized. We may
speculate that we need to choose the γj s so that β1α1 = β2α2 = · · · = βKαK . The following
theorem confirms that this is indeed the case when log(F̄ (x)−1) is not slowly varying. A related
work on optimal file split under a different problem setting can be found in [7].

Theorem 4.4. Suppose that we use split transmission over K heterogeneous paths, each
satisfying (4.2). If the limit

β(γ ) = lim
x→∞

log F̄ (x)

log F̄ (γ x)

exists for all 0 < γ < 1 then there exists a unique constant ρ ≥ 0 such β(γ ) = γ−ρ . Let

αρ =

⎧⎪⎪⎨
⎪⎪⎩

( K∑
i=1

α
1/ρ
i

)ρ
, ρ > 0,

max
1≤i≤K αi, ρ = 0.

If, in addition, the moment conditions hold with parameter αρ then the minimum power law
tail exponent achievable is−αρ . The optimal splitting scheme that achieves the minimum is as
follows.

(a) If ρ > 0 then

γ ∗j =
α

1/ρ
j∑K

i=1 α
1/ρ
i

, j = 1, 2, . . . , K. (4.11)

(b) If ρ = 0 then γj = 0 for αj �= max1≤i≤K αi and the other γj can be any partition of
one.

In the preceding result, our objective is to minimize the power law tail exponent. When
ρ = 0, we have β(γ ) = 1, and log F̄ (x)−1 is a slowly varying function. In this case, we should
only use the best paths (i.e. paths with the largest αj value), and the scheme in (4.11) is to
split the packet arbitrarily among the best paths. This provides us with some unused degrees of
freedom that may potentially be used to optimize some additional objectives, but we will not
pursue this here. When ρ > 0, all the channels are utilized, and the optimal fraction over each
path is specified by (4.11). In this case, one can easily check that the optimal tail exponent is
indeed achieved when β1α1 = β2α2 = · · · = βKαK .

Note that αρ = (∑K
i=1 α

1/ρ
i )ρ ≥ α∗ with equality if and only if ρ = 0, where α∗ =

max1≤j≤K αj > 0, as defined in Theorem 3.2. Thus, under the assumption of Theorem 4.4,
split transmission achieves a better exponent than redundant transmission if ρ > 0.

Proof of Theorem 4.4. (a) Note that β(γ ) ≥ 1 on (0, 1). If β(γ ) = 1 for all γ ∈ (0, 1) then
β(γ ) = γ−ρ for ρ = 0. Now assume that β0 = β(γ0) > 1 for some γ0 ∈ (0, 1). Observe that
β(γ1γ2) = β(γ1)β(γ2) for any γ1, γ2 ∈ (0, 1). Thus, for any positive integers m and n,

β(γ
m/n
0 ) = (β(γ 1/n

0 ))n×m/n = (β((γ 1/n
0 )n))m/n = βm/n0 .

Since β is monotonically decreasing and the positive rationals are dense in R
+,

β(γ r0 ) = βr0, r ∈ R
+,
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or, equivalently,
β(γ ) = γ logβ0/ log γ0 = γ−ρ, γ ∈ (0, 1),

where ρ = − logβ0/ log γ0 > 0. It is clear that ρ is unique.
(b) Let {γj } be any splitting scheme. Let

τ ◦ = min{j : γj>0}αjγ
−ρ
j . (4.12)

If ρ = 0 then
τ ◦ = min{j : γj>0}αj ≤ max

1≤j≤K αj = αρ

with equality if and only if γj = 0 whenever αj �= αρ . If ρ > 0 then (4.12) gives

γj (τ
◦)1/ρ ≤ α1/ρ

j , j = 1, 2, . . . , K.

Summing over j and noting that
∑
j γj = 1, we have (τ ◦)1/ρ ≤∑K

j=1 α
1/ρ
j , or τ ◦ ≤ αρ , with

equality if γj = γ ∗j as given by (4.11). In both cases, Theorem 4.2 shows that the minimum
power law tail exponent achievable is −max τ ◦ = −αρ .

To illustrate the result of Theorem 4.4, we compute the optimal splitting scheme for some
typical distributions.

Example 4.3. (Weibull distribution.) Consider the heterogeneous counterpart of Example 4.1.
Suppose that the packet length L and all the available periods Aj (1 ≤ j ≤ K) follow Weibull
distributions, i.e.

F̄ (x) = P[L > x] = e−(λx)b , Ḡj (x) = P[Aj > x] = e−(µj x)b ,

where λ > 0, µj > 0, and b > 0. Then αj = (λ/µj )b, β(γ ) = γ−b, and ρ = b. Therefore,
the optimal splitting scheme is

γj = (λ/µj )
1/b∑K

i=1(λ/µi)
1/b
= µ

−1/b
j∑K

i=1 µ
−1/b
i

, j = 1, . . . , K.

Example 4.4. (Pareto distribution.) Suppose that the packet sizeL and all the available periods
Aj follow Pareto distributions, i.e.

F̄ (x) = P[L > x] =

⎧⎪⎨
⎪⎩

(
b0

x

)λ
, x ≥ b0,

1, x < b0,

Ḡj (x) = P[Aj > x] =
⎧⎨
⎩

(
bj

x

)µ
, x ≥ bj ,

1, x < bj .

As noted in Example 4.2, we have β(γ ) = 1 and ρ = 0. Thus, the optimal splitting scheme
is to use the best paths only, i.e. γj is nonzero only if αj = max1≤i≤K αi , and the split among
these paths is arbitrary as long as the tail exponent is concerned.
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Appendix A. Proof of Lemma 3.1

The proof itself is divided into several lemmas. We first recall the following result.

Lemma A.1. (Proposition 1.5.8 of [4].) Let �(x) be regularly varying with index α > 0. For
large enough x0, the function defined by

�(x) =
∫ x

x0

αu−1�(u) du, x ≥ x0, (A.1)

satisfies �(x) ∼ �(x).
The key step is the following lemma.

Lemma A.2. Let �(x) be regularly varying with index α > 0 and continuous on [x0,∞) for
some x0 > 0. Let �(x) be given by (A.1), and let �←(x) be its inverse. Then, for all small
enough ε > 0, as x →∞,

H(x; ε, C) :=
∫ ε

0
exp

(
− Cx

�←(v−1)

)
dv ∼ �(α + 1)

Cα

1

�(x)
. (A.2)

Proof. Note that �(x) is a monotonically increasing diffeomorphism from [x0,∞) onto
[0,∞). Changing variable according to u = x/�←(v−1), i.e. v = 1/�(x/u),

H(x; ε, C) =
∫ c(ε)x

0
αu−1e−Cu �(x/u)

�2(x/u)
du, (A.3)

where c(ε) = 1/�←(ε−1) > 0.
Note that �∗(x) = xα/2/�(x) is regularly varying with index −α/2 < 0. An application

of Theorem 1.5.2 of [4] to �∗(x) implies that there exists M0 such that, for x > M0 and
0 < u ≤ 1,

u−α/2 �(x)

�(x/u)
= �∗(x/u)

�∗(x)
≤ uα/2 + 1 ≤ 2,

and, hence,
�(x)

�(x/u)
≤ 2uα/2. (A.4)

By Theorem 1.5.6 of [4], there exists M1 > M0 such that, for x ≥ M1 and 1 ≤ u ≤ x/M1,

�(x)

�(x/u)
≤ 2uα+1. (A.5)

Since �(x) ∼ �(x), there exists M ≥ M1 such that, for all x/u ≥ M ,

�(x/u)

�(x/u)
≤ 2. (A.6)

Since c(ε) = 1/�←(ε−1) → 0 as ε → 0, there exists ε0 > 0 such that c(ε) < 1/M for all
ε < ε0. Combining (A.4), (A.5), and (A.6) yields

�(x)�(x/u)

�2(x/u)
= �(x)

�(x/u)

(
�(x/u)

�(x/u)

)2

≤ 8uα+1 + 8uα/2 (A.7)

for x ≥ M , ε < ε0, and 0 < u ≤ c(ε)x.
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Note that, as x →∞,

f (u, x) := αu−1e−Cu�(x)�(x/u)
�2(x/u)

1(0 < u ≤ c(ε)x] → αuα−1e−Cu.

Moreover, for x ≥ M and ε < ε0, (A.7) yields

0 ≤ f (u, x) ≤ g(u) := 8α(uα + uα/2−1)e−Cu,

where g(u) ∈ L1(0,∞) with integral∫ ∞
0

g(u) du = 8α�(α + 1)

Cα+1 + 8α�(α/2)

Cα/2
<∞.

Therefore, by the dominated convergence theorem and (A.3), for ε < ε0,

�(x)H(x; ε, C) =
∫ ∞

0
f (u, x) du→

∫ ∞
0

αe−Cuuα−1 du = �(α + 1)

Cα

as x →∞.

Lemma A.3. Let �(x) be regularly varying with index α > 0 and continuous on [x0,∞)
for some x0 > 0. Let �(x) be given by (A.1), and let �←(x) be its inverse. If h(x) ∼
C/�←(F̄ (x)−1) then, for all large enough z,

E[e−th(L)1(L > z)] ∼ �(α + 1)

Cα

1

�(t)
as t →∞.

Proof. Given δ ∈ (0, 1), for all large enough x,

(1− δ)C
�←(F̄ (x)−1)

≤ h(x) ≤ (1+ δ)C
�←(F̄ (x)−1)

.

Thus, for all large enough z, after integrating and changing variables according to v = F̄ (x),
we obtain

H(t; F̄ (z), (1+ δ)C) ≤ E[e−th(L)1(L > z)] ≤ H(t; F̄ (z), (1− δ)C),
where H(t; ε, C) is as defined in (A.2). When z is large enough, F̄ (z) is small enough, so, by
(A.2),

�(α + 1)

(1+ δ)αCα ≤ lim
t→∞�(t)E[e

−th(L)1(L > z)] ≤ �(α + 1)

(1− δ)αCα .
Now letting δ→ 0 yields the desired result (A.8).

Lemma A.4. Let �(x) be regularly varying with index α > 0. Let f (x) and g(x) tend to∞
as x →∞. If f (x) ∼ g(x) then �(f (x)) ∼ �(g(x)).

Proof. Let �(x) be given by (A.1). Given any ε ∈ (0, 1), for all large enough x,

(1− ε)g(x) ≤ f (x) ≤ (1+ ε)g(x),
and, hence, the mononicity of �(x) yields

�((1− ε)g(x)) ≤ �(f (x)) ≤ �((1+ ε)g(x)).
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Since �(x) is regularly varying with index α, by (2.1),

(1− ε)α = lim
x→∞

�((1− ε)g(x))
�(g(x))

≤ lim
x→∞

�(f (x))

�(g(x))

≤ lim
x→∞

�(f (x))

�(g(x))

≤ lim
x→∞

�((1+ ε)g(x))
�(g(x))

= (1+ ε)α.

Letting ε → 0 yields �(f (x)) ∼ �(g(x)). Since �(x) ∼ �(x), it follows that �(f (x)) ∼
�(g(x)).

Proof of Lemma 3.1. Replacing �j(x) by �j(x) as given in (A.1) if necessary, we can
assume that�j(x) is continuous on [x0,∞) for some large enough x0. Now let�j(x) be given
by (A.1), and let �←j (x) be its inverse. By Theorem 1.5.12 of [4], �←j (x) is regularly varying
with index 1/αj . Using �j(x) ∼ �j(x), we obtain

�j(Ḡj (γj x)
−1) ∼ �j(Ḡj (γj x)−1) ∼ ζ−1

j F̄ (x)−1,

which, by Lemma A.4, yields

Ḡj (γj x)
−1 ∼ �←j (ζ−1

j F̄ (x)−1) ∼ ζ−1/αj
j �←j (F̄ (x)−1),

and, hence,

∑
j∈J

ψj Ḡj (γj x) ∼
∑
j∈J

ψj ζ
1/αj
j

�←j (F̄ (x)−1)
∼

∑
j∈J ∗

ψjζ
1/α∗J
j

�←J ∗ (F̄ (x)−1)
,

where α∗J = maxj∈J αj , J ∗ = {j ∈ J : αj = α∗J }, and �←J ∗ (x) is the inverse of �∗J (x), which
corresponds to �∗J (x) as in (A.1). Thus, by Lemma A.3, for all large enough z,

Q(t, z) := E

[
exp

(
−t

∑
j∈J

ψj Ḡj (L)

)
1(L > z)

]
∼ �(α∗J + 1)

(
∑
j∈J ∗ ψjζ

1/α∗J
j )α

∗
J

1

�∗J (t)
. (A.8)

Denote the left-hand side of (3.5) by R(t). Since theNj s are independent conditioned on L,

R(t) = E

[∏
j∈J

P[Nj > ψj t | L]
]
= E

[∏
j∈J
(1− Ḡj (γjL))�ψj t�

]
. (A.9)

Note that, given any ε > 0, there exists M > 0 such that, for all x > M ,

∏
j∈J
(1− Ḡj (γj x))�ψj t� ≥

∏
j∈J
(1− Ḡj (γj x))ψj t ≥ (1− ε) exp

(
−t

∑
j∈J

ψj Ḡj (γj x)

)
.
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Thus, for all large enough z,

R(t) ≥ E

[∏
j∈J
(1− Ḡj (γjL))�ψj t�1(L > z)

]
≥ (1− ε)Q(t, z),

which together with (A.8) yields

lim
t→∞

�∗J (t)R(t) ≥ (1− ε)
�(α∗J + 1)

(
∑
j∈J ∗ ψjζ

1/α∗J
j )α

∗
J

.

Letting ε→ 0,

lim
t→∞

�∗J (t)R(t) ≥
�(α∗J + 1)

(
∑
j∈J ∗ ψjζ

1/α∗J
j )α

∗
J

. (A.10)

On the other hand, the inequalities �x� ≥ x − 1 and 1− x ≤ e−x yield

∏
j∈J
(1− Ḡj (γj x))�ψj t� ≤ exp

(∑
j∈J

Ḡj (γj x)

)
exp

(
−t

∑
j∈J

ψj Ḡj (γj x)

)
,

whence, by splitting (A.9) into two parts according to L > z and L ≤ z,

R(t) ≤ exp

(∑
j∈J

Ḡj (γj z)

)
Q(t, z)+ exp

(
−t

∑
j∈J

ψj Ḡj (γj z)+ |J |
)
. (A.11)

By Proposition 1.5.1 of [4], the last term of (A.11) is o(t−α∗J−1) = o(1/�∗J (t)) as t → ∞.
Using (A.8), we obtain, for all large enough z,

lim
t→∞�

∗
J (t)R(t) ≤ exp

(∑
j∈J

Ḡj (z)

)
�(α∗J + 1)

(
∑
j∈J ∗ ψjζ

1/α∗J
j )α

∗
J

.

Now letting z→∞,

lim
t→∞�(t)R(t) ≤

�(α∗J + 1)

(
∑
j∈J ∗ ψjζ

1/α∗J
j )α

∗
J

.

which together with (A.10) yields (3.5).

Appendix B. Proof of Lemma 3.3

The proof is divided into several steps. We first recall the following two results from [13].

Lemma B.1. (Corollary 1.6 of [13].) LetX1, X2, . . . , Xn be i.i.d. random variables∼ X such
that EX = 0 and a+s := E[(X ∨ 0)s] <∞ for 1 ≤ s ≤ 2. Then, for x > y > (4na+s )1/s ,

P

[ n∑
i=1

Xi ≥ x
]
≤ nP[X > y] +

(
ne2a+s
xys−1

)x/(2y)
.
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Lemma B.2. (Corollary 1.8 of [13].) LetX1, X2, . . . , Xn be i.i.d. random variables∼ X such
that EX = 0, σ 2 = var[X] <∞, and a+s := E[Xs1(X ≥ 0)] <∞ for s ≥ 2. Then

P

[ n∑
i=1

Xi ≥ x
]
≤ csa

+
s n

xs
+ exp

(
−dsx

2

σ 2n

)
,

where cs = (1+ 2/s)s and ds = 2(s + 2)−2e−s .

We will use the two lemmas in the following combined form.

Corollary B.1. Let X1, X2, . . . , Xn be i.i.d. random variables ∼ X such that EX = 0 and
E[Xs] <∞ for some s ≥ 1. If n = O(xq) for some q < s ∧ 2 then

P

[ n∑
i=1

Xi > x

]
= O

(
n

xs

)
as x →∞.

Proof. If 1 ≤ s ≤ 2 then (4na+s )1/s = O(xq/s) = o(x), so x/2 > (4na+s )1/s for large
enoughx. Settingy = x/2 in Lemma B.1 and then applying Markov’s inequality to P[X > x/2]
yields

P

[ n∑
i=1

Xi > x

]
≤ nP

[
X >

x

2

]
+ n2s−1e2a+s

xs
≤ 2s−1(2+ e2)a+s

n

xs
.

If s ≥ 2 then x2/n = �(x2−q) and the result follows from Lemma B.2.

The next two lemmas are the key ingredients for the proof of Lemma 3.3.

Lemma B.3. If E[(Uj )s] < ∞ for some s > α ∨ 1 then there exists an ν > α such that, as
t →∞,

P

[ Nj∑
i=1

(U
j
i − E[Uj ]) > δt, Nj ≤ ψj t

]
= O

(
1

tν

)
.

Proof. Let Ũ ji = Uji − E[Uj ]. Since Nj and {Uji } are independent,

P

[ Nj∑
i=1

Ũ
j
i > δt, Nj ≤ ψj t

]
=

M∑
n=1

P[Nj = n]P
[ n∑
i=1

Ũ
j
i > δt

]
,

where M = �ψj t�. By Corollary B.1, the right-hand side is

M∑
n=1

P[Nj = n]O(nt−s) = O
(
t−s

M∑
n=1

nP[Nj = n]
)
.

Using summation by parts,

M∑
n=1

nP[Nj = n] = 1+
M−1∑
n=1

P[Nj > n] −MP[Nj > M] ≤ 2+
M∑
n=2

P[Nj > n].
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If α > 1 then let θ ∈ (1, α); otherwise, let θ ∈ (1 + α − s, α). By Lemma 3.1, there exists a
constant Dθ such that P[Nj > n] ≤ Dθn−θ . Thus,

M∑
n=2

P[Nj > n] ≤
M∑
n=2

Dθ

nθ
≤

∫ M

1

Dθ

xθ
dx = Dθ

1− θ [M
1−θ − 1] = O(t(1−θ)∨0)

and

P

[ Nj∑
i=1

Ũ
j
i > δt, Nj ≤ ψj t

]
= O(t−s t (1−θ)∨0) = O(t−ν),

where ν = s ∧ (s + θ − 1) > α.

Lemma B.4. Let X and Y be positive random variables such that E[X1+θ ] < ∞ for some
θ > 0, and E[Y s] < ∞ for some s > 0. Let {Xi} be i.i.d. ∼ X. Then, for any ψ < 1/EX
and δ < 1− ψEX,

P

[�ψt�∑
i=1

Xi ∧ Y > (1− δ)t
]
= O

(
1

t s

)
.

Proof. Choose B such that EX < B < (1− δ)/ψ . Let η = 1− δ − Bψ > 0. Let {Zi} be
i.i.d. exponential random variables∼ Z that are independent of {Xi}, such that EX < EZ < B.

By Proposition X.1.1 of [2], supn
∑n
i=1(Zi − B) is equal in distribution to the steady-state

waiting time of a D/M/1 queue with interarrival time D and service time Z. Theorem VIII.5.8
of [2] then yields

P

[
sup
n

n∑
i=1

(Zi − B) > 1

2
ηt

]
= o(t−s).

By Proposition X.1.1 and Theorem VIII.5.7 of [2], supn
∑n
i=1(Xi ∧ (εt)− Zi) is equal in

distribution to the steady-state workload of an M/G/1 queue with interarrival time Z and
truncated service time X ∧ (εt). By Lemma 3.2 of [8], there exists ε > 0 such that

P

[
sup
n

n∑
i=1

(Xi ∧ (εt)− Zi) > 1

2
ηt

]
= o(t−s).

Therefore,

P

[�ψt�∑
i=1

Xi ∧ (εt) > (1− δ)t
]

≤ P

[�ψt�∑
i=1

(Xi ∧ (εt)− B) > ηt

]

≤ P

[�ψt�∑
i=1

(Xi ∧ (εt)− Zi) > 1

2
ηt

]
+ P

[�ψt�∑
i=1

(Zi − Bi) > 1

2
ηt

]

= o(t−s).
By Markov’s inequality, P[Y > εt] ≤ E[Y s]/(εt)s = O(1/ts). Thus,

P

[�ψt�∑
i=1

Xi ∧ Y > (1− δ)t
]
≤ P

[�ψt�∑
i=1

Xi ∧ (εt) > (1− δ)t
]
+ P[Y > εt] = O(t−s).

This completes the proof.
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Proof of Lemma 3.3. Note that, for Nj ≤ ψj t ,

Tj =
Nj−1∑
i=1

(A
j
i + Uji )+ Lj

≤
Nj∑
i=1

(A
j
i ∧ Lj + Uji )

=
Nj∑
i=1

(A
j
i ∧ Lj + E[Uji ])+

Nj∑
i=1

(U
j
i − E[Uj ])

≤
�ψj t�∑
i=1

(A
j
i ∧ Lj + E[Uji ])+

Nj∑
i=1

(U
j
i − E[Uj ]).

Thus,

P[Tj > t, Nj ≤ ψj t] ≤ P

[�ψj t�∑
i=1

(A
j
i ∧ Lj + E[Uj ]) > (1− δ)t

]

+ P

[ Nj∑
i=1

(U
j
i − E[Uj ]) > δt,Nj ≤ ψj t

]
.

For 0 < δ < 1−ψjE[Aj +Uj ], the right-hand side isO(t−ν) for some ν > α by Lemma B.3
and Lemma B.4. Note that the identity Aji ∧ Lj + E[Uj ] = (Aji + E[Uj ]) ∧ (Lj + E[Uj ])
has been used in the application of Lemma B.4.
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