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Rock–ice avalanches are liquid–granular flows that consist of a mixture of rock, ice and
a liquid. The dynamics that distinguishes these types of flows from other geophysical
flows is the ice melting. This process is responsible for mass and momentum transfers
between the solid and liquid components of the mixture and for the effects of lubrication
and fluidization that reduce the mixture strength. In this work, we analyse the problem
from a mathematical point of view. Starting from the partial differential equations of a
complete three-phase approach, we identify two basic assumptions that can be used to
build a framework of classes of simplified models. The implications of these assumptions
on the physical description of the flow are carefully analysed for each class, and particular
attention is paid to the simplification of the melting process expressed in terms of mass
and momentum transfers. Moreover, the derived framework allows us to classify the
existing literature models and to identify a new class of models that can be considered
a reasonable trade-off between simplicity and completeness. Finally, the mathematical
nature of each class is investigated by performing an in-depth analysis of the eigenvalues.
Results show that the most simplified models are strictly hyperbolic, while the most
complete approaches are affected by a loss of hyperbolicity in given ranges of the model
parameters. Further research is necessary to understand the reasons and the numerical
implications of this feature.

Key words: multiphase flow, particle/fluid flow, shallow water flows

1. Introduction

Nowadays, climate change affects most glacial environments, since the rise in temperatures
is considered to be the main cause of permafrost thawing. Glaciated areas can respond
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to the increase in temperatures by detaching large volumes of rock and ice (Huggel
2009; Mergili et al. 2020a,b), thus possibly developing rock–ice avalanches, free-surface
liquid–granular flows composed of rock, ice and a liquid. It is reasonable to consider the
liquid as consisting of water with small dispersed particles, and, depending on both the
type (silt or clay) and the concentration of these particles, its rheology can be Newtonian
or non-Newtonian, respectively (Armanini 2013; Armanini et al. 2014). The presence of
ice inside the mixture distinguishes this type of flow from other liquid–granular flows,
such as debris flow (Pudasaini & Krautblatter 2014). The heat produced by basal friction
and collisions between solid particles induces, indeed, the transformation of ice into water,
thus continuously increasing the amount of water inside the mixture. The increasing water
content reduces the shear resistance of the flowing material thanks to the processes of
lubrication and of fluidization (Schneider et al. 2011; Pudasaini & Krautblatter 2014). As a
consequence, the melting process can explain both the gradual transformation of rock–ice
avalanches from an essentially dry granular flow into a debris flow (Huggel et al. 2005;
Evans & Delaney 2015) and the high mobility of these flows (Pudasaini & Krautblatter
2014).

Although rock–ice avalanches often occur in remote areas, they need to be considered
potentially dangerous to populations living at high altitudes (Evans & Delaney 2015).
These flows can cause damage and casualties, as observed in many events throughout
the world, such as the rock–ice avalanches detached from Huascaran (Peru, 1962 and
1970), from the Kolka glacier (Caucasus, 2002) and from Piz Cengalo (Switzerland, 2017)
(Haeberli et al. 2004; Petrakov et al. 2008; Evans et al. 2009a,b; Bartelt et al. 2018;
Mergili et al. 2020a). Due to their high potential hazard and their link with climate change,
rock–ice avalanches require increasing attention from the scientific community.

One of the key elements for a good hazard assessment and management consists in the
capability to model rock–ice avalanches from a mathematical and a numerical point of
view. Considering the main features of this type of flow, the mathematical modelling
should consider the mechanical description of a multiphase solid–liquid mixture and
the thermodynamics of the melting process. Therefore, the differential equations should
consider the mass, momentum and energy balance laws. In the literature, mathematical
models for rock–ice avalanches are rather sparse. To the best of our knowledge, the first
studies of this type of flows correspond to the applicative works of Evans et al. (2009b) and
Schneider et al. (2010), two studies based on the use of the mathematical models for rapid
landslides and snow avalanches developed by McDougall (2006), Hungr & McDougall
(2009) and Christen, Kowalski & Bartelt (2010). Since these approaches treat the mixture
as a homogeneous monophase fluid, they are based on extremely strong assumptions that
we will discuss further. In addition to these works, two different mathematical models
derived specifically for rock–ice avalanches are present in the literature. On the one hand,
there is the two-phase model proposed by Pudasaini & Krautblatter (2014), where the
mixture is composed of a liquid component and a sole solid component (rock plus ice). To
take account of the melting process, the authors introduced mass and momentum transfers
between the components and these exchanges relate to the heat produced by basal friction
by a specific algebraic mechanical relation (Sosio et al. 2012). In addition, the authors
modelled for the first time the processes of basal lubrication and internal fluidization by
making the shear resistance and the solid pressure dependent on the amount of rock and
ice available inside the mixture. In this way, they were able to model the reduction in the
internal and basal strength of the mixture induced by the melting process. On the other
hand, there is the model proposed by Bartelt et al. (2018), in which the flow consists of
a core containing rock, ice and a liquid and of a suspended layer characterized by a dust
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Modelling of rock–ice avalanches

of snow, ice and rock. Since we do not deal with the development of a suspended layer, the
part of this model more relevant to our work corresponds to the core layer. More precisely,
the avalanche core is modelled considering that the three distinct constituents propagate
downslope with the same velocity. Moreover, the mass exchanges are linked to the mixture
temperature, which is estimated by using the energy balance law written in a differential
form. It is worth noting that both models of Pudasaini & Krautblatter (2014) and Bartelt
et al. (2018) are based on different assumptions, whose details will be provided further
in the paper. As can be concluded from this quick literature review, the mathematical
description of rock–ice avalanches is not so wide, and the existing models have quite
different levels of complexity. Moreover, an explicit linkage between the different models
and a definition of the limit of validity of their approximations is worth investigating.

The aim of this work is twofold. The first purpose consists of providing a general
mathematical framework in which different classes of models are systematically derived
and catalogued on the basis of specific assumptions. The methodology used to reach
this goal is similar to that adopted by Garegnani, Rosatti & Bonaventura (2011, 2013):
start from a ‘complete’ model, and then identify the basic hypotheses to be introduced
to obtain a simplified model that is consistent with the starting one. In this work, the
‘complete’ model is constructed focusing the attention on the dynamical description of
the flow and neglecting the energy balance law in its differential form. In agreement with
Pudasaini & Krautblatter (2014), the melting process is modelled in terms of mass and
momentum transfers that are related to the heat produced by basal friction thanks to an
algebraic mechanical closure relation. Moreover, the changes over time and space in the
temperatures of the different components of the mixture are neglected. For more details
on this description, we refer the reader to the works of Sosio et al. (2012) and Pudasaini
& Krautblatter (2014). With regard to lubrication and fluidization, we do not consider
these effects, which are discussed in the work of Pudasaini & Krautblatter (2014). Being
aware that neglecting both the changes in the temperature and specific models for the
lubrication and fluidization effects simplifies the description of the physics of rock–ice
avalanches, an even more complete approach is left to future studies. From this ‘complete’
approach, by adopting the procedure described above, five different classes of models for
rock–ice avalanches can be obtained thanks to reasonable (even if in some cases drastic)
simplifications. Inside each class, the models are characterized by the same number of
basic differential equations, but differ from each other in the closure relations. In this
way, this analysis makes it possible, firstly, to identify the physical consequences of the
simplifications on the flow description, secondly, to derive a rock–ice avalanche model
that can be considered a reasonable trade-off between simplicity and completeness, and
lastly, to classify the existing models with the aim to understand if they can be traced back
to a common ‘mother’ approach. As a result of this analysis, the model derived in this
paper turns out to be representative of a new class of mathematical models for rock–ice
avalanches.

The second purpose of this work consists in characterizing each class of models in terms
of eigenvalues. This analysis is particularly important since it gives an insight into the
mathematical nature of each class of models and provides useful information to derive (or
apply) suitable numerical schemes. Moreover, the eigenvalues can also be used to define
the range of applicability of a model class compared with that from which it is derived
(Garegnani et al. 2011, 2013).

To avoid misunderstandings, in the following the liquid in rock–ice avalanches is
considered to be water with low concentrations of silty particles, and thus it can be treated
as water. Moreover, we name as ‘phase’ the mixture component characterized by given
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physical and mechanical properties, while as ‘state’ the matter in which each component
appears in the flow (solid or liquid). Although ice represents the solid state of water from
the chemical point of view, we treat water and ice as different components of the mixture
and, thus, as distinct phases. Moreover, these two phases are characterized by different
states: liquid for water and solid for ice. In this view, since the melting process produces a
change in the phase of ice, we identify this process with the term ‘phase transformation’.
In this way, rock–ice avalanches are three-phase mixtures, where a phase transformation
occurs within the flow. To conclude the nomenclature used in this work, we use the
acronym RIW (rock, ice and water) to refer both to the rock–ice avalanche mixture and
to the three-phase model that describes its flow.

The structure of the paper is as follows. In § 2, we provide a summary of the
derivation of the system of partial differential equations (PDEs) for a generic three-phase
solid–liquid flow in a three-dimensional (3-D) reference system, with the aim to provide
the mathematical basis useful for understanding the hypotheses underlying the subsequent
steps. In § 3, we introduce the main assumptions that characterize RIW mixtures, and
the general PDE system is tailored accordingly, thus leading to the basic RIW model. In
§ 4, a systematic procedure for deriving simplified RIW models is presented and applied.
Literature models are then analysed in the context of the proposed framework to highlight
whether or not they can be considered as simplified RIW models. In § 5, we present a
summary of the derivation of the one-dimensional (1-D) depth-integrated versions of the
simplified RIW models and, we outline the closure relations existing in the literature and
used in this work. Finally, in § 6 we perform a systematic analysis of the eigenvalues for
these versions of the models. Conclusions end the paper.

2. Balance equations for a generic three-phase solid–liquid flow

In the literature, there are many works that derive the equations for both two-phase
and multiphase flows (Drew 1983; Morland 1992; Jackson 2000; Ishii & Hibiki 2006;
Hérard 2007; Kolev 2007; Müller, Hantke & Richter 2016; Hérard, Hurisse & Quibel
2021), but only in a few cases these systems of equations have been specialized for
three-phase geophysical flows consisting of two solid phases and a liquid phase. To the
best of our knowledge, the only mathematical model for three-phase solid–liquid mixtures,
that considers three distinct field velocities, corresponds to that proposed by Pudasaini &
Mergili (2019). This model extends the two-phase approach derived by Pudasaini (2012)
and simulates the motion of debris flows composed of a solid phase (coarse material),
a fine-solid phase (e.g. sand) and a liquid phase (water and suspended particles). As
a debris-flow model, no phase change occurs within the mixture and thus, no mass
and momentum transfers associated with the melting process appear inside the equation
system.

As specified in the introduction, rock–ice avalanches are characterized by some features
that distinguish them from debris flows and these features have specific implications on
the mathematical modelling. More precisely, as shown in Pudasaini & Krautblatter (2014),
rock–ice avalanche models need to consider mass and momentum transfers associated
with the melting process. Moreover, rock and ice have a different nature and their specific
physical properties lead to a different mechanical behaviour. As a consequence, the
difference in the nature of the two solid phases needs to be considered inside the intraphase
and interphase stresses. Another particular feature of rock–ice avalanches concerns the fact
that water and ice have very similar densities. As shown further on in the paper, this aspect
has consequences on the way the interactions between these two phases are described.
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Modelling of rock–ice avalanches

Therefore, in order to derive a model specifically tailored for rock–ice avalanches,
firstly, in this section we provide a summary of the continuum mechanics theory for a
generic three-phase solid–liquid flow derived by extending the two-phase approach of
Drew (1983). Then, in the next section, we will adapt this general model to the specific case
by introducing suitable assumptions that lead to the RIW model. It is worth noting that this
is not the only strategy to build a three-phase rock–ice avalanche model. Another possible
approach may be derived by combining the three-phase model proposed by Pudasaini
& Mergili (2019) with that in Pudasaini & Krautblatter (2014). Some of the differences
between our approach and the models of Pudasaini & Mergili (2019) and Pudasaini &
Krautblatter (2014) will be highlighted in the next sections.

2.1. Overview of the microscopic and macroscopic descriptions
As in the two-phase case, three-phase mixtures can also be described as flows composed
of regions occupied by single phases separated from each other by mobile surfaces. This
description, commonly defined as ‘microscopic’ or discrete, characterizes the flow inside
each region and the motion of each interface. The balance principles inside a region are
obtained by applying the conservation equations to an infinitesimal control volume that is
fully contained in the phase. Conversely, the equations valid across an interface, namely a
surface that separates a given phase from another one, are obtained from an infinitesimal
control volume that straddles the interface itself (Ishii & Hibiki 2006). These equations
are called jump conditions. This approach can be used when the number of interfaces is
limited, but in the case of a large number of interfaces (as in the case we are interested in),
its application presents overwhelming difficulties.

The approach can be simplified by describing the flow of each phase at the macroscopic
level. This description, also called the ‘multiphase continuum approach’, has the ability to
filter the details of the flow, thus maintaining only its essential aspects. It can be derived by
applying, to the microscopic equations, suitable averages that satisfy specific properties,
as specified by Drew (1983). Time, space and ensemble averages are commonly employed
by many authors (Anderson & Jackson 1967; Drew & Segel 1971; Morland 1992; Ishii &
Hibiki 2006). As a consequence, the averaging procedure leads to a formal coexistence
of all the phases in any point of the field. With respect to the original equations, these
macroscopic balances contain some new terms that arise as a contribution of the interfaces
to the average. Conversely, with reference to the jump conditions, the averaging procedure
leads to relations, called transfer conditions, that are formally equivalent to the original
ones.

With regard to the mathematical symbolism used in this work, while in the microscopic
description the instantaneous and local variables are denoted by the prime symbol, in
the macroscopic description the averaged variables are not denoted by any superscript. In
addition, the subscript k, with k = 1, 2, 3, is used to identify one of the different phases
that compose the mixture, while the double subscript kj identifies quantities related to the
interfaces between the phases k and j. Unless otherwise indicated, the double subscript
holds ∀(k, j) with k, j ∈ [1, 2, 3] and k /= j. Finally, the dependence on space and time of
the functions will not be explicitly indicated.

2.2. Microscopic description
The equations of the microscopic description of a three-phase mixture are reported
hereafter. While the equations valid inside a phase are formulated in the same way as in the
two-phase case, more attention must be paid to the jump conditions. In fact, in three-phase
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solid–liquid mixtures the interfaces are not of one type but of two types, according to
the state of the phases that they separate. More precisely, the interfaces can be defined
‘solid–solid’ if they separate two distinct solid phases and ‘solid–liquid’ if they separate a
solid phase from the liquid one. This aspect requires a more detailed treatment of the jump
conditions with respect to the two-phase solid–liquid case.

2.2.1. Equations valid inside each phase
The mass and momentum PDEs valid inside each region of the kth phase (Truesdell &
Toupin 1960) are

∂

∂t
ρ′

k + ∇·(ρ′
kv

′
k) = 0

∂

∂t
(ρ′

kv
′
k) + ∇·(ρ′

kv
′
k ⊗ v′

k) = ∇·T ′
k + ρ′

kg

⎫⎪⎪⎬
⎪⎪⎭ , (2.1)

where ρ′
k, v

′
k and T ′

k are, respectively, the density, velocity and stress tensor related to the
kth phase, while g is the gravity vector.

2.2.2. Jump conditions
According to Ishii & Hibiki (2006), the mass jump condition valid between phase k and
phase j reads

−ρ′
k(v

′
k − v′

kj) · Nkj + ρ′
j(v

′
j − v′

kj) · Nkj = 0, (2.2)

where v′
kj represents the velocity vector of the interface separating phase k from phase j,

while Nkj identifies the normal unit vector in a point of this interface, pointing outside
phase k towards phase j. Each term expresses a mass flux that is associated with a phase
transformation.

The momentum jump condition (Ishii & Hibiki 2006) is defined as follows:

[−(ρ′
kv

′
k(v

′
k − v′

kj) − T ′
k) · Nkj] + [(ρ′

jv
′
j(v

′
j − v′

kj) − T ′
j) · Nkj] = σ ′KNkj, (2.3)

where σ ′ and K represent the surface tension and the surface curvature, respectively. There
appear two different contributions: one referred to the momentum flux associated with
the mass exchange and the other related to the stresses exerted by the two phases on the
interface.

2.3. Macroscopic description
The macroscopic equations reported hereafter are derived by considering, as a reference
average operator, a spherical volume V with a radius larger than the solid particles. In this
description, the fraction of reference volume occupied by the generic phase k is defined
by αk. Since all the space occupied by the mixture is completely filled by the phases, the
following equality holds:

3∑
k=1

αk = 1. (2.4)
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Modelling of rock–ice avalanches

2.3.1. Gradients of the volume fractions
Following Drew (1983), the gradient of a volume fraction represents the oriented surface
(per unit volume) that arises by averaging the local contact areas of a phase with the others
(see Appendix A). With reference to the liquid phase, here identified by the subscript
k = 3, the quantity ∇α3 identifies the oriented average interfacial surface that separates
the liquid phase from the two solid phases. Thus, it can be split into two terms

∇α3 = [∇α3]1 + [∇α3]2, (2.5)

where [∇α3]k with k = 1, 2 represents the contribution relevant to each solid phase.
With regard to the gradients of the two solid phases, the corresponding oriented average
interfacial surfaces need to take account of both the solid–liquid and solid–solid contact
areas. In this way, they can be expressed as follows:

∇α1 = [∇α1]3 + [∇α1]2, (2.6a)

∇α2 = [∇α2]3 + [∇α2]1, (2.6b)

where [∇αk]3 with k = 1, 2 represents the oriented average interfacial surface that
separates the solid phase k from the liquid one, while [∇α1]2 and [∇α2]1 correspond
to the oriented average interfacial surfaces separating the two solid phases.

Considering that, in a point of an interface, the surface that separates two phases is
unique, the oriented surfaces relevant to these phases are vectors equal in absolute value
and opposite in direction. This relation holds also in terms of averaged variables (see
Appendix A) and, therefore, the following equalities hold:

[∇α3]k = −[∇αk]3 with k = 1, 2, (2.7)

[∇α2]1 = −[∇α1]2. (2.8)

The quantity ∇α3 can be linked to the gradients of the volume fraction of the other
phases by applying the gradient operator to (2.4), thus obtaining the following equation:

∇α3 = −∇α1 − ∇α2. (2.9)

It is worth noting that adding (2.6a) to (2.6b) and applying (2.7) and (2.8) to the resulting
equation, it is possible to derive an equation that coincides with (2.9).

Finally, assuming that the averaged contact area between the two solid phases is much
smaller than the averaged surface between a solid phase and the liquid one, the relation
(2.6) can be simplified as follows:

∇αk � [∇αk]3 with k = 1, 2. (2.10)

It is worthy of note that this assumption may not occur in all situations, such as when
the liquid concentrations are low and the mixture behaves like a solid (Takahashi 2007;
Schneider et al. 2011; Andreotti, Forterre & Pouliquen 2013; Pudasaini & Krautblatter
2014). For more details on the mathematical proof of (2.5)–(2.10), we refer the reader to
Appendix A.

2.3.2. Mass balance equations
The averaged mass balance equation for the kth phase can be derived from the first equation
of system (2.1) and reads

∂

∂t
(αkρk) + ∇·(αkρkuk) = Γk, (2.11)

where ρk and uk indicate the averaged density and velocity of the kth phase, respectively,
while Γk expresses the global mass transfer (per unit volume) between the kth phase and
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all the other components of the mixture. It can be subdivided as

Γk =
3∑

j=1

(1 − δkj)Γkj, (2.12)

where δkj identifies the Kronecker delta function and allows us to delete the meaningless
term Γkk. We define Γkj as positive whether the transfer of mass occurs from phase j to
phase k. Since it cannot be written automatically in terms of averaged variables, a proper
closure relation needs to be provided.

2.3.3. Momentum balance equations
The momentum balance equation for the kth phase can be derived from the second
equation of system (2.1) and reads

∂

∂t
(αkρkuk) + ∇·(αkρkuk ⊗ uk) = ∇·(αkT k) + αkρkg + Mk. (2.13)

In this equation, T k is the average intraphase tensor that is viscous in the case of a fluid
phase and frictional/collisional in the case of a solid phase. In both cases, proper closure
relations need to be introduced for this term. In addition, in (2.13) Mk is the resultant of
the interphase stresses exerted on the kth phase by the other components of the mixture

Mk =
3∑

j=1

(1 − δkj)Mkj. (2.14)

Due to the presence of solid–solid and solid–liquid interfaces, the interphase stress Mkj
needs to be specified according to the type of interfaces that separate the phases k and j.

Solid–liquid interphase stress. In agreement with Drew (1983), Jackson (2000) and Ishii
& Hibiki (2006), the solid–liquid interphase stress can be split into a momentum transfer
and into static and dynamic stresses exerted on the interfaces,

Mkj = Γkjukj − [∇αk]j · T kj + MD
kj. (2.15)

On the right-hand side of (2.15), the first term, namely Γkjukj, identifies the momentum
transfer between phase k and phase j. The variable ukj represents the averaged interfacial
velocity and needs to be defined by proper (constitutive) assumptions. The second term
namely −[∇αk]j · T kj, represents the static contribution of the averaged stress exerted at
the interfaces by phase j on phase k. The third term, namely MD

kj, identifies the dynamic
contribution of the averaged stress exerted on the interfaces and it arises from the relative
motion of the solid and liquid phases. It takes account of the effects of drag, virtual mass
and lift (Ishii & Hibiki 2006). For brevity, in the following we call this term as the drag
stress.

Both T kj and MD
kj need to be specified by proper closure relations.

Finally, thanks to (2.10) and to (2.7), the solid–liquid interphase stresses can be rewritten
as follows:

Mkj =
{

Γkjukj − ∇αk · T kj + MD
kj if k identifies a solid phase,

Γkjukj + ∇αj · T kj + MD
kj if k identifies the liquid phase.

(2.16)

Solid–solid interphase stress. Similarly to the solid–liquid case, the interphase stress
can be split into a momentum transfer and an averaged stress exerted on the interfaces.
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Modelling of rock–ice avalanches

Conversely, while the splitting of the averaged stress into a static and a dynamic effect is
quite accepted for dry granular flows (Gray & Thornton 2005; Gray & Chugunov 2006;
Tripathi & Khakhar 2013; Tunuguntla, Bokhove & Thornton 2014), it does not seem
to be the case for fully saturated flows. To the best of our knowledge, the only model
for granular–liquid flows that considers the splitting of the solid–solid averaged stress
into static and dynamic effects corresponds to the approach proposed by Pudasaini &
Mergili (2019). However, we prefer to express this averaged stress in terms of frictional
and collisional actions by analogy with the solid intraphase tensor (Jenkins & Savage
1983; Armanini et al. 2014). We do not discuss further the differences between these two
approaches, since this is outside the scope of this work, as explained further on in the
paper. In this way, for the solid–solid interphase stresses we get

Mkj = Γkjukj + MF
kj + MC

kj, (2.17)

where Γkjukj represents the momentum transfer; MF
kj identifies the action due to the

long-term frictional contacts between particles of different phases; MC
kj corresponds to

the action due to short-term collisions between particles of different phases.
Both MF

kj and MC
kj need to be specified by proper closure relations.

2.3.4. Mass transfer conditions
The mass transfer conditions are derived averaging (2.2) and read as follows:

Γkj + Γjk = 0. (2.18)

Adding together the mass transfer conditions related to all the phases, it is possible to
derive the following expression:

3∑
k=1

3∑
j=1

(1 − δkj)Γkj = 0, (2.19)

which, thanks to (2.12), becomes
3∑

k=1

Γk = 0. (2.20)

2.3.5. Momentum transfer conditions
The momentum transfer conditions can be specified in two ways, whether the surface
tension is assumed to be relevant or not.

Presence of surface tension. The momentum transfer conditions can be expressed by

Mkj + M jk = [σκn]kj, (2.21)

where κ represents the averaged curvature and n the averaged normal unit vector. It is
worth noting that the effect of the surface tension σ can be considered relevant in the
case of mixtures consisting of solid particles submerged in a fluid. In this situation, the
surface curvature κ can be linked to the particle diameter. These transfer conditions can
be expressed by using (2.16) as follows:

(Γkjukj + Γjkujk) + ∇αk · (T jk − T kj) + (MD
kj + MD

jk) = [σκn]kj, (2.22)

where k identifies a solid phase and j the liquid phase.

919 A8-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

34
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.348


S. Sansone, D. Zugliani and G. Rosatti

Absence of surface tension. The momentum transfer conditions are expressed by

Mkj + M jk = 0. (2.23)

These relations can be considered as representative of the interphase stresses between two
solid phases. By using (2.17), they become

Γkjukj + MF
kj + MC

kj = −(Γjkujk + MF
jk + MC

jk). (2.24)

3. The equations for the macroscopic RIW model

The RIW model provided in this work considers rock and ice as homogeneous phases
characterized by their corresponding particle size. It is constructed starting from the
equations presented in § 2 and specifying the main features that characterize this mixture.
These features affect the interphase terms in (2.11) and (2.13), and the transfer conditions.

Hereafter, the subscript k is substituted by letters identifying the three different phases: r,
i and w stand for rock, ice and water, respectively. In this way, the relation that characterizes
the volumetric fractions, (2.4), becomes

αr + αi + αw = 1. (3.1)

3.1. Interphase terms
With regard to the mass transfers, in RIW mixtures they can occur only between ice and
water. Therefore, the mass transfers related to these phases differ from zero,

Γiw /= 0 ∪ Γwi /= 0, (3.2)

while all the other terms are null. Thus, considering (2.12) we can write

Γr = Γri + Γrw =⇒ Γr = 0, (3.3a)

Γi = Γir + Γiw =⇒ Γi = Γiw, (3.3b)

Γw = Γwi + Γwr =⇒ Γw = Γwi. (3.3c)

With regard to the interphase stresses, we can distinguish between: (i) solid–liquid
interactions that are described by (2.16) and occur between water and rock and between
water and ice; and (ii) solid–solid interactions that are described by (2.17) and occur
between rock and ice.

By using (3.3), these terms become

M r = M ri + M rw where

{
M ri = MC

ri + MF
ri

M rw = MD
rw − ∇αr · T ri

, (3.4a)

M i = M ir + M iw where

{
M ir = MC

ir + MF
ir

M iw = MD
iw − ∇αi · T iw + Γiuiw

, (3.4b)

Mw = Mwr + Mwi where

{
Mwr = MD

wr + ∇αr · T wr

Mwi = MD
wi + ∇αi · T wi + Γwuwi

. (3.4c)
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3.2. Transfer conditions
With reference to the mass transfer condition, the existence of only two phases that
exchange mass reduces (2.18) to the following relation:

Γwi = −Γiw, (3.5)

and, therefore, thanks to (3.3b) and (3.3c), it becomes

Γw = −Γi. (3.6)

This condition states that the two mass transfers are equal to each other in absolute value
and opposite in sign. The ice melting is responsible for a loss of ice mass and for an
acquisition of water mass. Therefore, Γi and Γw are, respectively, negative and positive. To
better highlight these features, in the following we set Γi = −|Γi| and Γw = +|Γi|.

Concerning with the transfer conditions related to the momentum, the surface tension
affects only the conditions involving water. Therefore, (2.21) and (2.23) become

M ri + M ir = 0, (3.7a)

M rw + Mwr = [σκn]rw, (3.7b)

M iw + Mwi = [σκn]iw. (3.7c)

In accordance with (3.4), we obtain

MC
ri + MF

ri = −(MC
ir + MF

ir), (3.8a)

(MD
wr + ∇αr · T wr) + (MD

rw − ∇αr · T rw) = [σκn]rw, (3.8b)

(MD
wi + ∇αi · T wi + |Γi|uwi) + (MD

iw − ∇αi · T iw − |Γi|uiw) = [σκn]iw. (3.8c)

3.2.1. Assumptions affecting the transfer conditions
With regard to the transfer conditions, it is possible to introduce some reasonable
assumptions that can simplify the set of equations for the RIW model.

(i) Each phase is incompressible: ρr, ρi, ρw are constant in time and space.
(ii) With regard to the momentum transfer condition between rock and ice (equation

(3.8a)), the action–reaction principle holds between each type of stresses,

MC
ri = −MC

ir, (3.9a)

MF
ri = −MF

ir. (3.9b)

(iii) With reference to the momentum transfer conditions between water and the two
solid phases, the surface tension is considered negligible. This hypothesis is quite
reasonable in the case of rock since these grains have generally large dimensions
and their curvature is small. On the other hand, it is not always valid in the case of
ice grains: while in the initial stages of the flow they are commonly large, the melting
process and the fragmentation due to the collisions progressively reduce the diameter
of the ice particles and increase their curvature. In this way, there is an increase in the
effect of the surface tension. Nevertheless, we assume that, in any case, the surface
tension has a smaller order of magnitude compared with the other stresses. Thanks to
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this assumption, the transfer conditions expressed by (3.8b) and (3.8c) reduce to the
action–reaction principle between the resultants of the interphase stresses as follows:

MD
wr + ∇αr · T wr = −(MD

rw − ∇αr · T rw), (3.10a)

MD
wi + ∇αi · T wi + |Γi|uwi = −(MD

iw − ∇αi · T iw − |Γi|uiw). (3.10b)

(iv) For the drag stresses, according to Drew (1983), we have

MD
wr = −MD

rw, (3.11a)

MD
wi = −MD

iw. (3.11b)

Therefore, relations (3.10) reduce to

∇αr · T wr = ∇αr · T rw, (3.12a)

∇αi · T wi + |Γi|uwi = ∇αi · T iw + |Γi|uiw. (3.12b)

(v) The mass jump condition expressed by (2.2) suggests that, if the two phases have
similar densities, the normal velocities are the same. In addition, the adherence
condition implies that the tangential velocities are equal (Ishii & Hibiki 2006). By
combining these two conditions, we can state that, whether the two phases have
similar densities, the velocity vectors of the two phases are the same nearby the
interface, namely v′

k = v′
j. According to Drew (1983, p. 268), whether a solution is

true at the microscopic level, it can be used to obtain the solution of the macroscopic
problem. In this way, the equality between the microscopic velocities implies an
equality between the macroscopic velocity vectors.
Since the densities of ice and water are approximately the same (consider for
example ρw = 1000 kg m−3 and ρi = 917 kg m−3), the velocity vectors of ice and
water in the momentum transfer condition (3.12b) can be supposed equal to each
other. Moreover, we can assume that these two velocities coincide with an averaged
value that depends on the mass transfer, namely

uiw = uwi = uss(Γi). (3.13)

This averaged velocity needs to be defined by a proper closure relation. Based on
this relation, (3.12b) reduces to

∇αi·T wi = ∇αi · T iw. (3.14)

(vi) With regard to the stress tensors describing the actions exerted by water on rock and
ice (namely T rw and T iw), if we neglect the surface tension, water cannot distinguish
whether it is acting on rock particles or on ice grains. Consequently, these two stress
tensors are equal to each other, T rw = T iw. Assuming that these actions coincide
with the internal water stress tensor, the following equalities hold:

T rw = T w, (3.15a)

T iw = T w. (3.15b)

Concerning with the actions exerted by rock and ice on water, T wr and T wi, we can
add together (3.12a) and (3.14), thus obtaining

∇αr · T wr + ∇αi · T wi = ∇αr · T rw + ∇αi · T iw. (3.16)

Thanks to (3.15), we can collect T w at the right-hand side. The remaining term
∇αr + ∇αi results to be equal to −∇αw, thanks to (3.1). In this way, it is possible to
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obtain the following equality:

∇αr · T wr + ∇αi · T wi = −∇αw · T w. (3.17)

3.3. The final set
Introducing all the assumptions specified in the previous section, the final set of equations
for the RIW model is composed of the macroscopic mass and momentum balance laws
related to each phase (namely (2.11) and (2.13)), and of the basic relation (3.1). The system
reads

∂

∂t
(αrρr) + ∇·(αrρrur) = 0, (3.18a)

∂

∂t
(αiρi) + ∇·(αiρiui) = −|Γi|, (3.18b)

∂

∂t
(αwρw) + ∇·(αwρwuw) = +|Γi|, (3.18c)

∂

∂t
(αrρrur) + ∇·(αrρrur ⊗ ur) = − ∇· (αrT r) + αrρrg + ∇αr · T w

+ MD
rw + MC

ri + MF
ri, (3.18d)

∂

∂t
(αiρiui) + ∇·(αiρiui ⊗ ui) = − ∇· (αiT i) + αiρig − |Γi|uss + ∇αi · T w

+ MD
iw − MC

ri − MF
ri, (3.18e)

∂

∂t
(αwρwuw) + ∇·(αwρwuw ⊗ uw) = − ∇· (αwT w) + αwρwg + |Γi|uss

+∇αw · T w − MD
iw − MD

rw, (3.18f )

αr + αi + αw = 1, (3.18g)

where the first three equations represent the mass balance equations related to rock,
ice and water, respectively, while the next three equations identify the momentum
balance equations for the three different phases (rock, ice and water, respectively). On
the right-hand side of the mass and momentum balance equations ±|Γi| and ±|Γi|uss
correspond, respectively, to the mass and momentum transfers associated with the ice
melting process; ∇·(αkT k) (with k = r, i and w) represents the internal stress term related
to each phase; αkρkg (with k = r, i and w) identifies the weight term; ∇αk · T w (with
k = r, i and w) represents the static contribution of the solid–liquid interaction stress and
corresponds to the buoyancy; MD

kw (with k = r and i) takes account of the drag stress
(drag, lift and virtual mass); MC

ri and MF
ri express the collisional and frictional stresses

that arise from the contact between rock and ice.
It is worthy of note that the stress tensors of the three-phases in (3.18d)–(3.18f ) have

been multiplied by −1 to make positive the compressive stresses (Savage & Hutter 1989;
Iverson & Denlinger 2001).

This system is composed of thirteen scalar equations and describes the flow in terms
of thirteen unknowns. Twelve of them are present in the equations in an explicit way
and correspond to the three phase concentrations αr, αi, αw and the nine scalar velocity
components of ur, ui, uw. The last unknown is the water pressure pw, the scalar quantity
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that represents the isotropic part of the water stress tensor. All the other terms in the system
must be referred to these thirteen unknowns through suitable closure relations (algebraic
or differential).

It is worth noting that, by dividing (3.18a)–(3.18c) by the corresponding density, adding
together the resulting equations and by using (3.18g), the following equation can be
obtained:

∇ · (αrur + αiui + αwuw) = |Γi|
(

1
ρw

− 1
ρi

)
. (3.19)

It expresses that the rate of the volumetric deformation of the mixture is connected with
the mass transfer and with the change in density of the molten ice due to the phase
transformation. Since ρi < ρw, the term on the right-hand side of (3.19) is negative. As
a consequence, the mixture shows a decreasing volumetric deformation rate due to the ice
melting.

3.4. The need for simplified models
The RIW model (3.18) is described by a complex system of equations, whose complexity
arises from the high number of unknowns and from the interphase terms that couple the
equations. Furthermore, the literature on the interaction stresses between rock and ice does
not seem so well established. In fact, we think that there is some uncertainty surrounding
both the closure relations and the way these interphase stresses are expressed in the balance
principles. We suppose indeed that both melting and fragmentation of ice can occur during
collisions and that the closure relations for the solid–solid interaction stresses should be
affected by these processes. Moreover, we are not sure that the splitting into collisional
(MC

ri) and frictional (MF
ri) stresses is the best way to represent the rock–ice interphase

terms. Therefore, considering the current state of knowledge, the usage of simplified
approaches seems to be the only reasonable option to tackle the RIW problem, both from
a mathematical and a numerical point of view.

4. Simplified RIW models

A series of models can be derived from the complete RIW approach introducing
reasonable assumptions. Here, we consider only the hypotheses that act reducing the
number of unknown variables and, consequently, the related number of equations and
closure relations. More specifically, we derive five different classes of simplified models
and this result will be used, firstly, to highlight the physical consequences of the
assumptions on the flow description, secondly, to identify a model that can be considered
a reasonable trade-off between simplicity and completeness (§ 4.6) and, lastly, to classify
the mathematical models existing in the literature (§ 4.7).

Simplified models can be obtained in several ways. Here, we present a systematic
procedure based on two basic assumptions, namely the isokinetic and incompressibility
conditions. As shown in figure 1, a class of models is obtained from the previous one by
applying the isokinetic condition moving in the vertical direction and the incompressibility
assumption moving in the horizontal direction.

(1) Isokinetic assumption. This hypothesis implies that the velocity of two phases is the
same. Therefore, the number of unknown velocities is reduced by one unit with respect to
the previous model and one momentum equation related to the two isokinetic phases can
be disregarded from the system. It is indeed convenient to add together the two momentum
equations related to the isokinetic phases and to use the resulting equation instead of the
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RIW model
three densities
three velocities

Two-phase 
RIW model
two densities
two velocities

Monophase
RIW model
one density
one velocity

Partially isokinetic 
RIW model

three densities
two velocities

Fully isokinetic 
RIW model

three densities
one velocity

Isokinetic two-phase 
RIW model
two densities
one velocity

Figure 1. Classes of simplified models obtained from the RIW approach by imposing an isokinetic condition
moving in the vertical direction (dashed arrow) and the incompressibility assumption moving in the horizontal
direction (continuous arrow). The filling colours represent the number of phases considered (blue, three;
orange, two; green, one).

original ones. Convenience is because, in the resulting equation, some of the interaction
terms cancel each other out due to the momentum transfer conditions and the related
closure relationships are no longer necessary. In this way, the complexity of the model
is reduced.

Since this assumption links together two phases, it is useful to define the bulk
concentration αb of the ‘phase’ composed of the isokinetic phases αk and αj as

αb = αk + αj (4.1)

and the bulk density as

ρb = αkρk + αjρj

αb
. (4.2)

By using these two quantities as unknowns of the flow problem instead of the original
concentrations αk and αj, the combined momentum equation can be written in a ‘natural’
way.

(2) Incompressibility assumption. This hypothesis implies that the bulk density derived
from the two isokinetic phases is constant in time and space, namely

ρb = const. (4.3)

Since the bulk density is related to two isokinetic phases, it is easy to notice that the
incompressibility hypothesis is subordinated to the isokinetic condition. Furthermore, the
incompressibility assumption can be applied in two distinct ways:

(i) If the flow problem is written in terms of the bulk variables αb and ρb, this
incompressibility condition implies to neglect one mass balance involving ρb from the
equation system.

(ii) If the flow problem is expressed in terms of the original concentrations αk and αj,
the effect of the incompressibility assumption is not so obvious. By deriving αk or αj from
the definition of the bulk concentration (4.1) and substituting the corresponding relations
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into the definition of the bulk density (4.2), it is possible to obtain the following ratios:
αk

αb
= ρb − ρj

ρk − ρj
; αj

αb
= ρb − ρk

ρj − ρk
. (4.4a,b)

Furthermore, we can express the ratio between these concentrations as

αk

αj
= ρb − ρj

ρk − ρb
. (4.5)

Since the densities of the phases k and j are constant due to the RIW hypotheses (see point
1 in § 3.2.1), this ratio becomes constant in time and space thanks to the incompressibility
condition (4.3). Therefore, one concentration can be expressed as a function of the other,
thus implying a reduction of one unit in the number of unknowns. Therefore, it is possible
to neglect from the system one mass balance involving either αk or αj. By analogy with
the isokinetic condition, it is convenient to add together the mass balances related to the
two isokinetic phases in order to derive the mass conservation equation for the bulk phase,
and to use the resulting equation instead of the original ones.

With the incompressibility assumption, the complexity of the model is reduced by
decreasing the number of mass conservation equations and, as specified further on in this
work, this simplification has a significant effect on the physical description of the flow.

In the following paragraphs we describe in detail the derivation of the different classes
of simplified RIW models. In this derivation, we systematically rearrange the equation
systems in a way to highlight their dependence on the density and the concentration
of the bulk phase. This operation is performed to facilitate the derivation of the
subsequent simplified approach from the considered one, especially in the case where the
incompressibility condition is applied.

4.1. Partially isokinetic RIW model
The partially isokinetic RIW (PI-RIW) model can be obtained from the complete RIW
approach by imposing the isokinetic condition between rock and ice,

ur = ui = us, (4.6)

where us is the velocity of the bulk ‘solid’ phase. From a physical point of view, this
hypothesis means that some of the features that distinguish the two phases, such as the
differences in grain sizes, are neglected. As pointed out in the introduction of this section,
the bulk solid phase has a concentration and a density that are defined as

αs = αr + αi, (4.7)

ρs = αrρr + αiρi

αs
. (4.8)

Differently from the densities of the RIW phases, ρs is not constant in time and space.
For the derivation of the PI-RIW model, it is useful to define for the overall solid phase

the drag stress vector MD
sw and the internal stress tensor T s as follows:

MD
sw = MD

rw + MD
iw, (4.9)

T s = αrT r + αiT i

αs
. (4.10)

Assuming that both the phases have the same ‘solid’ mechanical behaviour, we do
not distinguish rock from ice except for the phase transformation that affects only ice.
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Thus, the closure relations can be provided for these overall terms rather than for the
stresses related to each phase.

In this class of models, the flow problem can be expressed as a function of us, uw, αs,
αw, ρs and pw. Therefore, the original unknowns αr and αi must be rewritten as functions
of the new unknowns. By using (4.4a,b), these two concentrations can be specified as
follows:

αi = αs
ρs − ρr

ρi − ρr
; αr = αs

ρs − ρi

ρr − ρi
. (4.11a,b)

Concerning the equations, the isokinetic condition allows us to replace the momentum
balances related to rock and ice with the momentum equation for the bulk solid phase.
This equation can be obtained by adding together the momentum equations for the rock
and ice phases, namely (3.18d) and (3.18e). In addition, it is also useful to derive the mass
balance for the bulk solid phase by summing the mass conservation equations related to
rock and ice, namely (3.18a) and (3.18b), and to replace one of these original mass balances
with the resulting equation. In this work, we have chosen to substitute the ice mass balance.
Finally, in (3.18a) it is possible to replace αr with the expression given in (4.11a,b), thus
obtaining

∂

∂t

(
ρr

(ρsαs − ρiαs)

ρr − ρi

)
+ ∇·

(
ρr

(ρsαs − ρiαs)

ρr − ρi
us

)
= 0. (4.12)

Since ρr/(ρr − ρi) is constant in time and space due to the incompressibility assumption
applied to rock and ice, we can neglect this term from (4.12). In this way, the resulting
system reads as follows:

∂

∂t
(ρsαs − ρiαs) + ∇·((ρsαs − ρiαs)us) = 0, (4.13a)

∂

∂t
(αsρs) + ∇·(αsρsus) = −|Γi|, (4.13b)

∂

∂t
(αwρw) + ∇·(αwρwuw) = +|Γi|, (4.13c)

∂

∂t
(αsρsus) + ∇·(αsρsus ⊗ us) = − ∇· (αsT s) + αsρsg − |Γi|uss

+ ∇αs · T w + MD
sw, (4.13d)

∂

∂t
(αwρwuw) + ∇·(αwρwuw ⊗ uw) = − ∇· (αwT w) + αwρwg + |Γi|uss

+ ∇αw · T w − MD
sw, (4.13e)

αs + αw = 1, (4.13f )

where (4.13a) corresponds to the mass balance equation related to the rock phase and
divided by a constant term, (4.13b) and (4.13c) represent the mass balance equations
related to the solid bulk phase and to water, respectively, while (4.13d) and (4.13e)
represent the momentum balance principles related to the solid bulk phase and water.
With regard to (4.13f ), this algebraic equation connects the solid bulk concentration with
the water volume fraction in agreement with (3.18g). This class of simplified models
maintains all the interphase terms except for the rock–ice interaction stresses, which have
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been deleted from the momentum equations as a consequence of the isokinetic condition.
Furthermore, this condition does not produce any change in the melting process both in
the way it is modelled (mass and momentum transfers) and in the volumetric deformation
rate. With regard to this last aspect, by applying the isokinetic condition between rock and
ice, (3.19) becomes

∇ · (αsus + αwuw) = |Γi|
(

1
ρw

− 1
ρi

)
. (4.14)

This relation implies that the rate of the mixture volumetric deformation reduces due to
the ice melting, as it happens in the RIW model.

After providing proper closure relations, the equation system (4.13) can be solved in
terms of the chosen unknowns, i.e. us, uw, αs, αw, ρs and pw. It is worth noting that it is
possible to retrieve the rock and ice concentrations, namely αr and αi, from ρs and αs by
applying (4.11a,b).

Finally, following the work of Pudasaini & Krautblatter (2014), an alternative expression
for this system can be derived considering a new variable, here called ‘rock equivalent
concentration’, that is defined as

αe
r = αr + αi

ρi

ρr
, (4.15)

where the ratio ρi/ρr transforms the ice concentration into a rock equivalent term. Thanks
to this new variable, the flow problem can be expressed as a function of us, uw, αs, αe

r ,
αw and pw. To express the system (4.13) in terms of these new unknowns, it is necessary
to rewrite the solid mass per unit volume, namely ρsαs, in terms of the rock equivalent
concentration. This can be achieved by multiplying (4.8) by αs, by collecting ρr and by
using (4.15), as follows:

ρsαs = ρr

(
αr + αi

ρi

ρr

)
= ρrα

e
r . (4.16)

The detailed expression of the PI-RIW system written in terms of the new unknowns can
be found in Appendix B.

4.2. Fully isokinetic RIW model
The fully isokinetic RIW (FI-RIW) model can be obtained starting from the PI-RIW
approach by imposing the isokinetic condition to the solid and water phases,

us = uw = u, (4.17)

where u is the velocity of the overall bulk mixture. In this approach, the bulk concentration
is equal to one,

α = αs + αw = αr + αi + αw = 1, (4.18)

while the bulk density of the mixture becomes

ρ = αsρs + αwρw, (4.19)

and it is variable in space and time.
For the derivation of the FI-RIW model, it is useful to define the overall stress tensor

T in a way consistent with the definition (4.10) provided for the solid stress tensor in
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the PI-RIW model. Thus, remembering that αs + αw = 1, the overall stress tensor can be
expressed as

T = αsT s + αwT w, (4.20)

where the isotropic part of T is pI with p representing the mixture pressure. By contrast
with the PI-RIW model, the definition of the closure relation for T translates into the
description of the averaged mechanical behaviour of the mixture rather than into an
equality of the mechanical behaviour of the solid and water phases.

In this class of models, the flow problem can be expressed as a function of u, ρ, p and
two other unknown variables, for example αs and αw. To do that, αsρs has to be expressed
in terms of the chosen unknowns by using (4.19), namely

αsρs = ρ − αwρw. (4.21)

Also for the FI-RIW model, the isokinetic condition allows us to replace the momentum
balance principles related to water and the solid phase with the momentum conservation
equation for the bulk mixture. This equation is obtained by summing (4.13d) with (4.13e)
and by using the definition of ρ. The resulting expression corresponds to (4.23d), where
all the interaction stresses between the phases disappear. It is also useful to sum the solid
and water mass balances, namely equations (4.13b) and (4.13c). In this way, it is possible
to derive the bulk mass conservation equation that replaces the solid mass balance in the
PI-RIW model. Moreover, by subtracting (4.13a) to (4.13b), we get

∂

∂t
(ρiαs) + ∇·(ρiαsu) = −|Γi|, (4.22)

which can be further divided by the ice density ρi. As a result, the FI-RIW model reads as
follows:

∂αs

∂t
+ ∇·(αsu) = −|Γi|

ρi
, (4.23a)

∂ρ

∂t
+ ∇·(ρu) = 0, (4.23b)

∂

∂t
(αwρw) + ∇·(αwρwu) = +|Γi|, (4.23c)

∂

∂t
(ρu) + ∇·(ρu ⊗ u) = − ∇· T + ρg, (4.23d)

αs + αw = 1, (4.23e)

where (4.23a) expresses the changes over time and space in the solid volume fraction.
These changes are connected to the melting process of ice and this aspect is justified by
the presence of ρi in the denominator of the source term. It is worthy of note that the
balance principle (4.23a) can be derived directly from the RIW model (3.18) by applying
the isokinetic condition to rock and ice, by dividing (3.18a) and (3.18b) by ρr and ρi,
respectively, and by adding together the two resulting equations.

Finally, by dividing (4.23c) by ρw, adding the resulting equation to (4.23a) and by using
(4.23e), it is possible to derive the expression for the velocity divergence,

∇ · u = |Γi|
(

1
ρw

− 1
ρi

)
, (4.24)

which shows that the rate of the mixture volumetric deformation is negative as in the RIW
model.
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This class of models maintains only the mass transfers associated with the melting
process, while it does not contain all the other interphase terms because of the isokinetic
condition.

It is worth noting that the solution of (4.23) is expressed in terms of the unknown
variables ρ, αs, αw, u and p. Knowing the mixture density ρ and the solid and liquid
concentrations (αs, αw), it is possible to retrieve the rock and ice concentrations by
computing ρs from (4.21) and by replacing this quantity into (4.11a,b).

4.3. Two-phase RIW model
In the two-phase RIW (TP-RIW) approach, the mixture is seen as composed of only two
phases: one solid (rock plus ice) and one liquid. In this way, only four balance equations
(two scalar and two vectorial) plus a relation for the concentrations are required to describe
the flow. Therefore, starting from the PI-RIW approach, the number of unknown variables
needs to be reduced by one scalar unit by imposing that a variable is constant. The choice
of this variable is compulsory: since the concentrations and the velocities of the solid
and liquid phases must be maintained, the variable to impose constant corresponds to
ρs. This is consistent with what we have said in the introduction of this section: the
incompressibility hypothesis must be applied to the bulk solid phase and, consequently
the ratio αr/αi is constant in time and space.

With regard to the equations, due to the incompressibility assumption, we need
to neglect from the PI-RIW system one of the two mass balances that contain ρs.
Nevertheless, the choice is not equivalent. Looking at these two equations, they do not
boil down to the same expression under the incompressibility assumption. With regard to
(4.13a), the term ρs − ρi is constant and, since the source term is null, it can be simplified,
thus giving rise to the following expression:

∂αs

∂t
+ ∇·(αsus) = 0. (4.25)

On the other hand, in (4.13b) the source term is not null and thus, ρs does not disappear
from the equation when simplified. As a result, (4.13b) reads as follows:

∂αs

∂t
+ ∇·(αsus) = −|Γi|

ρs
. (4.26)

By combining (4.13c) with (4.26), it is easy to observe that the mass transfer condition
existing between the solid and water phases is respected, since the source terms in these
two balances are equal in absolute value but opposite in sign (see § 3.2 for more details).
On the other hand, coupling (4.13c) and (4.25), the mass transfer condition is violated,
since the source term in (4.13c) is not balanced by any counterpart. Therefore, the mass
balance to maintain coincides with (4.26) multiplied by the constant ρs. This equation
expresses the fact that the bulk solid phase is melted as a whole: both ice and rock are
transformed into water at the same time, maintaining the ratio αr/αi (and ρs) constant
in time and space. It is quite easy to prove that the melting involves also the rock phase
by deriving the mass balance principle related to rock. Firstly, by substituting (4.7) into
(4.26), secondly, by expressing αi in terms of αr thanks to (4.5) and, lastly, by dividing the
resulting equation by the constant term (ρr − ρi)/(ρs − ρi) and by multiplying it by ρr,
we get

∂

∂t
(αrρr) + ∇·(αrρrus) = −|Γi|ρr

ρs

(ρs − ρi)

(ρr − ρi)
, (4.27)

where the right-hand side term is a fraction of the mass transfer |Γi|.
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The flow problem can be expressed as a function of us, uw, αs, αw and pw. In this way,
the TP-RIW model reads as follows:

∂

∂t
(αsρs) + ∇·(αsρsus) = −|Γs|, (4.28a)

∂

∂t
(αwρw) + ∇·(αwρwuw) = +|Γs|, (4.28b)

∂

∂t
(αsρsus) + ∇·(αsρsus ⊗ us) = − ∇· (αsT s) + αsρsg − |Γs|uss

+ ∇αs · T w + MD
sw, (4.28c)

∂

∂t
(αwρwuw) + ∇·(αwρwuw ⊗ uw) = − ∇· (αwT w) + αwρwg + |Γs|uss

+ ∇αw · T w − MD
sw, (4.28d)

αs + αw = 1, (4.28e)

where the subscript s in the mass and momentum transfers is used to stress that the melting
process involves the bulk solid phase and not the sole ice phase.

Finally, by dividing (4.28a) and (4.28b), respectively, by ρs and ρw, adding together
the resulting equations and by using (4.28e), it is possible to derive the equation for the
velocity divergence,

∇ · (αsus + αwuw) = |Γs|
(

1
ρw

− 1
ρs

)
, (4.29)

which states that the rate of the mixture volumetric deformation depends on the densities of
water and the overall solid phase. Differently from the previous cases, the TP-RIW model
allows both negative and positive volumetric deformation rates. If ρs < ρw, the behaviour
is similar to that of the RIW model, while if ρs > ρw, the behaviour is opposed to that
occurring in the RIW model. Since the solid density is defined as in (4.8), the condition
ρs < ρw occurs when the solid phase is mainly composed of ice. As a consequence, the
physics of the volume deformations is in agreement with that of the RIW model only if the
RIW mixture has a solid phase consisting mainly of ice. This aspect shows another severe
limit of this model.

It is worth noting that, from the solution of (4.28), it is possible to retrieve the rock and
ice concentrations by applying (4.11a,b) and by remembering that the solid density is a
constant.

4.4. Isokinetic two-phase RIW model
The isokinetic two-phase RIW (ITP-RIW) model can be derived from the TP-RIW system
(4.28) by applying the isokinetic condition to the water and solid phases. This condition is
equivalent to that used in the FI-RIW approach and, therefore, the (4.17)–(4.21) hold. The
flow problem can be expressed as a function of u, ρ, p and one unknown concentration,
such as αw.

With regard to the equations, the momentum balance related to the bulk phase can be
derived by adding together the momentum conservation equations for water and the solid
phase, namely (4.28c) and (4.28d), and by using the definition of ρ. The resulting equation
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corresponds to (4.30c) and it is equal to (4.23d). In addition, the solid mass balance (4.28a)
can be replaced by the bulk mass conservation equation, which can be obtained by adding
(4.28a) to (4.28b). Finally, the solid concentration αs can be expressed in terms of the
chosen unknowns using (4.21). The final system for the ITP-RIW model reads as follows:

∂ρ

∂t
+ ∇·(ρu) = 0, (4.30a)

∂

∂t
(αwρw) + ∇·(αwρwu) = +|Γs|, (4.30b)

∂

∂t
(ρu) + ∇·(ρu ⊗ u) = − ∇· T + ρg, (4.30c)

ρ

ρs
+ αw

(
1 − ρw

ρs

)
= 1. (4.30d)

It is necessary to stress that the mass balances do not violate the mass transfer condition.
Since ρ is variable, the loss of mass expressed by the mass transfer −|Γs| is indeed hidden
in (4.30a). Finally, the equation for the velocity divergence can be derived by applying the
isokinetic condition to the water and solid phases in (4.29), thus obtaining

∇ · u = |Γs|
(

1
ρw

− 1
ρs

)
. (4.31)

As in the TP-RIW model, this relation states that the rate of the mixture volumetric
deformation is consistent with the RIW model only if ρs < ρw.

Since this class of models is derived from the TP-RIW approach, it is affected by the
same approximation as the TP-RIW model and thus, the melting process is assigned to
both rock and ice as a whole.

It is worth noting that, from the solution of (4.30), it is possible to retrieve the rock and
ice concentrations by remembering that the solid density ρs is a constant, computing the
solid volume fraction from (4.21) and substituting αs into (4.11a,b).

4.5. Mono-phase RIW model
In the mono-phase RIW (MP-RIW) model, the mixture is seen as composed of a single
phase. In this way, only two balance equations are required to describe the flow and,
therefore, the model can be obtained from the ITP-RIW approach by assuming that the
bulk mixture ρ is incompressible. Since the bulk mixture concentration is equal to one (see
(4.18)), this assumption implies that even the solid and water concentrations, expressed by

αs = ρ − ρw

ρs − ρw
, αw = ρ − ρs

ρw − ρs
, (4.32a,b)

are constant in time and space. As a consequence, one of the mass balances must be
disregarded from the system (4.30), but, as in the TP-RIW approach, the choice is
not arbitrary. Starting from the water mass balance (4.30b), the constancy of the water
concentration allows us to simplify from the equation the term αwρw, thus obtaining the
following expression:

∇· u = + |Γs|
αwρw

. (4.33)

Since the incompressibility condition, applied in this case to the mixture, reduces the
required number of mass balances from two to one, the term appearing on the right-hand
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side of (4.33) is not balanced by any counterpart in another mass balance. As a
consequence, this term appears to be linked to a mass production rather than to an internal
mass transfer. As mass production is not considered in this work, this equation cannot be
maintained in the system. Conversely, by applying the incompressibility assumption to the
mixture mass balance (4.30a), we derive

∇· u = 0. (4.34)

The monophase model needs to be derived choosing this equation, and in this way it is not
able to describe the phase transformation associated with the melting process.

In this class of models, the flow problem can be expressed as a function of u and p.
Therefore, the MP-RIW model reads as follows:

∇·u = 0, (4.35a)

∂

∂t
(ρu) + ∇·(ρu ⊗ u) = − ∇· T + ρg. (4.35b)

By contrast with the TP-RIW and ITP-RIW approaches, the MP-RIW model is based on
a stronger approximation than the other two approaches. While the first two classes of
models assign the melting to the overall solid phase, the MP-RIW approach overlooks it.
Furthermore, due to (4.35a), no changes in the volumetric deformation rate occur within
the mixture.

4.6. Trade-off between simplicity and completeness in the RIW framework
As described in the previous sections, the simplified RIW models are obtained reducing
gradually the number of unknowns in the equation systems. Table 1 shows a synoptic
panel concerning the unknowns used to describe each class of models. Furthermore, the
simplified RIW models are derived by applying alternately or simultaneously the isokinetic
and incompressibility conditions. As shown in table 2, these two assumptions have
different effects on the original system of equations. While the isokinetic condition acts by
reducing the complexity of the momentum balances, the incompressibility condition acts
by simplifying the composition of the mixture and, in this way, deleting from the original
system one or two mass balances.

With reference to the isokinetic condition, the classes based on this assumption
simplify the dynamics of RIW mixtures deleting from the original system of equations
the solid–solid (PI-RIW, TP-RIW) and solid–liquid (FI-RIW, ITP-RIW, MP-RIW)
interactions. From a physical point of view, the isokinetic condition implies that the
simplified models may be unable to simulate phenomena such as the segregation between
two distinct solid phases and the phase separation between the solid and liquid phases
(for specific references to these phenomena, see e.g. Drahun & Bridgwater (1983),
Iverson (1997), Gray & Thornton (2005), Johnson et al. (2012) and Pudasaini & Fischer
(2020)). More precisely, the mathematical approaches derived applying the isokinetic
condition to rock and ice (PI-RIW, TP-RIW) can simulate the phase separation, but not the
phenomenon of segregation. Conversely, the fully isokinetic models (FI-RIW, ITP-RIW,
MP-RIW) are not able to simulate either the phase separation or the segregation processes,
since all the phases move with the same velocity.

With regard to the incompressibility condition, this hypothesis imposes an important
constraint on the phase concentrations, which translates into a strong simplification of
the melting process. In the TP-RIW and ITP-RIW models, this constraint implies that
the two solid phases (rock and ice) can change over time and space their concentrations,
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Model Unknowns

RIW pw, αr, αi, αw, ur, ui, uw
PI-RIW pw, αw, αs, ρs, us, uw
FI-RIW p, αw, αs, ρ, u
TP-RIW pw, αw, αs, us, uw
ITP-RIW p, αw, ρ, u
MP-RIW p, u

Table 1. Classes of models and corresponding unknowns. The subscript s denotes the overall solid phase (rock
plus ice). No subscript indicates the overall bulk mixture. Details on the unknowns are given in the related
model paragraphs.

Model Interaction stresses Concentration variability

Solid–Solid Liquid–Solid Ratio Single

RIW � � � �
PI-RIW X � � �
FI-RIW X X � �
TP-RIW X � X �
ITP-RIW X X X �
MP-RIW X X X X

Table 2. Effects of the simplifications used in the framework of simplified RIW models. The symbols �and
X denote, respectively, whether the quantities appear in the class of models or not. Under ‘concentration
variability’, the term ‘ratio’ stands for the concentration ratio and the term ‘single’ indicates the single
concentration of the phases in each class of models.

although maintaining their ratio constant. This translates into the fact that the
concentration constraint assigns the melting process not only to the ice phase but to the
overall bulk solid phase. Conversely, in the MP-RIW model, the constraint translates into
a constancy of all the phase concentrations, thus overlooking the melting process. As a
result, these three models (TP-RIW, ITP-RIW, MP-RIW) simplify the description of the
melting process.

Since the hypothesis of incompressibility strongly approximates the melting process,
it is advisable to model RIW mixtures with the PI-RIW and FI-RIW models. Unlike the
FI-RIW approach, the PI-RIW description can detect differences between the solid and
liquid velocities. For this reason, the PI-RIW model appears to be an appropriate trade-off
between simplicity and completeness.

4.7. Classification of literature models
The mathematical models existing in the literature and briefly presented in the introduction
can be classified on the basis of the RIW framework that we have developed. In this way,
it is possible to catch the degree of simplification that these models show. In figure 2 we
report a scheme in which the literature models are arranged within the corresponding class
of simplified RIW approaches. It is worth noting that in this scheme the different simplified
RIW models are grouped into two categories, called ‘reduced’ and ‘approximated’,
respectively. The reason for this distinction lies in the fact that, while the ‘reduced’ models
are derived imposing only a condition on the flow and maintaining the melting process as
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Simplified

RIW models

Other simplified

models

Reduced

Bartelt et al. (2018) Evans et al. (2009b)
Schneider et al. (2010)

Partially

Isokinetic

PI-RIW

Fully Two-

Two-PhasePhaseIsokinetic

Isokinetic Mono-

Phase

FI-RIW TP-RIW ITP-RIW

TPPK
Pudasaini & Krautblatter

(2014)

MP-RIW

Approximated

Figure 2. Classes of simplified RIW models with their corresponding acronyms and classification of the
models existing in the literature within the RIW framework. The differences in colours give, as in figure 1,
the differences in the number of phases considered in each class of simplified RIW models.

it appears in the RIW model, the ‘approximated’ approaches modify or even overlook the
mechanism of melting.

The works of Evans et al. (2009b) and Schneider et al. (2010), which are based on the
mathematical models of McDougall (2006), Hungr & McDougall (2009) and Christen
et al. (2010), can be all classified as MP-RIW approaches since these models are described
by the system (4.35). As a consequence, they overlook the melting process.

The model proposed by Pudasaini & Krautblatter (2014), known as the two-phase model
of Pudasaini & Krautblatter (TPPK), is a two-phase approach, in which the mixture is
composed of a solid phase (rock plus ice) and a liquid phase. The related system of
equations consists of two mass and two momentum balance equations as in the TP-RIW
model presented in § 4.3, but it shows some differences. The reason for these differences
lies in the fact that the authors assumed a particular definition of the liquid volume fraction
(Pudasaini & Krautblatter 2014, p. 2279) which, using our notation, becomes expressed as

αw = 1 − αe
r , (4.36)

rather than as αw = 1 − αs, as specified in our work. Considering the same liquid phase
and equalizing the two definitions of the liquid concentration, it follows that αs = αe

r ,
and using (4.16), this condition implies that ρs = ρr. These equalities represent the extra
hypotheses that we have to add to the isokinetic and incompressibility conditions in order
to derive the TPPK model from the TP-RIW approach. Due to these extra hypotheses,
the TPPK model is classified as ‘other simplified models’. Despite this aspect, the TPPK
model shares the same physical limits as the TP-RIW approach, but it can be considered
as a reference model for the description of the effects of basal lubrication and internal
fluidization which, to the best of our knowledge, have never been considered before in
multiphase flows.
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Figure 3. Reference system and variables used to describe the flow in the PI-RIW model.

Finally, the core layer of the model proposed by Bartelt et al. (2018) can be classified as
a FI-RIW model, since rock, ice and water propagate downslope with the same velocity.
Thus, as shown in (4.23), this model is based on the isokinetic condition between the three
different phases and the melting process is modelled through a mass transfer between ice
and water.

From this analysis of the literature, it appears that the PI-RIW model represents a novel
approach to tackle the rock–ice avalanche problem.

5. The 1-D version of the PI-RIW model

Three-dimensional models require high computational efforts when analysing geophysical
flows under natural conditions due to their large masses (Pudasaini 2012). A possible
way to overcome this problem consists, firstly, in introducing the shallow flow condition
due to the smaller depth of the flow compared with its characteristic planar extent, and
secondly, in integrating the 3-D model along the flow depth. In this section, we present the
derivation of the 1-D depth-integrated version of the PI-RIW model starting from the PDE
system written in terms of the rock equivalent concentration (see the equation system (B5)
reported in Appendix B). Since the 1-D versions of all the other simplified RIW models
are derived assuming the same closure relations for the 1-D PI-RIW model, we report
in Appendix C only their resulting 1-D PDE systems. It is worthy of note that the 1-D
versions derived in this section will be used for the analyses of the eigenvalues performed
in § 6.

Let us consider a planar flow occurring in a x–z reference system, where the x axis is
inclined at an angle ζ to the horizontal plane and the z axis is oriented normally to this
direction. As shown in figure 3, the bottom is located at a distance zb from the x axis and
its normal direction differs in a negligible amount from the z direction. In this way, the
bottom results in being inclined approximately as the x axis and is assumed to have a small
curvature. The free surface is located at a distance η from the x axis and it is a function of
time and space, z = η(x, t). The difference between the free surface η and the bottom zb
defines the local depth of the flow, h = η − zb.

In order to derive the depth-integrated version of the PI-RIW model, it is necessary,
firstly, to define both the rheologies for the solid and liquid phases and the boundary
conditions, secondly, to perform a scale analysis combined with the shallow flow condition
in order to identify the terms that can be neglected from the equation system, thirdly, to
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Modelling of rock–ice avalanches

integrate the equations along the flow depth, and lastly, to define the closure relations
for the terms that remain unspecified. Since both the scale analysis and the flow-depth
integration are quite standard, we show in this paper only the final results of these two
procedures, thus referring the reader to the works of Savage & Hutter (1989), Pitman &
Le (2005) and Pudasaini (2012) for more details.

5.1. Solid and liquid rheologies
In this paragraph, we discuss the rheologies used for the solid and liquid phases. These
relations depend on the properties of the material considered and affect strongly its
dynamics.

For the water stress tensor, we assume a Newtonian closure

T w = pwI − τw, (5.1)

where I and τw = 2ρwνDw represent, respectively, the identity tensor and the water
deviatoric tensor, while Dw and ν correspond to the shear velocity tensor and the kinematic
viscosity. As pointed out in the introduction, this rheology can be used not only whether
the liquid phase is water, but also whether the liquid phase consists of water with
low concentrations of silty solid particles (Armanini 2013; Armanini et al. 2014). In
cases of high concentrations of silty solid particles, for the liquid stress tensor, it is
more appropriate to use a non-Newtonian closure relation, as proposed in Pudasaini &
Krautblatter (2014) and Pudasaini & Mergili (2019).

With regard to the solid rheology, many constitutive relations exist in the literature
(Savage & Hutter 1989; Iverson & Denlinger 2001; Jop, Forterre & Pouliquen 2006;
Gray & Edwards 2014; Pudasaini & Mergili 2019). Nevertheless, for the effective solid
stress tensor Ts, we consider a Mohr–Coulomb plasticity closure (Savage & Hutter 1989;
Pudasaini & Hutter 2007; Pudasaini & Mergili 2019) in agreement with the literature
models discussed in § 4.7:

T xx
s = KT zz

s , (5.2)

T xz
s = −sgn(ux

s)μT zz
s , (5.3)

where K and μ are, respectively, the active-passive earth pressure coefficient and the
friction coefficient, while −sgn(ux

s) specifies that the shear stress opposes the motion.
The stress T zz

s is defined by
T zz

s = Tzz
s − pw + τ zz

w . (5.4)

5.2. Boundary conditions
The boundary conditions used to derive the depth-integrated versions of the models
proposed in § 4 correspond to those used by Pitman & Le (2005) and Pudasaini (2012)
and can be summarized as follows.

(i) The free surface and the bottom are assumed to be material surfaces and thus, they
need to satisfy the kinematic boundary conditions. (ii) The dynamic boundary condition
is applied at the free surface. Hence, we assume that the action exerted on the mixture
by the outside environment is negligible. Moreover, assuming small curvatures of the free
surface, also the surface tension is negligible. (iii) The bottom is assumed to be fixed and
impermeable. As a consequence, the z components of the velocity vectors for the solid and
water phases are null. (iv) The liquid phase needs to satisfy the no-slip condition which
implies that (over a fixed bed) the whole liquid velocity vector at the bottom is null.
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5.3. Integration along the flow depth
An important step used to derive the depth-integrated version of the PI-RIW model
(omitted for brevity) consists in checking if rock–ice avalanches are characterized by
the shallow flow condition. As pointed out in the work of Huggel et al. (2005, p.
183) concerning the Kolka–Karmadon rock–ice avalanche, this flow had a value of the
ratio flow height-to-longitudinal extent that was similar to those related to debris flows
and lahars. Assuming this statement general, it is possible to affirm that also rock–ice
avalanches are characterized by the shallow flow condition, as debris flows and lahars
(Iverson 1997). As a consequence, it is possible to perform the scale analysis combined
with the shallow flow condition. As a result of this analysis, the momentum balance
principles along the z direction simplify strongly, thus leading to the following equations:

∂pw

∂z
= −ρwg cos ζ, (5.5a)

∂(αsT zz
s )

∂z
= −ρr

(
αe

r − αs
ρw

ρr

)
g cos ζ. (5.5b)

With regard to (5.5a), it states that the water pressure is hydrostatic. Considering (5.5b),
this equation might appear strange due to the presence of both αe

r and αs. Nevertheless, by
multiplying the term inside the round brackets by ρr, we get ρrα

e
r − ρwαs, which becomes

equal to ρsαs − ρwαs thanks to (4.16). In this way, the momentum balance principle (5.5b)
can be rewritten as follows:

∂(αsT zz
s )

∂z
= −(ρsαs − ρwαs)g cos ζ, (5.6)

and it states that the normal solid stress in the z direction depends on the solid mass per unit
volume reduced by the buoyancy. It is worthy of note that, in case of mixtures composed
only of water and rock, (5.5b) coincides with that derived for two-phase debris flow models
(Pitman & Le 2005; Pudasaini 2012), since αe

r = αs = αr.
With reference to the momentum balance principles along the x direction, the shallow

flow condition allows the viscous stresses to be neglected (Iverson & Denlinger 2001;
Pitman & Le 2005), and this simplification can be considered a reasonable approximation,
as demonstrated by the recent laboratory experiments of Armanini et al. (2014).

Once the scale analysis has been performed, it is possible to integrate the equations
between the free surface and the bottom and to express them as functions of the
depth-averaged variables. On the basis of the flow depth h, the depth-averaged value of
a generic function b(x, z, t) can be defined as follows:

b̄(x, t) = 1
h(x, t)

∫ η(x,t)

zb(x)
b(x, z, t) dz, (5.7)

where the averaged variable is denoted here by an overline. In the following, to simplify
the notation, we will disregard the explicit indication of the space–time variability of a
quantity. In addition, it is worth noting that some terms appear in the equation system as a
product of two or three quantities. In these cases, the depth-averaged terms read as follows:

β2b̄1b̄2 = 1
h

∫ η

zb

b1 b2 dz, (5.8)

β3b̄1b̄2b̄3 = 1
h

∫ η

zb

b1 b2 b3 dz, (5.9)
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where b1, b2 and b3 identify three generic functions, while β2 and β3 represent suitable
corrective factors. Although these parameters can affect the further analysis of the
eigenvalues, all these corrective factors can be approximated to one in agreement with
Pitman & Le (2005), Pelanti, Bouchut & Mangeney (2008) and Pudasaini (2012). Thanks
to these expressions, we define the following depth-integrated variables:

Ck = 1
h

∫ η

zb

αk dz, (5.10)

Uk = 1
h

∫ η

zb

uk dz, (5.11)

where k ∈ {s, w},

Ce
r = 1

h

∫ η

zb

αe
r dz (5.12)

and

Υi = 1
h

∫ η

zb

|Γi| dz, (5.13)

ΥiU ss = 1
h

∫ η

zb

|Γi|uss dz, (5.14)

M̄D
sw = 1

h

∫ η

zb

MD
sw|x dz. (5.15)

As a result of the depth-integration, the 1-D PI-RIW model reads as follows:

∂(Csh)

∂t
+ ∂(CsUsh)

∂x
= −Υih

ρi
, (5.16a)

∂(Ce
rh)

∂t
+ ∂(Ce

rUsh)

∂x
= −Υih

ρr
, (5.16b)

∂(Cwh)

∂t
+ ∂(CwUwh)

∂x
= +Υih

ρw
, (5.16c)

∂(Ce
r Ush)

∂t
+ ∂(Ce

r U2
s h)

∂x
= − ∂

∂x

[
Kg cos ζ

(
Ce

r − Cs
ρw

ρr

)
h2

2

]

− gh cos ζ

(
K

∂zb

∂x
+ sgn(Us)μ

) (
Ce

r − Cs
ρw

ρr

)

− g
ρw

ρr
Csh cos ζ

∂h
∂x

− g
ρw

ρr
Csh cos ζ

∂zb

∂x

+ 1
ρr

[ρrCe
rgh sin ζ − ΥiUssh + M̄D

swh], (5.16d)
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∂(CwUwh)

∂t
+ ∂(CwU2

wh)

∂x
= −g cos ζCwh

∂h
∂x

− g cos ζCwh
∂zb

∂x

+ 1
ρw

[ρwCwgh sin ζ + ΥiUssh − M̄D
swh], (5.16e)

Cs + Cw = 1, (5.16f )

where (5.16a)–(5.16e) are divided by ρi, ρr, ρw, ρr and ρw, respectively. The
(5.16a)–(5.16c) derive from the mass balance principles related to the solid phase, the
rock equivalent phase and water, while (5.16d) and (5.16e) correspond to the momentum
balance principles related to the rock equivalent phase and water. Looking at the first
three balance principles in (5.16), it might appear that (5.16a) and (5.16b) express the
changes over time and space in the concentration of the same phase. Nevertheless, while
Cs describes the overall solid phase existing in the mixture, Ce

r can be seen as a variable
that describes the composition of the overall solid phase. In fact, by using (4.11a,b) and
(4.16), it is possible to combine together Cs and Ce

r and to derive the depth-integrated
concentrations of rock and ice,

Ci = ρr
Ce

r − Cs

ρi − ρr
; Cr = Ce

rρr − Csρi

ρr − ρi
. (5.17a,b)

It is worthy of note that it is possible to detect the changes over time and space in the
rock and ice concentrations only thanks to both (5.16a) and (5.16b), and this detection can
be computed without imposing any other assumption, such as the incompressibility of the
solid phase as in the TP-RIW model.

Closure relations. The unknown variables of the 1-D PI-RIW model (5.16) correspond
to h, Cs, Ce

r , Cw, Us and Uw, while the terms that remain unspecified consist in the mass
and momentum transfers (Υi, Uss) and the drag stress (M̄D

sw).
(i) The mass transfer Υi can be estimated, as proposed in the model of Pudasaini &

Krautblatter (2014), on the basis of the melting efficiency derived by Sosio et al. (2012).
More precisely, the molten ice is expressed in terms of a thickness that is computed by
assuming that only a fraction of the heat produced by basal friction is used for the ice
melting. In this way, the mass transfer Υi can be defined as follows:

Υi = eμg cos ζ

λf
ρrCe

r Us, (5.18)

where λf identifies the latent heat of ice, while e is the parameter that estimates the fraction
of heat produced by basal friction and used for the ice melting.

(ii) The velocity Uss appearing in the momentum transfer is defined in agreement with
Kolev (2007). Thus, Uss is assumed to be equal to the velocity of the ‘donor’ phase, namely
the solid bulk phase,

Uss = Us. (5.19)

(iii) With regard to the drag stress M̄D
sw, many authors provided closure relations for this

term (Wang & Hutter 1999; Pitman & Le 2005; Meruane, Tamburrino & Roche 2010;
Pudasaini 2012, 2020; Nucci, Armanini & Larcher 2019). A possible choice consists in
using the expression defined in Pelanti et al. (2008):

M̄D
sw = D(Uw − Us), (5.20)

where D is a function depending on the solid bulk volume fraction, on the difference in
the solid and liquid velocities and on constant physical parameters (e.g. the characteristic
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grain size) and is based on the drag correlation proposed by Gidaspow (1994). Thanks
to this choice, quantitative comparisons between the debris-flow model of Pelanti et al.
(2008) and the PI-RIW approach proposed in this work might be computed. However,
since the drag stresses can play an important role in multiphase mass flows (Nucci et al.
2019; Pudasaini 2020), further analyses should be performed using or deriving different
drag closure relations. In this way, it is possible to detect which of these closure relations
may fit with the rock–ice avalanche case.

6. Eigenvalue analysis of the 1-D simplified RIW models

The mathematical nature of the PDE systems introduced in the previous sections can be
investigated by applying an analysis of the eigenvalues. This analysis is important not
only from a strictly mathematical point of view, but also because the choice of numerical
schemes to be used for numerical solutions is affected by the nature of the systems.
Some Godunov-type methods exploit simplified expressions of the eigenvalues to compute
approximated solutions for Riemann problems. In these cases, it is useful to understand
the extent to which these expressions can reproduce the main features of the complete
eigenvalue set. Therefore, an eigenvalue analysis can be considered also as the preliminary
step for further numerical studies.

Since all the PDEs considered in this work are derived from balance equations for
fluid-like phases, we expect a substantial hyperbolic nature of the systems. Nevertheless,
this cannot be taken for granted and must be verified thoroughly, since a loss of
hyperbolicity is quite common in free-surface two-phase flows (Pitman & Le 2005; Pelanti
et al. 2008; Castro-Díaz et al. 2011). The results of the eigenvalue analysis are obviously
connected with the closure relations and, therefore, they cannot be considered entirely
general.

In this section, firstly, we derive the 1-D PI-RIW eigenvalues and identify their
dependence on specific variables and, secondly, we compare these eigenvalues with those
related to the other simplified 1-D RIW models, whose equation systems are reported in
Appendix C. In Appendix D, we provide also the comparison of these eigenvalues with
those used to derive numerical solutions for the rock–ice avalanche models existing in the
literature. It is worth noting that we compute all these analyses by considering both the
conservative and non-conservative fluxes.

6.1. The PI-RIW eigenvalue set
The differential part of the system (5.16) can be written in compact form as

∂U(W )

∂t
+ ∂F (W )

∂x
+ H(W )

∂W
∂x

= S(W ), (6.1)

where

W = [ h Ce
r Cw Us Uw ]T (6.2)

is the vector of primitive variables, while U(W ), F (W ) and S(W ) represent the vectors
of the conserved variables, the conservative fluxes and of the source terms, respectively.
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Finally, H(W ) is the matrix of the non-conservative fluxes. All these terms read as follows:

U =

⎡
⎢⎢⎢⎢⎢⎣

(1 − Cw)h
Ce

rh
Cwh

Ce
r Ush

CwUwh

⎤
⎥⎥⎥⎥⎥⎦ ; F =

⎡
⎢⎢⎢⎢⎢⎢⎣

(1 − Cw)Ush
Ce

rUsh
CwUwh

Ce
r U2

s h + Kg cos ζ

(
Ce

r − ρw

ρr
(1 − Cw)

)
h2

2
CwU2

wh

⎤
⎥⎥⎥⎥⎥⎥⎦

H =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

g
ρw

ρr
cos ζ(1 − Cw)h 0 0 0 0

g cos ζCwh 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ; S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Υi

ρi
h

−Υi

ρr
h

+ Υi

ρw
h

Ss

Sw

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(6.3)
where

Ss = −g cos ζ

(
K

∂zb

∂x
+ μ

)(
Ce

r − (1 − Cw)
ρw

ρr

)
h − g

ρw

ρr
(1 − Cw)h cos ζ

∂zb

∂x

+ 1
ρr

[ρrCe
r gh sin ζ − ΥiUssh + M̄D

swh], (6.4)

Sw = −g cos ζCwh
∂zb

∂x
+ 1

ρw
[ρwCwgh sin ζ + ΥiUssh − M̄D

swh]. (6.5)

It is worth noting that in these expressions we have used (5.16f ) to substitute Cs with
(1 − Cw).

The quasi-linear form of the homogeneous part of the system becomes

∂U
∂W

∂W
∂t

+ ∂F
∂W

∂W
∂x

+ H(W )
∂W
∂x

= 0, (6.6)

where ∂U/∂W and ∂F/∂W are the Jacobians of the conserved vector and of the
conservative flux vector with respect to the primitive variables. The characteristic
polynomial is computed from the following expression:

P(λ) = Det
[

∂F
∂W

+ H(W ) − λ ∂U
∂W

]
, (6.7)

thus becoming

P(λ) = (λ− Us)

4∑
l=0

blλ
l. (6.8)
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The coefficients bl are written in an analogous way to those derived for two-phase flows
by Pelanti et al. (2008):

b4 = 1, (6.9a)

b3 = −2(Uw + Us), (6.9b)

b2 = (Us + Uw)2 + 2UsUw − a2(1 + β2), (6.9c)

b1 = −2UsUw(Us + Uw) + 2a2(Us + β2Uw) − 2a2(1 − Cw)(Us − Uw), (6.9d)

b0 = U2
s U2

w − a2(U2
s + β2U2

w) + a4(β2 − δ2) + a2(1 − Cw)(U2
s − U2

w), (6.9e)

where

a =
√

gh cos ζ , (6.10a)

β2 =
[

Cw − 1 − K
2

(Cw − 2)

] (
1 − ρw

ρr

1 − Cw

Ce
r

)
, (6.10b)

δ2 = (1 − Cw)(K − 1)

(
1 − ρw

ρr

1 − Cw

Ce
r

)
. (6.10c)

To analyse the trend of the eigenvalues, it is useful to express the characteristic polynomial
(6.8) in a non-dimensional form by dividing it by a5. Therefore, its expression can
be written in terms of the dimensionless eigenvalue λ̂ = λ/a and of the following
dimensionless quantities:

Ce
r , Cw, K, Frw = Uw

a
, Frs = Us

a
, (6.11)

where the last two terms represent the Froude numbers of the water and solid phases,
respectively.

Following a classical way to represent the eigenvalues for free-surface flows (Lyn &
Altinakar 2002; Garegnani et al. 2013), we plot the behaviour of the different λ̂ as
a function of the water Froude number Frw by keeping fixed the values of the other
parameters. A typical behaviour of these plots is presented in figure 4. It allows us to
make three general considerations.

(i) One eigenvalue, namely λ̂ = Frs, has a linear trend, whose slope depends on the
values of the parameters used.

(ii) Two eigenvalues are nearly linear and, in this case, their slope depends on the values
of the parameters used.

(iii) The eigenvalues are real and distinct for all values of Frw except for a given range
where two eigenvalues become complex conjugate, thus delimiting a region with a loss
of hyperbolicity. The Frw range in which this loss occurs changes as a function of the
parameters used.

To understand how the changes in the parameters affect the features highlighted, a
careful analysis is performed by analysing the changes in the plots due to the variation
in a single parameter at a time.

6.1.1. Effect of the Froude ratio
Figure 5 shows three eigenvalue plots in which the ratio Frs/Frw, representing the ratio
between the solid and water velocities, is increased from 0.7 (solid slower than water) to
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Figure 4. Trend of the dimensionless eigenvalues obtained considering Frs/Frw = 0.7, Cw = 0.5,
Ce

r = 0.37, K = 1 and ρi/ρr = 0.353.

0 0.5 1.0 1.5 2.0 2.5 3.0
–1

0

1

2

3

4

–1

0

1

2

3

4

–1

0

1

2

3

4

Frw

0 0.5 1.0 1.5 2.0 2.5 3.0

Frw

0 0.5 1.0 1.5 2.0 2.5 3.0

Frw

Frs / Frw = 0.7 Frs / Frw = 1 Frs / Frw = 1.3

λ̂

λ̂1

λ̂2

λ̂3

λ̂4

λ̂5

Figure 5. Effect of the Froude ratio on the dimensionless eigenvalue trends. Results are obtained considering
Cw = 0.5, Ce

r = 0.37, K = 1 and ρi/ρr = 0.353.

1.3 (solid faster than water). It is possible to notice that: (i) the eigenvalues tend to increase
more rapidly as the ratio of the Froude numbers increases; (ii) for Frs/Frw = 1 (isokinetic
condition), the eigenvalues remain distinct and real for all values of Frw; (iii) moving away
from the isokinetic condition, the loss of hyperbolicity appears and is confined to a range
whose boundaries tend to move towards higher values of the water Froude number as
Frs/Frw → 1.

This aspect can be highlighted in figure 6, where the lower and upper limits of the
non-hyperbolic region, namely Frlow

w and Frup
w , are plotted as functions of the Froude

ratio Frs/Frw. This figure shows that: (i) the behaviour is symmetrical with respect to
Frs/Frw = 1, at least for 0 < Frs/Frw < 2; (ii) Frlow

w → ∞ and Frup
w → ∞ as Frs/Frw →

1; (iii) the extent of the non-hyperbolic region increases as Frs/Frw → 1.
To sum up, approaching the isokinetic condition, the region of the loss of hyperbolicity

increases in size, but it starts at values of Frw that become greater and greater, and that are
far from what can be expected in real situations.
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w

Figure 6. Lower (Frlow
w ) and upper (Frup

w ) limits of the non-hyperbolic region as functions of the Froude ratio
Frs/Frw. Results are obtained, as in figure 4, considering Cw = 0.5, Ce

r = 0.37, K = 1 and ρi/ρr = 0.353.

It is worthy of note that in the isokinetic condition the strict hyperbolicity of the
system occurs independently from the value of all the other parameters. Therefore, in the
following paragraphs, we focus the attention only on the effects of the other parameters
on the non-hyperbolic range. Due to the symmetrical behaviour of this range, the analyses
reported below are performed considering a single value for the Froude ratio.

6.1.2. Effect of Cw
As regards the water concentration, figure 7 shows the eigenvalue plots when Cw changes
from 0.4 to 0.6. The trends of these eigenvalues do not show an evident dependence on
this quantity. The only feature that distinguishes the three conditions corresponds to the
values of Frw that delimit the region of the loss of hyperbolicity. By decreasing the water
content in the mixture, both the limits of Frw tend to move towards smaller values and the
region of the loss of hyperbolicity tends to be enlarged (table 3). These results are obtained
considering Frs/Frw = 0.7, but similar results can be detected also with ratios greater than
one.

6.1.3. Effect of Ce
r

A change in the rock equivalent concentration keeping a fixed value for the water content
(or equivalently, the solid concentration) translates into a change in the composition of
the solid phase. Low values of Ce

r imply that the overall solid phase is composed mainly
of ice, while high values of Ce

r implicate that the rock is predominant. As shown in
figure 8, while three eigenvalues are not affected by a change in Ce

r , the lower limit of
the region where the loss of hyperbolicity occurs moves significantly towards low values
of Frw by decreasing the rock equivalent concentration. Conversely, the upper limit of
this region tends to move towards greater values of Frw by reducing the rock equivalent
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Figure 7. Effect of the water concentration Cw on the dimensionless eigenvalue trends. Results are obtained
considering Frs/Frw = 0.7, Ce

r = 0.34, K = 1 and ρi/ρr = 0.353.

Cw Ce
r K

0.4 0.5 0.6 0.34 0.41 0.47 0.7 1.0 1.3

Frlow
w 1.75 2.20 2.69 1.75 2.03 2.22 2.02 2.32 2.58

Frup
w 6.58 6.65 6.66 6.58 6.57 6.55 6.40 6.64 6.88

Range 4.83 4.45 3.97 4.83 4.54 4.33 4.38 4.32 4.30

Table 3. Effects of the parameters Cw, Ce
r and K on the lower limit Frlow

w , upper limit Frup
w and range of the

non-hyperbolic region. The values are referred to the different plots reported in the previous paragraphs and
can be derived imposing both Frs/Frw = 0.7 and Frs/Frw = 1.3.

Cr
e
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e
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Figure 8. Effect of the rock equivalent concentration Ce
r on the dimensionless eigenvalue trends. Results are

obtained considering Frs/Frw = 0.7, Cw = 0.4, K = 1 and ρi/ρr = 0.353.

concentration (table 3). Consequently, it seems that an increase in the ice content expands
the region of the loss of hyperbolicity. Also in this case, a similar result can be detected
for a Froude ratio greater than one.

6.1.4. Effect of K
As shown in figure 9, an increase in the earth-pressure coefficient K does not produce
evident changes in the trends of the dimensionless eigenvalues, except for the values of
Frw that delimit the region of the loss of hyperbolicity. By increasing the earth-pressure
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Figure 9. Effect of the earth-pressure coefficient K on the dimensionless eigenvalue trends. Results are
obtained considering Frs/Frw = 0.7, Cw = 0.5, Ce

r = 0.37 and ρi/ρr = 0.353.

coefficient from an extensive (K < 1) to a compressive (K > 1) condition, the region of
the loss of hyperbolicity tends to move towards higher values of Frw.

6.1.5. Some remarks on the loss of hyperbolicity
From the previous analyses, the loss of hyperbolicity appears in specific ranges of Frw,
whose upper and lower limits are affected differently by the four parameters Frs/Frw, Cs,
Ce

r and K. While the ratio Frs/Frw affects mainly the position of the range of Frw where we
observe the lack of hyperbolicity, the other parameters tend to increase its extent. Table 3
shows how the parameters Cs, Ce

r and K affect the extent of the non-hyperbolic region by
modifying the lower and upper limits of Frw.

It is worth noting that the existence of a range where the hyperbolicity is lost, highlights
the feature of the model to change type (Joseph & Saut 1990; Dinh, Nourgaliev &
Theofanous 2003). This behaviour in time-dependent problems can be an indicator of the
potential ill-posedness of the equation system and might imply that some physical aspects
are missing in the model (Joseph & Saut 1990; Schaeffer et al. 2019). In ill-posed cases, it
is necessary to understand the reason for the ill-posedness (Gray 1999).

The change of type behaviour detected in the PI-RIW approach is a feature common
to two-fluid models (Stuhmiller 1977; Gidaspow 1994; Prosperetti 1999; Pitman & Le
2005; Pelanti et al. 2008; Pudasaini 2012). There exist different theories on the reasons
for the loss of hyperbolicity. In the 3-D case, some works showed that the non-hyperbolic
region arises from the single-pressure formulation of the models, where the interphase
pressure is assumed to be equal to the averaged internal pressure of each phase (Stuhmiller
1977; Ransom & Hicks 1984). It is well known that this type of two-fluid models are
ill-posed (Ramshaw & Trapp 1978) and this ill-posedness can be overcome by adopting a
two-pressure formulation, where the averaged internal pressure of one phase differs from
that of the other phase (Stuhmiller 1977; Ransom & Hicks 1984; Gidaspow 1994; Hérard
& Hurisse 2005). On the contrary, as regards the 1-D depth-integrated models derived
for fully saturated solid–liquid flows (Pitman & Le 2005; Pelanti et al. 2008; Pudasaini
2012), the lack of hyperbolicity may not be explained by the single-pressure formulation.
As in the 1-D PI-RIW model, the internal pressure of the solid phase is indeed reduced
by the buoyancy rather than equalized to the internal pressure of the liquid phase. Thus,
the appearance of the non-hyperbolic region in these models might be induced by other
factors. A possible reason was suggested by Pelanti et al. (2008), who supposed that the
non-hyperbolic region could arise from instabilities that produce inhomogeneities in the
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spatial distribution of the liquid concentration. Unlike the 3-D case, no analyses on the
potential ill-posedness of the depth-integrated two-fluid solid–liquid models seem to exist
in the literature, and thus, there is no evidence of the linkage between the change of type
behaviour of these models and their potential ill-posedness.

As regards our work, we do not know either the reason why the lack of hyperbolicity
occurs or if the 1-D PI-RIW model is ill-posed. Moreover, we do not know whether the
increase in the extent of the non-hyperbolic region due to Cs, Ce

r and K is something
that is physically based or if it is the sign of some limits in the representation of the
phenomenon. We suspect only that in cases of low values of Ce

r , namely when the ice
phase is predominant, the assumption that ice is completely submerged by water could
be unacceptable in some conditions. On the basis of these remarks, we think that more
research is required to investigate both the reasons for the change of type behaviour in the
1-D PI-RIW model and the related potential ill-posedness.

6.2. Comparison with the other simplified 1-D models
In this section, we compare the eigenvalues related to the PI-RIW model with those
referred to the FI-RIW and TP-RIW approaches with the aim to detect how the hypotheses
introduced in § 4 affect the mathematical nature of the PDE systems. For the comparison
of the eigenvalues of the PI-RIW model with those related to the ITP-RIW and MP-RIW
approaches, we refer the reader to Appendix D.

6.2.1. FI-RIW versus PI-RIW
The characteristic polynomial of the FI-RIW model is

P(λFI) = (λFI − U)2((λFI)2 − 2UλFI + U2 − Ka2), (6.12)

where U is the mixture velocity and a is given by (6.10a). The corresponding eigenvalues
are

λFI
1 = U −

√
Ka2, (6.13a)

λFI
2,3 = U, (6.13b)

λFI
4 = U +

√
Ka2. (6.13c)

By defining the mixture Froude number as Fr = U/a, the dimensionless eigenvalues can
be derived by dividing (6.13) by a. As pointed out in (6.13), the dimensionless eigenvalues
depend only on the mixture Froude number Fr and on the earth pressure coefficient K.
In case of K = 1, these eigenvalues coincide with those related to a free-surface water
problem with two advected passive scalars.

In figure 10 the trends of the dimensionless eigenvalues as a function of Fr are plotted
and compared with the PI-RIW eigenvalues, where we have set Frw = Fr. It can be
noticed that, unlike the PI-RIW model, the FI-RIW approach is always hyperbolic. The
three dimensionless eigenvalues obviously coincide with those of the PI-RIW model for
Fr = Frs = Frw, while they deviate significantly in the other cases. For Frs/Frw < 1, the
highest FI-RIW eigenvalue approximates the highest PI-RIW one, while for Frs/Frw > 1
the lowest FI-RIW eigenvalue approximates the lowest PI-RIW one. The remaining
intermediate eigenvalues are quite different from those related to the PI-RIW model for
all values of Frw.
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Figure 10. Comparison between the dimensionless eigenvalues of the FI-RIW and of the PI-RIW models.
Parameters used in these plots are the same used in figure 5. The FI-RIW eigenvalues are marked by continuous
lines with symbols, while those of the PI-RIW model are denoted by dashed lines without any type of
distinction (see figure 5 for details in the PI-RIW eigenvalues).

6.2.2. TP-RIW versus PI-RIW
The characteristic polynomial of the TP-RIW model reads as follows:

P(λTP) =
4∑

l=0

bl(λ
TP)l. (6.14)

The coefficients bl are defined as in the PI-RIW model by (6.9) where β2 and δ2 are
substituted by the following expressions:

β2
TP =

[
Cw − 1 − K

2
(Cw − 2)

] (
1 − ρw

ρr

)

δ2
TP = (1 − Cw)(K − 1)

(
1 − ρw

ρr

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (6.15)

Imposing K = 1, the coefficients of the characteristic polynomial related to the TP-RIW
model coincide with those derived by Pelanti et al. (2008).

As performed for the PI-RIW model, the dimensionless eigenvalues can be plotted as a
function of Frw. As shown in figure 11, the TP-RIW eigenvalues have the same trend as
the dimensionless eigenvalues of the PI-RIW model. The only difference between the two
approaches lies in the fact that the TP-RIW model does not show the eigenvalue λ̂ = Frs.
This overlap attests that the TP-RIW approach is not only a consistent simplification of
the PI-RIW model, but also that the PI-RIW approach converges to the two-phase model
when the ice component disappears from the mixture (complete melting).

6.2.3. General discussion
The analyses of the eigenvalues performed in the previous paragraphs and in
Appendix D show the effects of the basic simplifications on the nature of the mathematical
models considered. The incompressibility and isokinetic conditions influence in a different
way the eigenvalues. Regarding the incompressibility condition, it reduces only the
number of eigenvalues as a consequence of the decrease in the number of mass balances
with respect to the mother system, but it maintains unchanged the remaining eigenvalues
since the related equations remain unchanged too (see the FI-RIW, ITP-RIW and MP-RIW
models as examples). On the other hand, the isokinetic condition influences strongly
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Figure 11. Comparison between the dimensionless eigenvalues of the TP-RIW and of the PI-RIW models.
Parameters used in these plots are the same used in figure 5. The TP-RIW eigenvalues are marked by continuous
lines with symbols, while those of the PI-RIW model are denoted by dashed lines without any type of
distinction (see figure 5 for details in the PI-RIW eigenvalues).

the eigenstructure. The addition between some momentum balance principles, and the
removal of one conservation equation, indeed change the structure of the equations,
since some differential interphase terms are removed from the ‘mother’ system. As a
consequence, the eigenvalues change significantly passing from one model to another
(consider as an example the passage from the PI-RIW to the FI-RIW models), and this
variation concerns not only the trends of the eigenvalues but also the region where the loss
of hyperbolicity can occur.

To sum up, the simplification procedure of the RIW model leads to eigenvalues that
become simpler and simpler moving from the PI-RIW model to the MP-RIW approach,
and deletes, in some cases, the loss of hyperbolicity observed in the PI-RIW model.

7. Conclusions

The mathematical modelling of rock–ice avalanches requires the modelling of a complex
mixture where the representation of the melting process and of the interaction stresses
arising from the contacts between rock and ice particles are not so well established. A
possible way to tackle this problem consists of simplifying the description of the flow. In
this view, a framework of simplified mathematical models has been derived in this paper
from a complete three-phase approach by imposing alternately two distinct hypotheses,
which simplify the dynamics of the flow and/or the way to take the melting process into
account. As a result, we have obtained five different classes of models, which in turn
have been distinguished between ‘reduced’ and ‘approximated’ approaches. In comparison
with the original three-phase model, the ‘reduced’ approaches, namely the PI-RIW and
FI-RIW models, do not change the way to represent the ice melting but modify only
the dynamics of the three different phases. Conversely, the ‘approximated’ approaches
reduce significantly the melting process either by assigning the phase transformation
proportionately both to rock and ice (TP-RIW and ITP-RIW) or by deleting it from the
equation system (MP-RIW). Thanks to this framework, we have classified the rock–ice
avalanche mathematical models existing in the literature and, importantly, we have
identified the PI-RIW approach as a new class of models. In more detail, this approach
is the closest description to the original three-phase model, since it is based only on the
isokinetic condition applied to the rock and ice phases. With respect to the literature,
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the PI-RIW approach takes account simultaneously of the possible differences between
the solid and water velocities and of the melting process assigned only to ice.

As a first step for further studies, we have provided a careful analysis of the eigenvalues
for the PI-RIW class to investigate the mathematical nature of the related equation system.
More specifically, the PI-RIW approach loses its hyperbolicity for specific ranges of some
variables. Among these, the difference in the phase velocities can be considered as the
main parameter that affects the position of the region where the lack of hyperbolicity
occurs. The other variables on the other hand tend only to modify the extent of this region.
Although we do not know the physical reasons for the detection of this non-hyperbolic
region, we have supposed that the modification connected with the ice content is due to an
unphysical description of the behaviour of the ice phase inside the mixture. In the PI-RIW
approach, rock and ice are assumed indeed to behave similarly but in real conditions, a
process of segregation may occur due to the difference in the densities of these two phases.
Nevertheless, more studies are required to confirm this thesis.

Additionally, we have compared the eigenvalues of the PI-RIW approach with the other
simplified RIW models. This comparison has allowed us to identify the effect of the
simplifications on the eigenvalues. While the incompressibility condition maintains the
mathematical nature of the mother model deleting only one or two celerities, the isokinetic
condition changes significantly the eigenstructure. Therefore, this comparison shows that
the eigenvalues obtained from the simpler simplified RIW models may, in some cases, be
extremely different from those of the proposed approach.

To conclude, our future research will be addressed to implement a numerical scheme
for the PI-RIW model to quantify the effects of the simplifications and to compare the
results with field cases. The model enhancement will also be pursued to better understand
the loss of hyperbolicity, to better describe the processes affecting rock–ice avalanches by
using the energy balance principle and to take bed erosion and deposition into account.
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Appendix A. Gradients of the volumetric fractions in three-phase mixtures

This Appendix is devoted to prove mathematically the relations reported in § 2.3.1. To
achieve this goal, we need to define some variables in the microscopic description and to
average them over the reference volume V used in this work.

Microscopic variables. In a three-phase framework, a microscopic flow variable
related to a generic phase k, indicated by fk(x, t), is defined only in the points of the
domain occupied by the phase itself. In order to apply the averaging operator to this
microscopic flow variable, it is necessary to extend this function outside the phase domain.
Nevertheless, we can avoid defining explicitly this extension by multiplying fk(x, t) by a

919 A8-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

34
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-8753-7289
https://orcid.org/0000-0001-8753-7289
https://orcid.org/0000-0002-9439-237X
https://orcid.org/0000-0002-9439-237X
https://orcid.org/0000-0002-8092-4996
https://orcid.org/0000-0002-8092-4996
https://doi.org/10.1017/jfm.2021.348


S. Sansone, D. Zugliani and G. Rosatti

function, named as ‘phase function’ Fk(x, t), that is expressed by

Fk(x, t) =
{

1, if x at time t is occupied by phase k,
0, otherwise. (A1)

In this way, the quantity fk(x, t)Fk(x, t) results to be defined over the whole flow domain:
its value is equal to fk(x, t) inside the phase k and zero elsewhere. As shown by Drew
(1983), the phase function can be seen as a generalized function and its spatial gradient is
zero everywhere except on the boundary of the kth phase, where it becomes a vector that
is normal to the interface and that faces inwards the phase. It can be expressed as follows:

∇Fk(x, t) = −Nk(x, t)|∇Fk|, (A2)

where Nk(x, t) corresponds to the unit vector normal to the interface and directed outwards
from the phase k, while |∇Fk| represents an element of area of the surface,

dSk = |∇Fk|.
Since in three-phase mixtures three different types of interfaces exist, it is useful to
introduce the ‘interphase function’,

εkj =
{

1, if x at time t is occupied by the interface kj,
0, otherwise, (A3)

which is capable of identifying in time and space the interfaces of type kj.
Thanks to the interphase function, it is possible to define Nkj as

Nkj = εkjNk, (A4)

which corresponds to the unit vector normal to the interface that separates phase k from
phase j. In this way, Nk becomes

Nk =
3∑

j=1

(1 − δkj)Nkj, (A5)

where the Kronecker delta function δkj allows us to delete the meaningless term Nkk. Since
the two unit vectors normal to a surface have opposite directions, the following equality
holds:

N jk = −Nkj. (A6)

Considering a point of a surface separating the kth phase from the jth phase, the element
of area of the surface is unique, and thus, it can be expressed as a function of both the
phase functions, namely

|∇Fk| = |∇Fj|. (A7)

By multiplying this relation by Nkj and by exploiting the relation (A6), we can write

Nkj|∇Fk| = −N jk|∇Fj|. (A8)

Macroscopic variables. The generic average operator 〈 〉 can be applied to the variables
defined in the microscopic description.
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Modelling of rock–ice avalanches

(i) The average of the phase function defines αk, namely the volumetric fraction of the
phase k,

αk = 〈Fk(x, t)〉. (A9)

By applying the gradient to (A9) and exploiting the properties of the average, we get

∇αk = ∇〈Fk〉 = 〈∇Fk〉, (A10)

where the quantity

〈∇Fk〉 = 〈−Nk|∇Fk|〉, (A11)

defines a vector that is the resultant of the outgoing normal unit vector of all the interfaces
of phase k divided by the volume V . To distinguish the different contributions of the
different surfaces, we can use the interphase function

εkj〈∇Fk〉 = 〈−εkjNk|∇Fk|〉 = 〈−Nkj|∇Fk|〉. (A12)

By using this relation and (A5), (A11) can be expressed as

〈∇Fk〉 = 〈−Nk|∇Fk|〉 =
3∑

j=1

(1 − δkj)〈−Nkj|∇Fk|〉. (A13)

Therefore, the gradient of the concentration is expressed by (A13).
(ii) The quantity

Sk = 〈|∇Fk|〉, (A14)

represents the total surface enclosing phase k divided by the reference volume. By using
the definition of the interphase function, we can define the average surface between the
phases k and j as

Skj = 〈εkj|∇Fk|〉, (A15)

and therefore, the total average surface can be written as

Sk =
3∑

j=1

(1 − δkj)Skj =
3∑

j=1

(1 − δkj)〈εkj|∇Fk|〉, (A16)

where δkj allows us to delete the meaningless term Skk.
Let us assume that the liquid phase is, for example, identified by j = 3. Therefore, for a

solid phase k we can write

Sk =
2∑

j=1

(1 − δkj)Skj + Sk3. (A17)

We can assume that the averaged contact area between the solid phase and the liquid one,
namely Sk3, is much larger than the contact area between the given solid phase and the
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other solid one, and therefore

Sk � Sk3. (A18)

This implies that the gradient of αk, in the case of a solid phase, becomes

∇αk =
2∑

j=1

(1 − δkj)〈−Nkj|∇Fk|〉 + 〈−Nk3|∇Fk|〉 � 〈−Nk3|∇Fk|〉. (A19)

In a more general form, if k indicates a solid phase and j the liquid one, we have:

〈−Nkj|∇Fk|〉 � ∇αk. (A20)

On the other hand, if k identifies the liquid phase and j a solid one, we obtain

〈−Nkj|∇Fk|〉 = 〈N jk|∇Fk|〉 � −∇αj. (A21)

Appendix B. The PI-RIW model as a function of the rock equivalent concentration

In this Appendix we write the PI-RIW model in terms of the rock equivalent concentration
αe

r starting from the equation system (4.13). Equation (4.16) can be substituted into the
mass balances (4.13a) and (4.13b) and into the solid momentum balance (4.13d). The
resulting system reads as follows:

∂

∂t
(αe

rρr − αsρi) + ∇·((αe
rρr − αsρi)us) = 0, (B1a)

∂

∂t
(αe

rρr) + ∇·(αe
rρrus) = −|Γi|, (B1b)

∂

∂t
(αwρw) + ∇·(αwρwuw) = +|Γi|, (B1c)

∂

∂t
(αe

rρrus) + ∇·(αe
rρrus ⊗ us) = − ∇· (αsT s) + αe

rρrg − |Γi|uss

+∇αs · T w + MD
sw, (B1d)

∂

∂t
(αwρwuw) + ∇·(αwρwuw ⊗ uw) = − ∇· (αwT w) + αwρwg + |Γi|uss

+∇αw · T w − MD
sw, (B1e)

αs + αw = 1. (B1f )

With regard to the solid momentum balance (B1d), the right-hand side of the equation
is not completely written in terms of the rock equivalent concentration, since two terms
depend explicitly on the solid volume fraction: the solid internal stress term ∇ · (αsT s)
and the buoyancy ∇αs · T w. Assuming a Mohr–Coulomb plasticity closure for the solid
internal stresses, the term ∇ · (αsT s) becomes dependent on ρsαs, and thus, it can be
written in terms of the rock equivalent concentration thanks to (4.16). Conversely, the
buoyancy cannot be rewritten in terms of αe

r since in ∇αs · T w the solid volume fraction
appears together with the water stress tensor, which does not depend on ρs. This result is
justified by the fact that the buoyancy acts on the overall solid phase (rock plus ice) and
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Modelling of rock–ice avalanches

not on a phase equivalent in rock. With regard to (B1a), it can be expanded as follows:
∂

∂t
(αsρi) + ∇·(αsρius) = ∂

∂t
(αe

rρr) + ∇·(αe
rρrus). (B2)

Thanks to (B1b), the right-hand side of the equation written above coincides with the
source term of the solid mass balance principle and thus, it can be written as follows:

∂

∂t
(αsρi) + ∇·(αsρius) = −|Γi|. (B3)

By substituting (B1a) with this resulting equation, the PI-RIW model becomes

∂

∂t
(αsρi) + ∇·(αsρius) = −|Γi|, (B4a)

∂

∂t
(αe

rρr) + ∇·(αe
rρrus) = −|Γi|, (B4b)

∂

∂t
(αwρw) + ∇·(αwρwuw) = +|Γi|, (B4c)

∂

∂t
(αe

rρrus) + ∇·(αe
rρrus ⊗ us) = − ∇· (αsT s) + αe

rρrg − |Γi|uss

+∇αs · T w + MD
sw, (B4d)

∂

∂t
(αwρwuw) + ∇·(αwρwuw ⊗ uw) = − ∇· (αwT w) + αwρwg + |Γi|uss

+∇αw · T w − MD
sw, (B4e)

αs + αw = 1, (B4f )

where (B4a) expresses the changes over time and space in the solid volume fraction and it
is in agreement with the RIW model (3.18). It can indeed be derived by dividing (3.18a)
and (3.18b) by ρr and ρi, respectively, adding together the two resulting equations and
multiplying this balance principle by ρi.

The term ∇αs · T w appearing in the momentum balance (B4d) can be substituted by
∇αs · T w = ∇·(αsT w) − αs ∇· T w. By defining the effective solid stress tensor as Ts =
T s − T w, the final equation system for the PI-RIW model can be rewritten as follows:

∂

∂t
(αsρi) + ∇·(αsρius) = −|Γi|, (B5a)

∂

∂t
(αe

rρr) + ∇·(αe
rρrus) = −|Γi|, (B5b)

∂

∂t
(αwρw) + ∇·(αwρwuw) = +|Γi|, (B5c)

∂

∂t
(αe

rρrus) + ∇·(αe
rρrus ⊗ us) = − ∇· (αsTs) + αe

rρrg − |Γi|uss

−αs ∇· T w + MD
sw, (B5d)

∂

∂t
(αwρwuw) + ∇·(αwρwuw ⊗ uw) = − ∇· (αwT w) + αwρwg + |Γi|uss

+∇αw · T w − MD
sw, (B5e)

αs + αw = 1, (B5f )
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where the effective solid stress tensor Ts needs to be defined by a proper closure
relation.

Appendix C. The depth-integrated 1-D simplified RIW models (except for the
PI-RIW approach)

We report here the detailed expressions of the depth-integrated 1-D versions of all the
simplified RIW models except for the PI-RIW approach, which has been already presented
in § 5. We refer the reader to this section for the basic assumptions and the closure relations
used in the derivation.

C.1. 1-D FI-RIW
The equations for the 1-D FI-RIW model read as follows:

∂(Csh)

∂t
+ ∂(CsUh)

∂x
= −Υih

ρi
, (C1a)

∂(ρ̄h)

∂t
+ ∂(ρ̄Uh)

∂x
= 0, (C1b)

∂(Cwh)

∂t
+ ∂(CwUh)

∂x
= +Υih

ρw
, (C1c)

∂(ρ̄Uh)

∂t
+ ∂(ρ̄U2h)

∂x
= − ∂

∂x

[
Kρ̄g cos ζ

h2

2

]
− ρ̄gh cos ζ

∂zb

∂x
− μρ̄gh cos ζ + ρ̄gh sin ζ,

(C1d)

Cs + Cw = 1, (C1e)

where, according to (5.7), ρ̄ is the depth-averaged value of the mixture density, while,
according to (5.11), U represents the depth-averaged mixture velocity.

C.2. 1-D TP-RIW
The equations for the 1-D TP-RIW model read as follows:

∂(Csh)

∂t
+ ∂(CshUs)

∂x
= −Υsh

ρs
, (C2a)

∂(Cwh)

∂t
+ ∂(CwhUw)

∂x
= +Υsh

ρw
, (C2b)

∂(CshUs)

∂t
+ ∂(CshU2

s )

∂x
= − ∂

∂x

[
K

(ρs − ρw)

ρs
Csg cos ζ

h2

2

]
− Cs

∂

∂x

[
ρw

ρs
g cos ζ

h2

2

]

−K
(ρs − ρw)

ρs
Csgh cos ζ

∂zb

∂x
− Cs

ρw

ρs
hg cos ζ

∂zb

∂x

−μ
(ρs − ρw)

ρs
Csgh cos ζ + Cshg sin ζ − ΥsUssh

ρs
+ M̄D

swh
ρs

, (C2c)
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Modelling of rock–ice avalanches

∂(CwhUw)

∂t
+ ∂(CwhU2

w)

∂x
= −Cw

∂

∂x

[
g cos ζ

h2

2

]
− Cwhg cos ζ

∂zb

∂x

+ Cwhg sin ζ + ΥsUssh
ρw

− M̄D
swh
ρw

, (C2d)

Cs + Cw = 1. (C2e)

Since the TP-RIW model is derived by applying the incompressibility assumption to the
solid phase, the solid density ρs is a constant.

C.3. 1-D ITP-RIW
The equations for the 1-D ITP-RIW model read as follows:

∂(ρ̄h)

∂t
+ ∂(ρ̄Uh)

∂x
= 0, (C3a)

∂(Cwh)

∂t
+ ∂(CwUh)

∂x
= +Υsh

ρw
, (C3b)

∂(ρ̄Uh)

∂t
+ ∂(ρ̄U2h)

∂x
= − ∂

∂x

[
Kρ̄g cos ζ

h2

2

]
− ρ̄gh cos ζ

∂zb

∂x
− μρ̄gh cos ζ + ρ̄gh sin ζ,

(C3c)

ρ̄

ρs
+ Cw

(
1 − ρw

ρs

)
= 1, (C3d)

where ρ̄ is the depth-averaged mixture density as in the 1-D FI-RIW model.

C.4. 1-D MP-RIW
Since the MP-RIW model is derived by applying the incompressibility assumption to the
overall bulk mixture, the mixture density ρ is a constant, and thus, it can be simplified
from the equations

∂h
∂t

+ ∂(Uh)

∂x
= 0, (C4a)

∂(Uh)

∂t
+ ∂(U2h)

∂x
= − ∂

∂x

[
Kg cos ζ

h2

2

]
− gh cos ζ

∂zb

∂x
− μgh cos ζ + gh sin ζ. (C4b)

Appendix D. Eigenvalues of the 1-D ITP-RIW, 1-D MP-RIW and literature models

In this Appendix, we report the comparison of the eigenvalues of the 1-D PI-RIW model
with those related to the ITP-RIW and MP-RIW approaches and with those used to solve
the literature models numerically.

D.1. ITP-RIW versus PI-RIW
The characteristic polynomial of the ITP-RIW model reads as follows:

P(λITP) = (U − λITP)[(λITP)2 − 2UλITP + U2 − Ka2], (D1)

and the related eigenvalues are equal to those of the debris-flow model used by Rosatti &
Zugliani (2015) to describe the transition between the conditions of fixed and mobile bed
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Figure 12. Comparison between the dimensionless eigenvalues of the ITP-RIW and of the PI-RIW models.
Parameters used in these plots are the same used in figure 5. The ITP-RIW eigenvalues are marked by
continuous lines with symbols, while those of the PI-RIW model are denoted by dashed lines without any
type of distinction (see figure 5 for details in the PI-RIW eigenvalues).

in a debris flow model,

λITP
1 = U −

√
Ka2, (D2a)

λITP
2 = U, (D2b)

λITP
3 = U +

√
Ka2. (D2c)

The ITP-RIW model has the same eigenvalues as the FI-RIW approach except for the
absence of one eigenvalue equal to the mixture velocity. Hence, the observation derived
for the FI-RIW eigenvalues can be extended also to this description: the dimensionless
eigenvalues match those of the PI-RIW model only for Frs/Frw = 1 (see figure 12). On
the other hand, in case of a difference in phase velocities, the ITP-RIW eigenvalues differ
strongly from those of the PI-RIW model and this difference increases with the water
Froude number. Furthermore, while the PI-RIW model loses its hyperbolicity for high
differences in phase velocities, the ITP-RIW approach is always hyperbolic.

D.2. MP-RIW versus PI-RIW
The characteristic polynomial of the MP-RIW model reads as follows:

P(λMP) = (λMP)2 − 2UλMP + U2 − Ka2, (D3)

and the related eigenvalues are

λMP
1 = U −

√
Ka2, (D4a)

λMP
2 = U +

√
Ka2. (D4b)

This model presents, obviously, only two eigenvalues which are equal to the largest and
smallest eigenvalues of the FI-RIW model. Thus, the observations derived in § 6.2.1
concerning the behaviour of these two eigenvalues can be extended also to this approach.
Figure 13 shows the results of the comparison between the MP-RIW and PI-RIW
eigenvalues.
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Figure 13. Comparison between the dimensionless eigenvalues of the MP-RIW and of the PI-RIW models.
Parameters used in these plots are the same used in figure 5. The MP-RIW eigenvalues are marked by
continuous lines with symbols, while those of the PI-RIW model are denoted by dashed lines without any
type of distinction (see figure 5 for details in the PI-RIW eigenvalues).

D.3. Literature models versus PI-RIW
Concerning the rock–ice avalanche models existing in the literature and discussed in
§ 4.7, the numerical solutions in the works of Evans et al. (2009b), Schneider et al.
(2010) and Bartelt et al. (2018) were computed considering as eigenvalues those related
to the 1-D MP-RIW and FI-RIW models. With reference to the work of Pudasaini
& Krautblatter (2014), the eigenvalues are computed following the procedure adopted
by Pudasaini (2012) for his two-phase debris-flow model. This procedure evaluates the
eigenvalues in an approximated way by excluding from the analysis the non-conservative
terms of the PDE system and by analysing two limiting situations, i.e. the solid phase
of the TPPK model moves much faster than the liquid phase and vice versa. In
this way, the authors derived two distinct sets of PDEs, whose eigenvalues read as
follows:

λPK
1s,2s = Us ±

√
Ka2

(
Ce

r + 1
2 Cw

)
, (D5a)

λPK
1w,2w = Uw ±

√
a2

(
Cw + 1

2 Ce
r

)
. (D5b)

For more details on the procedure of derivation of these eigenvalues, we refer the reader
to the works Pudasaini (2012) and of Pokhrel (2014).

Figure 14 shows a comparison of the PI-RIW dimensionless eigenvalues with those used
to solve the TPPK model numerically. The largest and smallest eigenvalues approximate
reasonably well the PI-RIW behaviour in limited ranges of Frw. Moreover, the intermediate
eigenvalues show a trend that resembles only slightly the behaviour of the dimensionless
eigenvalues of the PI-RIW model. In more detail, as the water Froude number increases,
these intermediate eigenvalues cross each other for values of Frw much greater than in the
PI-RIW case, but they remain always real. In this way, unlike the PI-RIW eigenvalues,
they do not show any lack of hyperbolicity. Finally, in the isokinetic condition, namely
Frs/Frw = 1, the eigenvalues are equal in pairs and differ from the maximum and
minimum PI-RIW eigenvalues. It is clear that this approximation can be used with
numerical solvers of Riemann problems based on the fastest and slowest eigenvalues (e.g.
HLL of Harten, Lax & Leer (1983) and LHLL of Fraccarollo, Capart & Zech (2003)),
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Figure 14. Comparison between the dimensionless eigenvalues of the PI-RIW model and the approximated
eigenvalues used by Pudasaini & Krautblatter (2014) to solve their TPPK model. Parameters used in these plots
are the same used in figure 5. The TPPK eigenvalues are marked by continuous lines with symbols, while those
of the PI-RIW model are denoted by dashed lines without any type of distinction (see figure 5 for details in the
PI-RIW eigenvalues).

but for solvers that use the complete set of eigenvalues (e.g. Roe of Roe (1981) and
DOT of Dumbser & Toro (2011)) this approximation could affect significantly the
results. Nevertheless, this difference could be reduced by using the eigenvalues computed
as in § 6.
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