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In this experimental work, the aim is to understand how turbulent thermal flows
are enhanced by the destabilization of the boundary layers. Square-stud roughness
elements have been added on the bottom plate of a rectangular Rayleigh–Bénard cell
in air, to trigger instabilities in the boundary layers. The top plate is kept smooth.
The cell proportions are identical to those of the water cell previously operated
and described by Salort et al. (Phys. Fluids, vol. 26, 2014, 015112), but six times
larger. The very large size of the Barrel of Ilmenau allows detailed velocity fields to
be obtained using particle image velocimetry very close to the roughness elements.
We found that the flow is quite different at low Rayleigh numbers, where there
is no heat-transfer enhancement, and at high Rayleigh numbers where there is a
heat-transfer enhancement due to the roughness. Below the transition, the fluid inside
the notch, i.e. between the studs, is essentially at rest, though it is slowly recirculating.
The velocity profiles on the top of obstacles and in grooves are fairly compatible
with those obtained in the smooth case. Above the transition, on the other hand, we
observe large incursions of the bulk inside the notch, and the velocity profiles on
the top of obstacles are closer to the logarithmic profiles expected in the case of
turbulent boundary layers.

Key words: turbulent boundary layers, turbulent convection, turbulent flows

1. Introduction

Turbulent thermal convection is an important phenomenon both in nature and in
industry. One common model system is the Rayleigh–Bénard cell, which consists in
a fluid layer confined inside adiabatic walls, heated from below and cooled from above
by horizontal smooth plates. In the limit of Boussinesq conditions, this system is
controlled by only three non-dimensional parameters: the Rayleigh number, Ra, the
Prandtl number, Pr, and the cell aspect ratio Γ .

† Email address for correspondence: julien.salort@ens-lyon.fr
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The Rayleigh number, Ra, accounts for the thermal forcing,

Ra= gα(Th − Tc)H3

νκ
, (1.1)

with g the acceleration due to gravity, α the fluid thermal expansion coefficient, Th the
temperature of the hot plate, Tc the temperature of the cold plate, H the cell height,
ν the fluid kinematic viscosity and κ the fluid thermal diffusivity.

The Prandtl number, Pr, is a property of the fluid and compares the two diffusion
mechanisms that impede convection,

Pr= ν
κ
. (1.2)

The aspect ratio, Γ , is a geometric parameter of the cell,

Γ = W
H
, (1.3)

where W is the width of the cell and H its height.
The system output can be assessed by the Nusselt number, Nu, which compares the

thermal heat flux, q̇, to the case of a purely diffusive situation where the heat flux,
q̇diff , is given by

q̇diff = λ(Th − Tc)

H
, (1.4)

where λ is the fluid thermal conductivity. The Nusselt number can thus be written

Nu= q̇H
λ(Th − Tc)

. (1.5)

An important problem is to be able to predict the system heat flux for a given
thermal forcing, i.e. to relate the Nusselt number to Ra and Pr, in particular in the
case of asymptotically large forcings. Many scaling theories have been proposed, i.e.
expressing the Nusselt numbers as a power law, Nu = βRaγ , see reviews by Ahlers,
Grossmann & Lohse (2009), Lohse & Xia (2010) and Chillà & Schumacher (2012).

In the turbulent regime, the average temperature within the Rayleigh–Bénard cell
is mostly homogeneous, except within thin fluid layers near the plates. Those layers,
usually referred to as thermal boundary layers, play an important role in the dynamics
of the system. One classical argument consists in considering that the heating and
cooling plates are independent, thus the heat flux q̇ should not depend on H. This
yields γ = 1/3. This prediction catches the experimental behaviour relatively well,
though the situation is more complicated. Many efforts have been made to better
model the experimental observations and catch the details of the Nu versus Ra relation
(Castaing et al. 1989; Shraiman & Siggia 1990; Grossmann & Lohse 2000; Stevens
et al. 2013).

In particular, an open problem is the possible destabilization of these boundary
layers and its effect on the asymptotic scaling laws. Half a century ago, Kraichnan
predicted that the transition to a turbulent boundary layer would increase the scaling
law to γ = 1/2 with logarithmic corrections (Kraichnan 1962). Because this scaling
can be derived as a rigorous upper bound (Doering & Constantin 1996), it means
that it will not undergo further qualitative changes as Ra tends to infinity, and thus
this regime is sometimes referred to as the ultimate regime of convection.
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Boundary layer structure in a rough Rayleigh–Bénard cell filled with air 277

There are only a few laboratory set-ups capable of achieving high enough Rayleigh
numbers to reach the transition towards this regime. Such an experimental observation
was first reported in a cryogenic Rayleigh–Bénard cell using gaseous helium as the
working fluid (Chavanne et al. 1997). The data are compatible with the prediction
from Kraichnan, with logarithmic corrections. The critical Rayleigh number then
reported was 1011, though the precise value is somewhat uncertain because it depends
on the exponent of the scaling one uses as a reference. A deviation from Nu∼ Ra2/7

was considered in the case of the original paper of Chavanne et al. If one chooses
to consider a deviation from γ = 1/3 instead, then the same dataset yields a critical
Rayleigh number closer to 1012, as was subsequently reported by the Grenoble group
(Gauthier et al. 2009; Roche et al. 2010).

New experimental heat-flux measurements have been reported recently by the
MPIDS group in Göttingen for Rayleigh numbers beyond 1012, using pressurized
SF6 as the working fluid (Ahlers et al. 2009, 2012b; Funfschilling, Bodenschatz &
Ahlers 2009; He et al. 2012). They have obtained several possible effective scaling
exponents, possibly less steep than γ = 1/3, but eventually close to γ = 0.36 for
Ra > 1014. A theoretical interpretation has been proposed by Grossmann & Lohse
(2011), based on an extension of their original unifying theory (Grossmann & Lohse
2001) to the case of turbulent boundary layers and logarithmic velocity profiles.

Our alternative approach in the experimental work presented in this paper aims at
triggering the transition to a turbulent boundary layer at a lower Rayleigh number by
means of a controlled roughness. Indeed, the critical shear Reynolds number can be
lowered in the presence of roughness (Schlichting & Gersten 2000).

Several groups have reported roughness-induced heat-transfer enhancements.
Groove-shaped roughness has been added to the already-transiting Rayleigh–Bénard
cell in Grenoble, which allowed the scaling exponent to be further increased from
an effective 0.38 due to the logarithmic corrections to the purely asymptotic γ = 1/2
(Roche et al. 2001). A numerical simulation was performed by Stringano, Pascazio
& Verzicco (2006) in this particular geometry and backed the increase of γ .

Pyramid-shaped roughness was used in Hong Kong. Though it does not always
produce a change in γ , it still yields enhancement of plume emissions and a 20–76 %
increase for Nu. This is larger than the increase due to the increase in heating area
caused by the roughness (Shen, Tong & Xia 1996; Du & Tong 1998, 2000; Qiu, Xia
& Tong 2005). The result has been extended recently to the case where roughness is
added on one plate only (Wei et al. 2014).

Spherical roughness was used also by Ciliberto & Laroche (1999), distributed either
randomly or periodically on the bottom plate. The roughness was made of glass and
therefore changed the plate conductivity locally as well. They reported an increase
from γ = 2/7 to a higher exponent, only in the case of randomly distributed spheres.

Our own previous experiment, carried out in Lyon, involved a 40 cm × 40 cm
rectangular cell with a rough bottom plate and water as the working fluid (Salort
et al. 2014). The controlled roughness consisted in an array of obstacles 2 mm high
and 5 mm× 5 mm square, evenly spaced every 1 cm. Heat-transfer enhancement was
observed and agreed fairly well with measurements with a similar kind of roughness
inside a larger cylindrical cell (Tisserand et al. 2011).

The careful analysis of the local temperature fluctuations, as well as temperature
visualization with background-oriented synthetic schlieren imaging, strongly suggested
a destabilization of the laminar boundary layer on the top of the obstacles and
a confinement of the flow between the obstacles (referred to as notches). These
observations led us to propose a simple model, which accounted for the observed
global heat-transfer enhancements (Salort et al. 2014).
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The roughness-induced heat-transfer enhancement may depend on the details of
the roughness geometry, and the influence of the roughness shape may be of great
interest for engineers (García et al. 2012). However, in this work, we focus on general
effects only, obtained once a transition to turbulence inside the boundary layer has
been triggered. We choose one particular set of obstacles for its simplicity, and study
how the changes in the boundary layer structure affect the dynamics of the heat
transport. The aim is to provide experimental evidence of the effects of boundary
layer destabilization on the global heat flux. The understanding of the mechanisms at
play is of the utmost importance in predicting more generally the heat transfer in the
high-Ra limit.

The case of periodic box-shaped roughness elements with spanwise dimension
equal to the full depth of the cell has also been studied analytically (Shishkina &
Wagner 2011) and numerically (Wagner & Shishkina 2015). The effect of the height,
width and distance between the obstacles is studied. They find an increase for γ ,
which then saturates at larger Ra when the cavities (that we refer to as notches in
the present work) are fully washed out. The main differences from the other studies
mentioned above are that the height of these roughness elements is much larger
than the typical boundary layer thickness, and that the roughness consists only of a
set of four obstacles on the plate. Although this might be a different situation than
the case considered in the present paper of a rough surface where the roughness has
dimensions comparable to those of the boundary layers, and consists of a much larger
set of obstacles, it nevertheless triggers changes in the boundary layer structure that
can be compared to the situation presented in this work.

In this paper, we present new measurements carried out inside the Barrel of Ilmenau.
The Barrel of Ilmenau is the world’s largest experiment (up to 7.0 m×6.3 m) to study
highly turbulent convection in air with unrivalled spatial and temporal resolution. A
rectangular cell, with proportions strictly identical to the water cell in Lyon, but six
times larger, has been inserted inside the Barrel. As in the Lyon experiment, the top
plate is smooth and the bottom plate is rough. This configuration has allowed us to
study velocity fields using particle image velocimetry (PIV) near the obstacles, as well
as the local heat flux on the bottom plate, and thus to go beyond our previous analysis.
The observation of logarithmic profiles of velocity reported at high Rayleigh numbers
in this work is direct evidence of the destabilization of the boundary layers. This is not
to be confused with the logarithmic profiles of temperature that have been observed
above smooth plates, in both the classical and ultimate states (Ahlers et al. 2012a;
Ahlers, Bodenschatz & He 2014; Wei & Ahlers 2014), and which do not necessarily
imply a transition to turbulent boundary layers.

2. Experimental set-up
The convection cell is a 0.62 m thick, 2.50 m × 2.50 m rectangular cell with

0.50 cm thick walls (see sketch in figure 1). The walls are inserted inside the
Barrel of Ilmenau. The bottom and top plates are directly those of the Barrel itself
and are described in more detail in previous work by du Puits, Resagk & Thess
(2013). The controlled roughness consists in an array of 1.2 cm high, 3 cm× 3 cm
square aluminium obstacles, evenly glued on the bottom plate. As shown in figure 2,
because these obstacles are aligned with the walls, it is possible to distinguish
between ‘grooves’ washed by the mean wind and ‘notches’ between obstacles where
the fluid is confined.

In this configuration, the rectangular cell is fully surrounded by the larger cylindrical
Rayleigh–Bénard cell, 7.15 m in diameter and 2.50 m in height. The vertical
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Vertical laser sheet for PIV

Horizontal laser sheet for PIV

Depth

0.62 m

0.5 cm

FIGURE 1. (Colour online) Sketch of the convection cell. The green surfaces represent
the laser sheets, either vertical for PIV in the groove and on the obstacle, or horizontal
for PIV inside the notch.
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n

Groove

Notch

FIGURE 2. (Colour online) Picture of the roughness on the bottom plate. The blue
coloured area is an example of a ‘groove’ portion, washed by the mean wind. The green
coloured area is a example of a ‘notch’, where the fluid is confined between obstacles.

temperature distribution is almost the same inside and outside the enclosure, therefore
the lateral heat exchange throughout the walls is negligible. The working fluid is air.
The Prandtl number is 0.71.

Although this work is mainly about PIV and characterization of the velocity
boundary layers, the Nusselt numbers have also been estimated, to determine when
the critical Nusselt number, where roughness-induced heat-transfer enhancement is
expected, has been reached. Because there are only three Rayleigh numbers (given in
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Th (◦C) Tc (◦C) Tm (◦C) P (W) Ra Nu

PIV + HFS 23 20 22 200 4.66× 109 62.1
HFS 25 15 20.9 619 1.59× 1010 111
PIV 35 15 27 1700 2.8× 1010

HFS 51.4 21.2 38.1 2090 3.64× 1010 247
PIV 55 20 41 4090 4.04× 1010

TABLE 1. Experimental conditions. The first column indicates the kind of measurement
that has been performed: particle image velocimetry near the bottom rough plate (PIV)
and/or thermal heat-flux measurements (HFS). The Nusselt number is the estimation of
the local Nusselt number at (x, y)= (60, 31 cm), see text for details.

table 1), it is not possible to infer power-law scalings. The heat flux is computed from
three commercial sensors, identical to those used previously in the facility (du Puits,
Resagk & Thess 2010; Kaiser & du Puits 2014): two Omega Newport HFS-4 sensors
that measure the heat flux on the top of an obstacle, q̇plot, and the heat flux inside a
notch, q̇notch, and one PhyMeas sensor that measures the heat flux in a groove, q̇groove.

The radiative heat flux cannot be neglected; it accounts for 10–30 % of the total
heat flux in our set-up. To accurately estimate the convective Nusselt number, we
subtracted an estimated radiative flux using the same model as Kaiser & du Puits
(2014), with emissivities εc = 0.05 for the cooling plate, εh = 0.07 for the heating
plate and εw= 0.24 for the walls because they were coated with a thin foil during the
heat-flux measurements.

The total convective heat flux, q̇, is then estimated by summing the contributions:

q̇= 1
2 q̇groove + 1

4 q̇notch + 1
4 q̇plot. (2.1)

The three heat-flux sensors are located near one another, close to x= 60 cm from the
sidewall (horizontal direction in figure 1) and y= 31 cm (depth direction in figure 1).

To assess whether there is a heat-transfer enhancement, the Nusselt number obtained
from that heat flux is compared in figure 3 with reference data obtained in the same
cell but with smooth boundaries. We use previous measurements by Kaiser (2015)
as the reference data for the smooth case. Kaiser & du Puits (2014) have shown,
however, that the heat flux is not homogeneous on the plate, so comparison between
the present local measurement and whole-plate heat fluxes should be carried out with
care. Both local and global reference data are available in the smooth case (Kaiser &
du Puits 2014). The global values are averages computed from whole-plate heat-flux
maps obtained with an infrared camera.

In the present work, we measured local heat fluxes only, and these can be compared
to local smooth estimates, computed from the heat-flux map by averaging over a
3 cm× 3 cm area, at the same position as the sensors in the present work on both
sides of the cell, because the local heat flux depends on the wind direction.

The transition towards a roughness-induced enhanced heat-transfer regime is
expected to occur when the thermal boundary layer thickness, δth, matches the
height of the roughness, h0 (Tisserand et al. 2011). Therefore, the expected critical
Nusselt number, Nuc, is

Nuc = H
2h0

. (2.2)

This critical Nusselt number is shown as a dashed horizontal line in figure 3.
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50

100

150

200

250

Ra

Nu

1010

FIGURE 3. (Colour online) Non-dimensional local heat-flux measurements at x= 60 cm
inside the rough cell (red open squares). The error bars represents the 5.5 % uncertainty of
the commercial heat-flux sensors on the dimensionless heat flux. The results from Kaiser
(2015) inside a smooth cell are shown for reference: whole-plate heat-flux measurements
from an infrared camera (black circles) with an uncertainty of 7 %, with heat flux averaged
over a 3 cm× 3 cm area at x= 60 cm (down-pointing green triangles) and at x= 190 cm
(up-pointing cyan triangles). The horizontal dashed line indicates the transition Nusselt
number, Nuc =H/(2h0), above which a heat-transfer enhancement is expected.

The Nusselt number in the rough case, computed with the local heat flux (2.1), is
in quantitative agreement with the smooth case at the intermediate Rayleigh number,
Ra = 1.59 × 1010, close to the expected transition threshold. At the lowest Rayleigh
number, Ra = 4.66 × 109, the Nusselt number in the rough case might be slightly
lower than expected in the smooth case. This can be caused by the additional heat
resistance due to the fluid inside the notch, as was suggested previously by Tisserand
et al. (2011). The Nusselt number in the rough case at the highest Rayleigh number,
Ra= 3.64× 1010, is higher than the Nusselt number in the smooth case. This can be
interpreted as roughness-triggered heat-transfer enhancement.

2.1. Velocity measurements
The flow was seeded with cold-atomized droplets of di-ethyl-hexyl-sebacate with a
typical size of 1 µm, identical to those used previously by du Puits et al. (2014).
Their size is sufficiently small for them to behave as tracers. As shown in figure 1,
these particles were illuminated with either a horizontal (for visualization in the
groove and on the top of the obstacles) or vertical (for visualization inside the notch)
laser light sheet of about 70 mm height and 2 mm thickness, generated by a 2 W
cw laser in combination with a beam expander. The fast acquisition of the particle
motion was captured using an IOI Flare-2M360-CL 2048× 1088 camera with a frame
rate between 340 Hz at the lowest Ra at full resolution and 902.5 Hz at the highest
Ra at 2040× 400 resolution.

We have recorded three sequences of 20 s every five minutes at the lowest Ra, or
every minute at the highest Ra, and sequences of 2 s every minute for one hour at
all Ra. The velocity fields are then computed using a cross-correlation PIV algorithm
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Streamwise velocity (along x) u(x, z, t)
Streamwise velocity fluctuation u′ = u(x, z, t)− 〈u(x, z, t)〉t
Plate-normal velocity (along z) v(x, z, t)
Plate-normal velocity fluctuation v′ = v(x, z, t)− 〈v(x, z, t)〉t
Boundary layer thickness (crossing of tangent with umax) δ×
Displacement thickness δthickness

Distance to the wall where u= umax δmax

Viscous sublayer thickness δ

Thermal boundary layer thickness δth

Shear Reynolds number Res = δthicknessumax/ν

Shear stress τ = 〈u′v′〉t +µ(∂u/∂z)
Typical turbulent velocity U∗ =√〈u′v′〉t
Non-dimensional wall distance z+ = zU∗/ν
Non-dimensional velocity u+ = u/U∗

Height of the cell H = 2.5 m
Depth of the cell (spanwise) 0.62 m
Height of roughness elements h0 = 1.2 cm
Width of roughness elements `= 3.0 cm

TABLE 2. Summary of the notations and main dimensions of the system.

implemented in the CIVx software suite (Fincham & Delerce 2000), above and below
the critical Nusselt number Nuc, and near several positions on the rough plate: on top
of an obstacle, in a groove and inside a notch (see figure 4).

The fluid inside the notch is almost at rest, as indirectly assumed by Salort et al.
(2014). Due to the limitations of our acquisition system, it is not possible to resolve
the details of both the slow recirculation inside the notch and the much faster flow
away from the plate. That is why we used separate acquisitions: acquisitions above
the obstacle (figure 4a,b) and measurements inside the notch only (figure 4c,d).

2.2. Notations for the similarity parameters
Our aim is to compare the flow features, in particular the velocity profiles, velocity
boundary layer thickness and the turbulent fluctuations, above and below Nuc, and
compare them with smooth experimental data from the literature, and with simple
classical theoretical profiles, such as the Prandtl–Blasius viscous velocity profile or the
logarithmic velocity profile of isothermal turbulent shear flows (Schlichting & Gersten
2000).

In order to perform such kinds of comparison, it is necessary to specify the
non-dimensional parameters and the definition of the boundary layer thickness. The
notations that we use in our analysis are summarized in table 2.

As pointed out by previous experimental investigations of the velocity profiles, such
as du Puits, Resagk & Thess (2007), the comparison with Blasius would normally
require computation of the similarity parameter η = z

√
umax/νx, and one possibility

would be to follow the implicit assumption of Grossmann & Lohse (2000) that the
development of the boundary layer starts at the outer edge of the plate. But then the
experimental profiles drastically differ from the Blasius profile, and this observation
holds also for the data reported in this paper. The comparison with Blasius-type
profiles seems possible, however, if x is specified in such a way that the velocity
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gradients du/dz of the Blasius prediction and the experimental data are made to match,
or equivalently if the profiles are plotted in terms of z/δ× where δ× is obtained as
the distance from the plate at which the extrapolation of the tangent at z= 0 crosses
umax (Sun, Cheung & Xia 2008; Zhou & Xia 2010).

However, du/dz|z=0 is ill-defined for some of the profiles above Nuc. This will be
discussed in more detail in the following sections. For this reason, and also to allow
comparison of the shear Reynolds number measured in the smooth case by Li et al.
(2012) and Willert, du Puits & Resagk (2014), it is useful to use the displacement
thickness δdisplacement as an alternative definition of the boundary layer thickness,

δdisplacement(x)=
∫ ∞

0

(
1− 〈u(x, z, t)〉t

umax

)
dz, (2.3)

where 〈·〉t is the temporal average. In practice, the upper bound is chosen at the
distance δmax where u(zmax)= umax.

The comparison with logarithmic profiles of classical turbulent shear flows requires
one to define z+= zU∗/ν and u+= u/U∗, where U∗ is a characteristic velocity of the
turbulent flow considered, defined such that

τ = ρU∗2
, (2.4)

where τ is the shear stress (Landau & Lifshitz 1987). This shear stress is linked to
the Reynolds tensor and the velocity gradient:

τ = ρ〈u′v′〉t +µ∂u
∂z
, (2.5)

where µ= νρ is the dynamic viscosity of the fluid.
In experimental works where the velocity gradient is well defined and well resolved

at z= 0, such as du Puits et al. (2007) and Willert et al. (2014), the shear stress can
be computed at the wall, e.g. τw =µ∂u/∂z. In the following, we will rather compute
τ away from the plate, where the velocity gradient is negligible, i.e. τturb = ρ〈u′v′〉,
and therefore

U∗ =√〈u′v′〉t. (2.6)

3. The flow field adjacent to the roughness elements
3.1. The flow field below and beyond the transition limit

There are three main simple flow structures that can be considered inside the notch,
between roughness elements, sketched in figure 5: (a) stratified fluid inside the notch,
below the critical limit of linear instability, with no velocity. This would lead to
reduced heat transfer compared to the case of the smooth plate, as was observed by
Tisserand et al. (2011) in a cylindrical cell; (b) slow circulation inside the notch with
no fluid exchange, caused by internal convection and shear from the wind. In that
case, there is only weak additional thermal resistance and the boundary condition at
z= h0 is almost unchanged, compared to the top of the obstacle; (c) convection and
mixing with the bulk flow. In that case, the notch may contribute to the heat-transfer
enhancement or to the plume emission.

The experimental velocity fields are shown in figure 4 and provide evidence of
a change of flow structure inside the notch from configuration (b) at Ra = 4.66 ×
109 to configuration (c) at Ra= 4.04× 1010. This change occurs concomitantly with
heat-transfer enhancement and changes in the velocity statistics that we detail in the
following subsections.
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FIGURE 4. (Colour online) Mean velocity fields at Ra=4.66×109 (a,c,e) and Ra=4.04×
1010 (b,d,f ). (a,b) On top of an obstacle, (c,d) inside a notch, (e,f ) in a groove. The colour
code is given for one Rayleigh number and is identical for the three locations. The scale
of the arrows is arbitrary and differs from one plot to another to allow better visualization
of the flow. The solid red line is the velocity displacement thickness, δdisplacement (see (2.3)).

(a) (b) (c)

FIGURE 5. (Colour online) Sketch of possible flow structure inside a notch. (a) Thermally
stratified, no convection, (b) internal convection, no fluid exchange, (c) external convection
with fluid exchange.

3.2. Flow structure below the transition
The velocity profiles below the transition Nusselt number Nuc are shown in figure 6.
They compare fairly well with typical profiles previously obtained in smooth cells
(du Puits et al. 2007; Sun et al. 2008; Li et al. 2012). The negative mean velocities
for z < 0.5 cm inside the notch are a signature of the slow recirculation. The
measurements collapse quickly above the obstacles.
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FIGURE 6. (Colour online) Velocity profiles near the rough plate at Ra= 4.66× 109, in
a groove (full orange triangles), on the top of a roughness element (full magenta circles)
and inside a notch (cyan squares, full symbols obtained with the acquisition inside the
notch, open symbols with the acquisition above the notch, away from the plate). The black
dashed lines are the theoretical Prandtl–Blasius profiles. (a) Raw profiles where the origin
z = 0 is the bottom of the roughness elements. (b) Non-dimensional profiles compared
with experimental data obtained in smooth cells at Ra= 7.48× 1011 from du Puits et al.
(2007) (open blue circles), at Ra= 3× 109 from Li et al. (2012) (open red squares) and
at Ra= 5.3× 109 from Sun et al. (2008) (open green triangles).

The profiles above an obstacle or above a notch are very similar for z > h0. The
reason is that the boundary condition is close: zero velocity at z= h0 above obstacles,
or almost zero velocity at z= h0 above notches. In other words, above obstacles and
notches the velocity goes from 0 at z = h0 to umax at z = δmax, and in the groove it
goes from 0 at z= 0 to umax at a nearly similar z= δmax. For this reason, the profile
is much steeper above notches and obstacles than in the groove, and thus δ×, defined
from the slope at origin, is much smaller in the former case.

Once shifted in z (by choosing z = 0 on the top of the obstacle, rather than at
the bottom of the obstacle for the profiles above the notch and above the roughness
element) and rescaled by δ×, the tangents at the origin are indeed collapsed, and
the shape of the profile can be compared to other profiles found in the literature,
and to theoretical velocity profiles (figure 6b). The profile above a roughness element
differs slightly from the Prandtl–Blasius profile, and is consistent with the results
from du Puits et al. (2007) and Li et al. (2012) obtained in the Barrel with smooth
plates. On the other hand, the profiles in a groove are much closer to the profiles
obtained by Sun et al. (2008) and to the laminar Prandtl–Blasius profile. This may
be a consequence of the confinement and the additional drag caused by the rough
walls, which yields locally a smaller Reynolds number.

The displacement thickness, plotted in figure 4, is larger than h0. At the lowest
Rayleigh number, Ra = 4.66 × 109, we find δdisplacement = 1.4 cm in the groove, or
0.7 cm and 0.56 cm beyond z = h0, respectively above the notch and above the
roughness element. Hence, the thickness of the boundary layer, δv, defined from z= 0
at the bottom of roughness elements, lies between 1.4 and 1.9 cm. To compare these
observations to previous results, one has to infer an estimate for the thermal boundary
layer thickness. Since the Prandtl number is less than 1, the thermal boundary layer is
thicker than the kinetic boundary layer. For Prandtl–Blasius boundary layers, one can
show that δth/δv scales like ∼Pr−1/3 for large Prandtl numbers and like ∼Pr−1/2 for
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FIGURE 7. (Colour online) Velocity profiles near the rough plate at Ra= 4.04× 1010, in
a groove (full orange triangles), on the top of a roughness element (full magenta circles)
and inside a notch (full cyan squares: acquisition of the low velocities, open cyan squares:
acquisition of the fast velocities).

small Prandtl numbers (Shishkina, Horn & Wagner 2013). In the range of intermediate
Prandtl numbers where the present experiment lies, close to the centre of the cell,
the direct numerical simulation study by Shishkina et al. (2013) yields

δth ≈ 2.0 δv. (3.1)

Therefore, the thermal boundary layer thickness can be estimated to lie in the range
between 2.8 and 3.8 cm, which is indeed larger than h0, as expected.

The outer velocity is umax = 11 cm s−1. Thus, the shear Reynolds number,

Res = δvumax

ν
, (3.2)

is of order 100. This is consistent with the measurements in the same conditions but
over smooth surfaces (Willert et al. 2014).

3.3. Flow structure beyond the transition
At high Rayleigh number, the flow structure changes substantially: (i) the notches are
fully washed by the mean flow and exchange fluid with the turbulent bulk, (ii) the
velocity profile features are very different both quantitatively and qualitatively and (iii)
the velocity fluctuations are relatively higher. The profiles substantially differ as well
from those obtained at lower Rayleigh number: there are inflection points and changes
of slope, and there is no horizontal asymptote (see figure 7). The inflection points and
changes of slope for z < h0 may be a consequence of the drag on the rough walls.
For these reasons, these data do not allow us to compute an accurate estimate for the
velocity boundary layer. δ× is ill-defined because it is not clear how to define ∂u/∂z at
z= 0 with these profiles; δdisplacement can be estimated by integrating as far away from
the plate as possible, yielding possibly biased values (e.g. possibly undervalued). Yet,
we find δdisplacement = 0.90 cm smaller indeed than h0 in the groove, and δdisplacement =
0.47 cm on the top of the obstacle.

It is not possible to find the maximum velocity umax. The typical value of the
wind, however, appears to be only 3–4 times larger than before the transition, while
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FIGURE 8. (Colour online) Reynolds tensor at Ra=4.66×109 (a,c,e) and Ra=4.04×1010

(b,d,f ). (a,b) On top of an obstacle, (c,d) inside a notch, (e,f ) in a groove. The colour code
is given for one Rayleigh number and is identical for the three locations. (a,c,e) Yields
U? = 0.77 cm s−1 at Ra= 4.66× 109, (b,d,f ) U? = 4.96 cm s−1 at Ra= 4.04× 1010.

the Reynolds tensor 〈u′v′〉, on the other hand, is typically 50 times larger after the
transition. The fields of 〈u′v′〉 are given in figure 8. The maximum value of the
Reynolds tensor can be used as a definition for U?. We find U? = 4.96 cm s−1 at
Ra= 4.04× 1010, which allows us to compute the typical scale z?, defined as

z? = ν

U?
, (3.3)

and an estimate of the thickness of the viscous sublayer, δ, classically defined as
(Tennekes & Lumley 1987)

δ ≈ 5z?. (3.4)

This yields δ ≈ 1.7 mm.
The figure shows, after the transition, regions with high values of 〈u′v′〉, particularly

downstream obstacles, yielding regions of high strain near the top of the obstacles.
This suggests a possible transition to a turbulent boundary layer, specifically on the
top of the obstacles, in agreement with our previous indirect observations in water
(Salort et al. 2014). These regions can be seen also in the groove, further downstream
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FIGURE 9. (Colour online) Non-dimensional velocity profile in a groove (orange triangles)
and above an obstacle (magenta circles) at Ra = 4.04 × 1010. Green dashed line:
2.40 log z+ + B.

than those inside the notch. These regions may be interpreted as wakes produced by
the obstacles, advected streamwise, as well as spanwise, downstream of the roughness
elements. One may note that the typical turbulent velocity, U∗, associated with those
structures is found to be nearly identical in the three fields.

To figure out whether these turbulent wakes can trigger a transition towards a
turbulent boundary layer on the top of obstacles, the velocity profiles are compared
in figure 9 to the classical prediction for z+ > 30, where one expects logarithmic
velocity profiles (Tennekes & Lumley 1987),

u=U?(2.40 log z+ + B), (3.5)

where z+ = z/z? and B= 5.84 over a smooth surface. The surface can be considered
rough when the viscous sublayer is thinner than the typical roughness size. This is
indeed the case here since the estimate for the viscous sublayer is 1.7 mm, much
smaller than h0 = 1.2 cm. Thus, B is expected to be a function of k+,

k+ = h0

δ
= h0U∗

ν
. (3.6)

In the present measurements, k+ is of order 40 and lies in the range of the ‘transition’
regime. The fully rough regime is usually expected for k+� 100 (Tennekes & Lumley
1987; Schlichting & Gersten 2000). In this transition regime, however, B is known to
be between −5 and 5, at least in the classical case of sand roughness, but the exact
value may differ in the present case of square roughness. The green dashed line in
figure 9 is plotted with B = −3. In the range of scales that we could measure, the
experimental data thus appear to be compatible with such a logarithmic profile.

In addition to this destabilization of the boundary layer on top of obstacles, the
mean velocity fields in figure 4 show that, while the flow above the notch is mostly
unaffected and is nearly horizontal at the lowest Rayleigh number, it gets a vertical
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component after the transition which allows for matter transfers between the bulk and
the notch. Evidence for effects of this kind has also been found in other experimental
systems (Du & Tong 2000), and they are associated with an increase in the thermal
transport without change of the scaling law.

3.4. Comparison with thermal boundary layer measurements
Our results should be compared to those obtained from temperature measurements in
water, and to what could be expected if the interpretation of the transition features
observed in similar conditions in the water cell does hold. In the previous water
experiment in Lyon (Salort et al. 2014), which was six times smaller, we measured
the thermal boundary layer thickness directly from the mean temperature profiles.
The result was that

δth,water . 0.4 mm, (3.7)

much thinner than the classical laminar predictions or similar experimental measure-
ments over smooth surfaces. This was one of the arguments for proposing a model
based on the roughness-triggered destabilization of the boundary layers.

The mechanisms at play in the present situation in air are expected to be similar.
Of course, it is possible that the details of the boundary layer structure differ in these
two situations because of the Prandtl number (Pr= 0.71 in the present experiment; Pr
between 4 and 8 in the water experiment). Yet, both Prandtl numbers are of order 1,
and the typical orders of magnitude should agree if the relevant mechanism is similar.

One way to carry out such a comparison is to infer an estimate for the thermal
boundary layer thickness from the present velocity boundary layer measurements.
The mean velocity boundary layer observed near the rough plate in the present PIV
fields can be interpreted in terms of a turbulent boundary layer and viscous sublayer.
Because of the efficient mixing in the turbulent boundary layer, one may assume that
most of the temperature drop occurs inside the viscous sublayer. Since the Prandtl
number is less than 1, the thermal boundary layer is thicker than the kinetic viscous
sublayer. The analytical and numerical study by Shishkina et al. (2013) shows that
the ratio of the thermal and kinetic boundary layer thicknesses depends greatly on
the angle β at which the wind attacks the plate. It is not clear how to extrapolate
results obtained in the laminar case to the present situation with turbulent boundary
layers. Therefore, the following discussion should be understood in terms of orders of
magnitude only. For Pr = 0.786, in the case of a laminar boundary layer, Shishkina
et al. (2013) find δth/δv in the range between 1.08 (for β=π) and 2.37 (for β=π/2).
The flow in the logarithmic layer above the viscous sublayer is turbulent and does
not yield a constant and homogeneous value for β, thus we may only assume that

1.08δ < δth < 2.37δ, (3.8)

i.e.,
1.8 mm< δth < 4.0 mm. (3.9)

Considering that (1) the thermal boundary layer can be written in terms of the
Nusselt number,

δth = H
2Nu

, (3.10)

and (2) the Nusselt number is a function of Ra and Pr only, then δth is expected to
be proportional to the cell height H if the Rayleigh numbers and all the other control
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parameters are equal, hence allowing a comparison of the results: the estimates of δth
are expected to lie within the same ratios with respect to the cell heights.

We previously showed δth,water . 0.4 mm in the water experiment at similar Nusselt
number (Salort et al. 2014); we thus expect δth . 2.4 mm in the present set-up in air
with dimensions six times larger. The present estimated range for δth, inferred from
the velocity measurements (3.9), is indeed compatible with that prediction.

4. Conclusions
Highly resolved PIV measurements have been undertaken in turbulent Rayleigh–

Bénard convection in air with a rough surface of the heating plate. A particular feature
of convection at a rough surface is the transition in the scaling of the heat transfer
beyond a critical Rayleigh number. Our measurements demonstrate that this transition
can be associated clearly with a transition of the flow field around and in between the
obstacles.

The interpretation of our previous experimental measurements in water and the
phenomenological model derived from them made several implicit assumptions
that have been verified in a much more direct fashion in the present work in air.
An important assumption was that the flow structure below the roughness-induced
transition was identical to the smooth case. The present analysis of the velocity
features at Ra = 4.66 × 109 backs up this hypothesis: the velocity profiles are fairly
similar to those obtained in smooth cells, and they are identical above obstacles,
notches or grooves, a fraction of h0 away from the plate. For Rayleigh numbers
lower than the transition value, this work shows indeed that the statistical quantities
of the flow, e.g. Reynolds number, mean velocity profile and the mean velocity field,
are impacted by the roughness elements only very close to the plate. In all respects,
the flow is fairly similar to the smooth case.

There was also indirect evidence in the water experiment, above the critical
roughness-induced Rayleigh number, that the boundary layer on the top of the
obstacle was no longer laminar. In the present work, we have sought direct evidence
of a possible transition to a turbulent boundary layer by means of high-resolution PIV
measurements near the roughness elements. We find a high value for the Reynolds
tensor 〈u′v′〉, in quantitative agreement with the expectations in terms of inferred
viscous sublayer thickness.

The observations allowed us to go into more detail than the temperature-based
analysis in water: we found evidence for both turbulent structures in the wakes of
the roughness elements and incursions of the bulk between the obstacles. This leads
to a change in the velocity statistics near the plate. In particular, the velocity profiles
differ dramatically from the typical profiles obtained in the smooth case.

The incursions in the bulk are still fairly moderate. An important perspective would
be to go further, in terms of Nu/Nuc, and find out how the flow structure is modified
when the notches are much more fully washed. Recent simulations by Wagner &
Shishkina (2015) suggest that the roughness-induced heat-flux enhancement would
then saturate, with a power-law exponent back to 1/3. This could be done in the
future with the use of elements of higher roughness.
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